
www.embedded-world.eu

A Novel Trusted Execution Environment

for Next-Generation RISC-V MCUs

Sandro Pinto

Centro ALGORITMI, UMinho

Guimarães, Portugal

sandro.pinto@dei.uminho.pt

Matjaz Breskvar

Beyond Semiconductor

Ljubljana, Slovenia

matjaz.breskvar@beyondsemi.com

Abstract— Security is one of the major challenges within the

realm of the Internet of Things (IoT). IoT devices are typically

powered by microcontroller units (MCUs) that lack hardware

security primitives to isolate security-critical functions from 3rd

party less critical components. To make security practical at scale,

ARM started to integrate TrustZone technology in the new

Armv8-M MCUs (a.k.a. TrustZone-M); however, this technology

is still limited to the old-fashioned dual-world architecture and has

already been struggling with security problems. In turn, within

RISC-V, MCUs still lack a Trusted Execution Environment (TEE)

specification, leading to a set of fragmented approaches with

restrictive power and performance costs. In this paper, we present

a novel TEE solution for next-generation RISC-V MCUs. The

proposed system relies on the concept of hardware-enforced,

software-defined virtualization-based TEEs. At the hardware

level, we describe the novel Beyond BA51-H, the first RISC-V

MCU implementing (i) the RISC-V hypervisor extension, (ii) a

unified (dual-stage) SPMP extension to protect memory, (iii) and

other RISC-V extensions to optimize code size and interrupt

latency. At the software level, we discuss the journey of porting the

open-source Bao hypervisor to the BA5X-H while implementing

the virtualization-based TEE architecture.

Keywords—Virtualization; TEE; RISC-V; security; Bao, BA51.

I. INTRODUCTION

The world is becoming increasingly connected and thus
easily accessible to remote, ill-intentioned hackers and attackers.
Internet of Things (IoT) devices are being deployed on a massive
scale (e.g., Arm estimates that it will produce a trillion IoT
devices by 2035 [1]), generating and sharing large amounts of
security- and privacy-sensitive data [2]. The problem is that
designing secure IoT devices can be a quandary, with required
features (e.g., connectivity stack, over-the-air firmware update,
etc.) integrating multiple codebases, drivers, and libraries from
different 3rd party entities with distinct assurance levels, on
computing units that typically lack reliable mechanisms to
enforce the separation among them [3]. Nevertheless, recent
attacks on IoT devices have shown us that poorly designed
connected devices can bring down critical infrastructures and/or
even affect our safety and that the success of this new wave of

the Internet is heavily dependent upon the trust built into these
billions of connected devices [3-4].

Despite the proliferation of Trusted Execution Environment
(TEE), e.g., Intel SGX [5] and Arm TrustZone [6-7], on
application processor units (APUs) to secure servers and
mobile/embedded devices for two decades, microcontroller
units (MCUs) (i) are typically absent of most security hardware
primitives or (ii) fail to take advantage of them when they exist
[3]. As a step towards securing IoT devices at scale, Arm started
to push for the integration of TEE TrustZone technology in
Armv8-M MCUs (e.g., Cortex-M23, Cortex-M33); however,
TrustZone-M is still limited to the old-fashioned dual-world
architecture and has been already reveling security weaknesses
[8-10]. In turn, within the RISC-V ecosystem, MCUs still lack a
standard Trusted Execution Environment (TEE) architecture or
specification, leading to fragmented approaches with prohibitive
power and performance costs. For example, MultiZone TEE
[11] supports RISC-V MCUs with two privilege levels
(Machine- and User-mode), but most of the internals rely on trap
and emulation facilitated by the classical virtualizable RISC-V
architecture. This naturally has a significant performance impact
(due to the frequent M-mode entries and exits), which reflects
even further on the power consumption.

In this paper, we propose a novel TEE architecture to secure
the next-generation RISC-V MCUs. A central novelty of our
TEE design is that we leverage hardware virtualization without
virtual memory support as the key underlying security primitive
to provide hardware-enforced, software-defined virtualization-
based TEEs. This is made possible by the current efforts to
extend the RISC-V S-Mode Physical Memory Protection
(SPMP) for Hypervisor [12-13]. We have implemented these
extensions on the RISC-V golden model, i.e., Spike. We have
also extended the Beyond Semiconductor’s commercial RISC-
V CPU BA51 to support the RISC-V hypervisor extension
(without virtual memory), together with the unified (dual-stage)
SPMP extension to enforce memory protection. This novel CPU
has the codename BA51-H. At the software level, we ported the
open-source Bao hypervisor to the BA51-H and implemented
the virtualization-based TEE architecture.

II. SCOPE AND BACKGROUND

A. Microcontrollers & Memory Protection Unit

Microcontrollers (MCUs) are low-performance computing
units often found in low-end embedded / IoT systems or as
housekeeping or platform-management engines in high-
performance / high-end SoCs. MCUs do not support virtual
memory based on a Memory Management Unit (MMU) and
cannot run general-purpose OSes such as Linux. Instead, they
provide a Memory Protection Unit (MPU), enabling fine-
grained access control over memory regions (with no memory
translational functionality). MPUs provide a set of entries, each
defining a region’s base and bound and access permissions
(read, write, and/or execute). The reason for opting for MPUs
instead of MMUs on MCU implementations is twofold. First,
these are much simpler hardware structures that consume fewer
hardware resources, which is critical for the low-cost design
point of these computers. Second, since MCUs are typically
used for real-time applications, the timing characteristics of
memory accesses mediated by an MPU are much more
deterministic as it does not require expensive page-table walks
with extra implicit memory accesses.

B. RISC-V Supervisor-mode PMP (SPMP)

In the RISC-V lingo, MPU is named Physical Memory
Protection. Initially, only the highest privilege mode, i.e.,
Machine-mode (M-mode), featured a PMP, to enable isolation
of firmware and OS-managed resources and can be used as a
primitive for static resource partitioning and TEE creation. Due
to the need to run real-time OS (RTOS) in Supervisor mode (S-
mode) with hardware-enforced user-level task isolation, the
RISC-V community proposed the addition of the Supervisor
PMP, thus SPMP [12]. The SPMP follows essentially the same
design as the original PMP, featuring an implementation-defined
number of entries and a mode bit that differentiates between
Supervisor and User access permissions. On each context
switch, the OS must swap user entries. Depending on the number
of regions, this might be an expensive operation; thus, the SPMP
introduced a context-switch optimization mechanism
unavailable on the original PMP. This mechanism defines a set
of registers that enable/disable (bit-wise) SPMP entries. Thus, if
enough entries are available, a context switch might resume to a
write to these registers, effectively disabling entries related to
suspended tasks and enabling entries associated with newly
scheduled tasks. As of this writing, the SPMP extension is not
yet ratified; however, it has already been submitted for prior
consideration of the Architecture Review Committee (ARC).
The next step is the public review and then ratification.

SPMP for Hypervisor. The SPMP is currently being extended
to support the Hypervisor extension by defining a dual-stage
PMP [13]. The first stage, dubbed the virtual SPMP or vSPMP,
is controlled by the VMs running in VS-mode, while the second
stage is controlled by the hypervisor, effectively enforcing
isolation among VMs. The original proposal featured two
separate PMPs controlled by HS mode, where the (i) first (the
baseline SPMP) mediates accesses from HS/HU, and the (ii)
second, dubbed hgPMP, mediates access from VMs, i.e., from
VS/VU modes. However, a second proposal introduced a

unified model where only a single SPMP is controlled by the
hypervisor. In this model, execution under either VS- or VU-
mode mimics the execution of a user-mode application on the
baseline SPMP. Besides being a much cleaner extension, this
approach prevents the a priori partition of SPMP entries between
the hypervisor and the virtual modes, reducing the waste of
possible unused entries if, for example, virtualization is not used.
Finally, note that, besides the SPMP itself, the hypervisor must
context-switch vSPMP entries on a VM switch, an operation for
which no optimization is currently defined.

C. Beyond BA51

The BA51 (Figure 1) is a configurable, low-power, deeply
embedded RISC-V processor IP core that implements a single-
issue, in-order, 2-stage execution pipeline and supports the
RISC-V 32-bit base integer instruction set (RV32I) or the 32-bit
base embedded instructions set (RV32E). The processor core
can be configured to meet different application requirements.
For instance, it can optionally support user and supervisor
modes, as well as the ISA extensions for Compressed
Instructions (C), Integer Multiplication and Division
Instructions (M), Atomic Instructions (A), User-Level Interrupts
(N), Control and Status Register (Zicsr), and Instruction-Fence
(Zifencei); where support for the single-precision floating-point
(F) ISA can also be added. Furthermore, the BA51 supports
software and timer interrupts and up to 64 external interrupt
lines; where the elapsed time from when an external interrupt is
asserted until the first instruction in the resolved interrupt
handler can be issued is just 4 clock cycles. The core uses
AMBA®, AXI-4 and low-latency Quick-access Memory
(QMEM) interfaces for fetching instructions and accessing data
and peripherals, while the debug unit connects to an external
JTAG/TAP controller via an APB port.

The BA51 is designed for low energy consumption. It is
compact and enables advanced power management. Under its
minimal configuration, the processor size is just 16k gates, and
even when most of the optional features are enabled, it is about
50k gates. This small silicon footprint is critical for minimizing
leakage currents during idle or standby modes and reducing
dynamic power consumption. The BA51 can effectively replace
existing 8-bit and 16-bit MCUs or be used as a secondary,
housekeeping, or peripheral controller processor in complex

Fig. 1. High-level architecture of the RISC-V BA51 core.

www.embedded-world.eu

SoC designs. It is suitable for a wide range of deeply embedded
applications such as mixed-signal embedded processing (e.g.,
SERDEScontrol), wireless communications ICs (e.g.,
Bluetooth, Zigbee, or GPS), and industrial MCUs.

D. Bao Hypervisor

Bao [14] is an open-source static partitioning hypervisor
targeting mixed-criticality, real-time systems. Driven by the
design principles of minimality and least privilege, Bao was
developed from scratch, following the static partitioning
architecture [15]. It is statically linked, with no external library
dependencies, thus achieving an extremely small code base on
the order of 7K-9K Source Lines of Code (SLoC). Bao heavily
relies on hardware virtualization support for privilege levels,
memory, interrupts, and I/O. Unlike other embedded
hypervisors, Bao has no dependence on privileged guest VMs to
bootstrap the system and start/manage VMs (e.g., Linux). Given
its focus on real-time and mixed-criticality, Bao has featured,
from the get-go, a cache partitioning mechanism based on cache
coloring that provide non-interference guarantees. Efforts to
support memory bandwidth regulation are underway. Initially
developed for Armv8-A 64-bit, Bao is one of the few
hypervisors supporting the RISC-V Hypervisor extension.
Recently, Bao has been extended to support 32-bit and state-of-
the-art dual-stage MPU architectures, such as the ARMv8-R
Cortex-R52 and the Infineon AURIX TC4x.

III. USE CASES MOTIVATION

Virtualization enables the consolidation of multiple
subsystems into a single-platform, while guaranteeing a strict
isolation and fault encapsulation. The addition of virtualization
capabilities on computing platforms without virtual memory is
a new endeavor. This new profile of computers, sometimes
referred to as real-time units, is gaining momentum in
mainstream ISAs with the announcement and release of the Arm
Cortex-R52 and the Infinineon TC4x. Due to deterministic and
real-time guarantees, these computing units are finding
applicability in next generation eMobility, ADAS, automotive
E/E architectures, and affordable artificial intelligence (AI)
applications. Bellow, we describe the high-level system view of
two different use cases.

A. Secure AI at the Edge

Figure 2a) presents the high-level system view for a use case
on secure AI at the edge. Securing IoT devices encompasses
separating and segregating functionalities with different
criticalities and/or provided via multiple non-trusted parties, i.e.,
Original Equipment Manufacturers (OEM), Original Design
Manufacturers (ODM), and End-User(s). This microkernel-like
philosophy, i.e., decomposing monolithic, fully linked software
binaries into small, compartmentalized enclaves, also contains
the lateral movement of any potential vulnerability, i.e., it
enables consolidation while avoiding/minimizing security
issues. In this particular example, there is a clear segregation of
the functionalities related to connectivity (e.g., TCP/IP stack),
secrets, proprietary AI models or business logic, and access to
specific OEM accelerators. Typically, these functionalities are
facilitated and/or provided by well-established RTOS, such as
Zephyr, FreeRTOS, etc, and thus there is a need for an additional
privilege component, i.e., hypervisor, for controlling and
managing all guest OSes.

B. Automotive Domain/Zonal Controllers

 Figure 2b presents the high-level system view for an
automotive domain/zonal controller, in particular, for an electric
vehicle powertrain. EV/HEV powertrains typically embed a
panoply of functionalities with different automotive safety
integrity levels (ASIL), such as motor and chassis control,
battery management systems (BMS), power management, and
steering control. Traditionally, these functionalities would reside
on dedicated MCUs found distributed throughout the vehicle.
However, as the industry shifts towards domain/zonal-based
vehicle architectures, these subsystems are consolidated into the
same platform. Virtualization, in particular virtualization for
"MMU-less" platforms, can, on one side, provide strict
determinism for hard real-time workloads while guaranteeing
the required freedom-of-interference required by functional
safety (Fusa) standards (e.g., ISO26262).

IV. DESIGN AND IMPLEMENTATION

A. System Architecture

Figure 3 depicts the proposed TEE architecture. A central

novelty of the TEE design is that we leverage hardware

virtualization primitives to encapsulate subsystems (RTOS and

Tasks/Apps) into dedicated VMs, which essentially stand as

software-defined TEEs. These hardware virtualization

primitives consist of the extra CPU execution modes as well as

the extra stage for the SPMP. The RISC-V Hypervisor

specification defines an orthogonal design where the S-mode is

extended to a hypervisor-extended supervisor mode (HS-

mode), and two new privileged modes are added, i.e., virtual

supervisor mode (VS-mode) and virtual user mode (VU-mode).

As described in section II.B, in the (dual-stage) unified PMP

design, the first stage (vSPMP) is controlled by the VM running

a) Secure AI at the Edge

b) Automotive Domain/Zonal Controllers

Fig. 2. Use cases motivation for virtualization without virtual memory.

in VS-mode, while the second stage is controlled by the

hypervisor in HS-mode.

B. Spike SPMP Hypervisor

Spike is a RISC-V ISA simulator [16] that provides a
functional model for RISC-V cores. It allows one to run RISC-
V programs with a variety of different RISC-V extensions,
including the RA32I, PMP, and the Hypervisor extension. It is
generally considered the golden model of the RISC-V
specification.

Before we implemented the BA51-H core, we have first used
the Spike simulator to set up a reference execution environment
that is as close as possible to the BA51-H core. Having a
reference execution environment is extremely useful as it
allowed us to test the implementation BA51-H against the
reference environment and, at the same time, allowed us to start
porting Bao to the referenced execution environment before the
BA51-H was implemented. Hopefully, the Spike simulator
already supported most of the extensions needed for the
referenced execution environment. For the initial execution
environment, we have configured Spike to simulate a single 32-
bit core with rv32imafch_pmp_sstc_zc_zicntr ISA with memory
mapping disabled. We further extended the Spike simulator with
the SPMP for hypervisor extension [17]. It encompassed adding
the SPMP and vSPMP-related registers, copying and adjusting
the logic of PMP extension, and taking into consideration when
the core is in V-mode.

As a final note, we want to highlight that our reference
execution environment does not support the simulation of the
APLIC interrupt controller. We have considered adding APLIC
to the Spike simulator, but because Bao is able to switch
seamlessly between the PLIC and APLIC at compile time, we
have decided to skip this due to time constraints.

C. Beyond BA5X-H

To the best of our knowledge, the BA51-H is the smallest
silicon area RISC-V core with hardware virtualization support
featuring unified SPMP, Sstc, and APLIC. The silicon area
footprint comprises two components: the processor core logic
size (gate count) and memory size. For best results, it is key to
balance the added gate count of additional processor
functionality with memory size reductions (smaller hypervisor
code size overhead). Moving functionality from software to
hardware (i.e., interrupts delegation) additionally minimizes the
overheads associated with virtualization. The BA51-H is

compliant with the base RV32IMAFC ISA. It supports several
other standard RISC-V extensions, namely: (i) the Zc extension,
to reduce the code size by adding to the 16-bit instruction set
defined in extension C; (ii) the unified SPMP extension, which
adds support for the supervisor mode physical memory
protection; and (iii) the Sstc extension, which provides timer
services in supervisor mode.

Hardware virtualization support into the BA51-H is mostly
supported by supervisor-level architecture, documented by the
Hypervisor ISA extension specification. This support required
changes to the instruction decoding, the control and status
register (CSR) array, and the trap handling mechanisms. Since
the BA51-H, by design, does not provide support for memory
virtualization, features related to address translation and
memory protection were not incorporated into the core. Instead,
the SPMP was extended with a dual-stage architecture to enforce
memory protection and isolation between hypervisor domains.

We have also implemented Supervisor-mode timer facilities
(Sstc extensions) and the Advanced Platform-Level Interrupt
Controller (APLIC), enabling interrupt delegation.
Implementing these specifications alleviates the hypervisor code
size and reduces the virtualization impact on performance to
little more than that of an inter-process context switch.

D. Bao BA51-H support

Despite being targeted initially at processors featuring a
dual-stage MMU, the Bao Hypervisor has recently expanded
towards lower-end MPU-based microcontrollers. MPU support
first targeted the 32-bit Armv8-R family, which includes
virtualization hardware support with a dual-stage MPU. In
supporting the BA51-H, Bao has become the pioneering
hypervisor running on virtualization-capable and SPMP-based
RISC-V processors.

Bao SPMP Hypervisor support. To enable seamless porting
between multiple MPU-based architectures, the Bao memory-
protection design is architected into two layers. The top layer is
an architecture-independent layer where each address space, i.e.,
the hypervisor and each VM, is assigned a virtual MPU spanning
all processors on which that address space is hosted. Then,
locally, on each core, the bottom layer multiplexes entries of the
multiple virtual MPUs of the address spaces hosted on that core
in the physical MPU. This enables both (i) agnostic memory
management and checks and (ii) optimized MPU entry
management according to the architecture’s specific MPU
capabilities. Specifically, in RISC-V, this design facilitates the
hypervisor to use NAPOT entries, minimizing the use of SPMP
entries. However, in the currently implemented unified model,
the permission combinations provided by the SPMP do not
enable all possible use cases of shared regions between the
hypervisor and guest. For example, it is not possible to define a
shared region with RW permissions for the hypervisor and RWX
for the guest. This is desirable if some protocol requires sharing
an (original) guest RWX region between them while limiting
execution of such region by the hypervisor, as it might constitute
an attack vector. To circumvent this, Bao does not make use of

Fig. 3. Virtualization-based TEE architecture for RISC-V MCUs.

www.embedded-world.eu

shared permissions. It duplicates these regions with a flipped
mode bit and keeps all guest regions deactivated during its
execution, re-enabling them upon guest entry while disabling
(most) hypervisor regions and vice-versa upon a guest exit.

Bao CPU sharing. The BA51-H is a single-core processor, and
Bao features a purely static partitioning architecture with 1:1
vCPU to pCPU assignment. This specific combination requires
CPU sharing by multiple vCPUs to enable the consolidation of
various VMs. Currently, an experimental branch of the Bao
hypervisor implements vCPU context switch and a simple
round-robin preemptive scheduler. However, the available
SPMP context-switch optimizations still need to be leveraged,
and guest SPMP entries are fully swapped on each scheduling
point. Thus, we are currently developing an algorithm to balance
SPMP entry allocation to minimize swapped entries.

V. PRELIMINARY EVALUATION

Our preliminary validation and evaluation were performed
on Spike and on a target FPGA platform, i.e., Arty 100-T. The
software stack encompasses Bao v1.0 and baremetal VMs. Bao
and the baremetal VMs were compiled using the RISC-V
toolchain with Beyond Studio with -O2 optimizations. We
focused on BA51-H hardware resources, and Bao TCB size.

BA5X-H Hardware Resources. Figure 4 shows the
preliminary synthesis results of BA51 compact configuration
(CC) and BA51-H feature-rich configuration (FRC). We have
synthesized both designs using the ASIC synthesis tools on an
advanced node process with a 100 MHz nominal timing
constraint. As is usual and because we are interested in the
relative size of a particular feature, we use gate count as a
process-independent indication of area. Furthermore, we
estimate that one bit of SRAM has the size equivalent to one gate
as a process-independent measurement of SRAM area. The
“BA51 compact” is a compact setup of BA51 with PIC, M-mode
only, and C, E, Zicsr extensions, where “BA51-H FRC” is a
feature-rich setup of BA51 with APLIC (8 interrupts), Debug
module, Power management, PMP with 16 entries (16e), unified
sPMP with 16 entries (16e), Memory debugger, CLINT,
Triggers (8), Sstc, Trace, M-mode, S-mode, U-mode, and H
(without virtual memory), A, C, F, H, I, M, N, Sspmp, Sstc, Zc,
Zicntr, Zicsr, and Zifencei extensions.

From the preliminary synthesis results, we can see that adding
virtualization support (H, PMP (16e) + unified SPMP (16e),
APLIC, and SSTC extensions) does account for 5.1% of the area
of the BA51-H FRC. But when we add 64KiB SRAM, the
percentage of the area used by the added virtualization support
drops to 1.4% of the whole area, which is an acceptable trade-
off, especially if looking at the alternative of using multiple
processing cores to obtain similar isolation guarantees.
Furthermore, by using SPMP with 16 entries + unified SPMP
with 16 entries instead of only SPMP with 32 entries, we only
increased the design size by 490 gates.

Bao TCB Size. In security-critical systems, the size of the
hypervisor code, measured in source lines of code (SLoC), is
critical. It should be minimal as it is part of the trusted computing
base (TCB) of all VMs. As well understood in the literature, a
larger TCB typically has more bugs and a broader attack surface,
resulting in a higher probability of vulnerabilities. We measured

SLoC for the target configurations using cloc. Bao for the BA51-
H has a total of 6.5K SLoC, which translates into 31.2 KiB of
size (.text).

VI. ROADMAP AND NEXT STEPS

RISC-V SPMP Hypervisor spec. As already mentioned, the
vanilla SPMP specification has not yet been ratified. We
highlight thus that the SPMP for hypervisor extension is still at
a very embryonic stage, with the current proposal shifting from
a dual SPMP to a unified (dual-stage) SPMP. We plan to drive
and lead the design of this specification among the RISC-V
ecosystem and thus to update, expand, and adapt the Spike
model, the BA51-H CPU, and the Bao hypervisor port as this
specification goes from develop, ARC to public review, and then
final ratification. We also plan to build the support for this
specification on QEMU.

Multi-Domain Accelerators. Software running inside of the
VMs often interface and interact with additional system bus
masters that are not a part of the main processing core, e.g.,
cryptographic accelerators and/or peripheral devices with DMA
capabilities. Sharing HW accelerator cores between different
VMs can create unexpected information flows that break the
isolation between VMs provided by the main CPU(s). This
makes sharing of external HW modules problematic in terms of
preserving isolation between domains. One way to address such
problems is to better control how the information flows between
the core and HW accelerator/bus masters. The design of such a
mechanism is a topic for a separate article; but on a high-level,
such a mechanism can be provided by propagating a part of the
current execution context of a core over the interconnect to the
external HW accelerators. For example, the BA51-H could
expose an additional CSR to which Bao could write an identifier
(ID) of the VM currently running on the core. The VM ID can
then be propagated to HW modules with each transaction made
over the bus interconnect and, based on this propagated
information, the HW module could then decide how to handle
the transfer based on which VM caused the transfer.

VII. CONCLUSION

This paper presented a novel TEE architecture to secure the
next-generation RISC-V MCUs. The proposed system is
centered on hardware-enforced, software-defined virtualization-
based TEEs, facilitated by upcoming hardware virtualization
primitives on RISC-V MCUs without virtual memory (but with
SPMP). We have pioneered a reference architecture that
includes (i) the open-source Spike model, (i) a commercial
RISC-V CPU, i.e., BA51-H, and (iii) the open-source Bao
hypervisor, which we expect to deploy on a commercial pilot
use case for secure AI at the edge.

Fig. 4. The size (in the number of gates) of the preliminary synthesis
results of compact BA51 and feature rich BA51-H configuration

with and without 64KB of SRAM.

ACKNOWLEDGMENT

The authors would like to thank José Martins, Žiga Putrle, and
Tilen Nedanovski for their contributions, support, and
suggestions. This work is supported by (i) FCT – Fundação para
a Ciência e Tecnologia within the R&D Units Project Scope
UIDB/00319/2020 and (ii) European Union’s Horizon Europe
research and innovation program under grant agreement No
101070537, project CROSSCON (Cross-platform Open
Security Stack for Connected Devices).

REFERENCES

[1] P. Sparks, “The route to a trillion devices - The outlook for IoT investment
to 2035,” Arm White Paper, 2017.

[2] S. L. Keoh, S. S. Kumar, and H. Tschofenig, “Securing the Internet of
Things: A Standardization Perspective,” IEEE Internet of Things Journal,
2014.

[3] X. Tan, Z. Ma, S. Pinto, L. Guan, N. Zhang, J. Xu, Z. Lin, H. Hu, Z. Zhao,
“Where's the‘‘up‘‘?! A Comprehensive (bottom-up) Study on the Security
of Arm Cortex-M Systems,“ arXiv preprint arXiv:2401.15289, 2024.

[4] O. Alrawi, C. Lever, M. Antonakakis and F. Monrose, "SoK: Security
Evaluation of Home-Based IoT Deployments." IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, USA, 2019.

[5] V. Costan and S. Devadas, "Intel SGX Explained." IACR Cryptology
ePrint Archive, 2016.

[6] S. Pinto and N. Santos, “Demystifying Arm TrustZone : A
Comprehensive Survey,” ACM Comput. Surv., vol. 51, no. 6, pp. 1–36,
2018.

[7] David Cerdeira, Nuno Santos, Pedro Fonseca, Sandro Pinto. "SoK:
Understanding the Prevailing Security Vulnerabilities in TrustZone-

assisted TEE Systems." IEEE Symposium on Security and Privacy (SP),
San Francisco, CA, USA, 2020.

[8] Z. Ma, X. Tan, L. Ziarek, N. Zhang, H. Hu and Z. Zhao, "Return-to-Non-
Secure Vulnerabilities on ARM Cortex-M TrustZone: Attack and
Defense," ACM/IEEE Design Automation Conference (DAC), 2023.

[9] D. Oliveira, T. Gomes and S. Pinto, "uTango: An Open-Source TEE for
IoT Devices," in IEEE Access, vol. 10, pp. 23913-23930, 2022.

[10] C. Rodrigues, D. Oliveira and S. Pinto, "BUSted!!! Microarchitectural
Side-Channel Attacks on the MCU Bus Interconnect," in IEEE
Symposium on Security and Privacy (SP), 2024.

[11] Cesare Garlati and Sandro Pinto,“Secure IoT Firmware For RISC-V
Processors”. In Proceedings of the Embedded World Conference,
Nuremberg, Germany, 2021.

[12] Dong Du et al. “RISC-V S-mode Physical Memory Protection (SPMP)”,
Specification, v0.9.1., 2023. [Online:] https://github.com/riscv/riscv-
spmp/releases/download/v0.9.1/rv-spmp-spec-v0.9.1.pdf

[13] Dong Du and Sandro Pinto. “RISC-V S-mode Physical Memory
Protection for Hypervisor”, Specification, v0.1, 2023. [Online:]
https://github.com/riscv/riscv-spmp/blob/main/spmp-for-hyp/rv-spmp-
for-hyp-spec.pdf

[14] J. Martins et al., “Bao: A Lightweight Static Partitioning Hypervisor for
Modern Multi-Core Embedded Systems,” in Workshop on NG-RES,
2020.

[15] José Martins and Sandro Pinto, “Shedding Light on Static Partitioning
Hypervisors for Arm-based Mixed-Criticality Systems,” in Proc. Of
RTAS, 2023.

[16] RISC-V. “RISC-V Spike Repository”. [Online:] https://github.com/riscv-
software-src/riscv-isa-sim.git.

[17] Žiga Putrle et al., “RISC-V Spike SPMP for Hypervisor Repository”.
[Online:] https://github.com/crosscon/riscv-isa-sim.

