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Abstract— Security is one of the major challenges within the 

realm of the Internet of Things (IoT). IoT devices are typically 

powered by microcontroller units (MCUs) that lack hardware 

security primitives to isolate security-critical functions from 3rd 

party less critical components. To make security practical at scale, 

ARM started to integrate TrustZone technology in the new 

Armv8-M MCUs (a.k.a. TrustZone-M); however, this technology 

is still limited to the old-fashioned dual-world architecture and has 

already been struggling with security problems. In turn, within 

RISC-V, MCUs still lack a Trusted Execution Environment (TEE) 

specification, leading to a set of fragmented approaches with 

restrictive power and performance costs. In this paper, we present 

a novel TEE solution for next-generation RISC-V MCUs. The 

proposed system relies on the concept of hardware-enforced, 

software-defined virtualization-based TEEs. At the hardware 

level, we describe the novel Beyond BA51-H, the first RISC-V 

MCU implementing (i) the RISC-V hypervisor extension, (ii) a 

unified (dual-stage) SPMP extension to protect memory, (iii) and 

other RISC-V extensions to optimize code size and interrupt 

latency. At the software level, we discuss the journey of porting the 

open-source Bao hypervisor to the BA5X-H while implementing 

the virtualization-based TEE architecture. 
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I.  INTRODUCTION  

The world is becoming increasingly connected and thus 
easily accessible to remote, ill-intentioned hackers and attackers. 
Internet of Things (IoT) devices are being deployed on a massive 
scale (e.g., Arm estimates that it will produce a trillion IoT 
devices by 2035 [1]), generating and sharing large amounts of 
security- and privacy-sensitive data [2]. The problem is that 
designing secure IoT devices can be a quandary, with required 
features (e.g., connectivity stack, over-the-air firmware update, 
etc.) integrating multiple codebases, drivers, and libraries from 
different 3rd party entities with distinct assurance levels, on 
computing units that typically lack reliable mechanisms to 
enforce the separation among them [3]. Nevertheless, recent 
attacks on IoT devices have shown us that poorly designed 
connected devices can bring down critical infrastructures and/or 
even affect our safety and that the success of this new wave of 

the Internet is heavily dependent upon the trust built into these 
billions of connected devices [3-4]. 

Despite the proliferation of Trusted Execution Environment 
(TEE), e.g., Intel SGX [5] and Arm TrustZone [6-7], on 
application processor units (APUs) to secure servers and 
mobile/embedded devices for two decades, microcontroller 
units (MCUs) (i) are typically absent of most security hardware 
primitives or (ii) fail to take advantage of them when they exist 
[3]. As a step towards securing IoT devices at scale, Arm started 
to push for the integration of TEE TrustZone technology in 
Armv8-M MCUs (e.g., Cortex-M23, Cortex-M33); however, 
TrustZone-M is still limited to the old-fashioned dual-world 
architecture and has been already reveling security weaknesses 
[8-10]. In turn, within the RISC-V ecosystem, MCUs still lack a 
standard Trusted Execution Environment (TEE) architecture or 
specification, leading to fragmented approaches with prohibitive 
power and performance costs. For example, MultiZone TEE 
[11] supports RISC-V MCUs with two privilege levels 
(Machine- and User-mode), but most of the internals rely on trap 
and emulation facilitated by the classical virtualizable RISC-V 
architecture. This naturally has a significant performance impact 
(due to the frequent M-mode entries and exits), which reflects 
even further on the power consumption. 

In this paper, we propose a novel TEE architecture to secure 
the next-generation RISC-V MCUs. A central novelty of our 
TEE design is that we leverage hardware virtualization without 
virtual memory support as the key underlying security primitive 
to provide hardware-enforced, software-defined virtualization-
based TEEs. This is made possible by the current efforts to 
extend the RISC-V S-Mode Physical Memory Protection 
(SPMP) for Hypervisor [12-13]. We have implemented these 
extensions on the RISC-V golden model, i.e., Spike. We have 
also extended the Beyond Semiconductor’s commercial RISC-
V CPU BA51 to support the RISC-V hypervisor extension 
(without virtual memory), together with the unified (dual-stage) 
SPMP extension to enforce memory protection. This novel CPU 
has the codename BA51-H. At the software level, we ported the 
open-source Bao hypervisor to the BA51-H and implemented 
the virtualization-based TEE architecture. 



 

II. SCOPE AND BACKGROUND  

A. Microcontrollers & Memory Protection Unit 

Microcontrollers (MCUs) are low-performance computing 
units often found in low-end embedded / IoT systems or as 
housekeeping or platform-management engines in high-
performance / high-end SoCs. MCUs do not support virtual 
memory based on a Memory Management Unit (MMU) and 
cannot run general-purpose OSes such as Linux. Instead, they 
provide a Memory Protection Unit (MPU), enabling fine-
grained access control over memory regions (with no memory 
translational functionality). MPUs provide a set of entries, each 
defining a region’s base and bound and access permissions 
(read, write, and/or execute). The reason for opting for MPUs 
instead of MMUs on MCU implementations is twofold. First, 
these are much simpler hardware structures that consume fewer 
hardware resources, which is critical for the low-cost design 
point of these computers. Second, since MCUs are typically 
used for real-time applications, the timing characteristics of 
memory accesses mediated by an MPU are much more 
deterministic as it does not require expensive page-table walks 
with extra implicit memory accesses.  

B. RISC-V Supervisor-mode PMP (SPMP) 

In the RISC-V lingo, MPU is named Physical Memory 
Protection. Initially, only the highest privilege mode, i.e., 
Machine-mode (M-mode), featured a PMP, to enable isolation 
of firmware and OS-managed resources and can be used as a 
primitive for static resource partitioning and TEE creation. Due 
to the need to run real-time OS (RTOS) in Supervisor mode (S-
mode) with hardware-enforced user-level task isolation, the 
RISC-V community proposed the addition of the Supervisor 
PMP, thus SPMP [12]. The SPMP follows essentially the same 
design as the original PMP, featuring an implementation-defined 
number of entries and a mode bit that differentiates between 
Supervisor and User access permissions. On each context 
switch, the OS must swap user entries. Depending on the number 
of regions, this might be an expensive operation; thus, the SPMP 
introduced a context-switch optimization mechanism 
unavailable on the original PMP. This mechanism defines a set 
of registers that enable/disable (bit-wise) SPMP entries. Thus, if 
enough entries are available, a context switch might resume to a 
write to these registers, effectively disabling entries related to 
suspended tasks and enabling entries associated with newly 
scheduled tasks. As of this writing, the SPMP extension is not 
yet ratified; however, it has already been submitted for prior 
consideration of the Architecture Review Committee (ARC). 
The next step is the public review and then ratification.    

SPMP for Hypervisor. The SPMP is currently being extended 
to support the Hypervisor extension by defining a dual-stage 
PMP [13]. The first stage, dubbed the virtual SPMP or vSPMP, 
is controlled by the VMs running in VS-mode, while the second 
stage is controlled by the hypervisor, effectively enforcing 
isolation among VMs. The original proposal featured two 
separate PMPs controlled by HS mode, where the (i) first (the 
baseline SPMP) mediates accesses from HS/HU, and the (ii) 
second, dubbed hgPMP, mediates access from VMs, i.e., from 
VS/VU modes. However, a second proposal introduced a 

unified model where only a single SPMP is controlled by the 
hypervisor. In this model, execution under either VS- or VU-
mode mimics the execution of a user-mode application on the 
baseline SPMP. Besides being a much cleaner extension, this 
approach prevents the a priori partition of SPMP entries between 
the hypervisor and the virtual modes, reducing the waste of 
possible unused entries if, for example, virtualization is not used. 
Finally, note that, besides the SPMP itself, the hypervisor must 
context-switch vSPMP entries on a VM switch, an operation for 
which no optimization is currently defined. 

C. Beyond BA51 

The BA51 (Figure 1) is a configurable, low-power, deeply 
embedded RISC-V processor IP core that implements a single-
issue, in-order, 2-stage execution pipeline and supports the 
RISC-V 32-bit base integer instruction set (RV32I) or the 32-bit 
base embedded instructions set (RV32E). The processor core 
can be configured to meet different application requirements. 
For instance, it can optionally support user and supervisor 
modes, as well as the ISA extensions for Compressed 
Instructions (C), Integer Multiplication and Division 
Instructions (M), Atomic Instructions (A), User-Level Interrupts 
(N), Control and Status Register (Zicsr), and Instruction-Fence 
(Zifencei); where support for the single-precision floating-point 
(F) ISA can also be added. Furthermore, the BA51 supports 
software and timer interrupts and up to 64 external interrupt 
lines; where the elapsed time from when an external interrupt is 
asserted until the first instruction in the resolved interrupt 
handler can be issued is just 4 clock cycles. The core uses 
AMBA®, AXI-4 and low-latency Quick-access Memory 
(QMEM) interfaces for fetching instructions and accessing data 
and peripherals, while the debug unit connects to an external 
JTAG/TAP controller via an APB port. 

The BA51 is designed for low energy consumption. It is 
compact and enables advanced power management. Under its 
minimal configuration, the processor size is just 16k gates, and 
even when most of the optional features are enabled, it is about 
50k gates. This small silicon footprint is critical for minimizing 
leakage currents during idle or standby modes and reducing 
dynamic power consumption. The BA51 can effectively replace 
existing 8-bit and 16-bit MCUs or be used as a secondary, 
housekeeping, or peripheral controller processor in complex 

 

Fig. 1. High-level architecture of the RISC-V BA51 core. 

 

 



www.embedded-world.eu 

 

SoC designs. It is suitable for a wide range of deeply embedded 
applications such as mixed-signal embedded processing (e.g., 
SERDEScontrol), wireless communications ICs (e.g., 
Bluetooth, Zigbee, or GPS), and industrial MCUs. 

D. Bao Hypervisor 

Bao [14] is an open-source static partitioning hypervisor 
targeting mixed-criticality, real-time systems. Driven by the 
design principles of minimality and least privilege, Bao was 
developed from scratch, following the static partitioning 
architecture [15]. It is statically linked, with no external library 
dependencies, thus achieving an extremely small code base on 
the order of 7K-9K Source Lines of Code (SLoC). Bao heavily 
relies on hardware virtualization support for privilege levels, 
memory, interrupts, and I/O. Unlike other embedded 
hypervisors, Bao has no dependence on privileged guest VMs to 
bootstrap the system and start/manage VMs (e.g., Linux). Given 
its focus on real-time and mixed-criticality, Bao has featured, 
from the get-go, a cache partitioning mechanism based on cache 
coloring that provide non-interference guarantees. Efforts to 
support memory bandwidth regulation are underway. Initially 
developed for Armv8-A 64-bit, Bao is one of the few 
hypervisors supporting the RISC-V Hypervisor extension. 
Recently, Bao has been extended to support 32-bit and state-of-
the-art dual-stage MPU architectures, such as the ARMv8-R 
Cortex-R52 and the Infineon AURIX TC4x. 

III. USE CASES MOTIVATION  

Virtualization enables the consolidation of multiple 
subsystems into a single-platform, while guaranteeing a strict 
isolation and fault encapsulation. The addition of virtualization 
capabilities on computing platforms without virtual memory is 
a new endeavor. This new profile of computers, sometimes 
referred to as real-time units, is gaining momentum in 
mainstream ISAs with the announcement and release of the Arm 
Cortex-R52 and the Infinineon TC4x. Due to deterministic and 
real-time guarantees, these computing units are finding 
applicability in next generation eMobility, ADAS, automotive 
E/E architectures, and affordable artificial intelligence (AI) 
applications. Bellow, we describe the high-level system view of 
two different use cases.    

A. Secure AI at the Edge 

Figure 2a) presents the high-level system view for a use case 
on secure AI at the edge. Securing IoT devices encompasses 
separating and segregating functionalities with different 
criticalities and/or provided via multiple non-trusted parties, i.e., 
Original Equipment Manufacturers (OEM), Original Design 
Manufacturers (ODM), and End-User(s). This microkernel-like 
philosophy, i.e., decomposing monolithic, fully linked software 
binaries into small, compartmentalized enclaves, also contains 
the lateral movement of any potential vulnerability, i.e., it 
enables consolidation while avoiding/minimizing security 
issues. In this particular example, there is a clear segregation of 
the functionalities related to connectivity (e.g., TCP/IP stack), 
secrets, proprietary AI models or business logic, and access to 
specific OEM accelerators. Typically, these functionalities are 
facilitated and/or provided by well-established RTOS, such as 
Zephyr, FreeRTOS, etc, and thus there is a need for an additional 
privilege component, i.e., hypervisor, for controlling and 
managing all guest OSes.    

B. Automotive Domain/Zonal Controllers 

 Figure 2b presents the high-level system view for an 
automotive domain/zonal controller, in particular, for an electric 
vehicle powertrain. EV/HEV powertrains typically embed a 
panoply of functionalities with different automotive safety 
integrity levels (ASIL), such as motor and chassis control, 
battery management systems (BMS), power management, and 
steering control. Traditionally, these functionalities would reside 
on dedicated MCUs found distributed throughout the vehicle. 
However, as the industry shifts towards domain/zonal-based 
vehicle architectures, these subsystems are consolidated into the 
same platform. Virtualization, in particular virtualization for 
"MMU-less" platforms, can, on one side, provide strict 
determinism for hard real-time workloads while guaranteeing 
the required freedom-of-interference required by functional 
safety (Fusa) standards (e.g., ISO26262).  

IV. DESIGN AND IMPLEMENTATION 

A. System Architecture 

Figure 3 depicts the proposed TEE architecture. A central 

novelty of the TEE design is that we leverage hardware 

virtualization primitives to encapsulate subsystems (RTOS and 

Tasks/Apps) into dedicated VMs, which essentially stand as 

software-defined TEEs. These hardware virtualization 

primitives consist of the extra CPU execution modes as well as 

the extra stage for the SPMP. The RISC-V Hypervisor 

specification defines an orthogonal design where the S-mode is 

extended to a hypervisor-extended supervisor mode (HS-

mode), and two new privileged modes are added, i.e., virtual 

supervisor mode (VS-mode) and virtual user mode (VU-mode). 

As described in section II.B, in the (dual-stage) unified PMP 

design, the first stage (vSPMP) is controlled by the VM running 

 
a) Secure AI at the Edge 

 
b) Automotive Domain/Zonal Controllers 

Fig. 2. Use cases motivation for virtualization without virtual memory. 

 

 



in VS-mode, while the second stage is controlled by the 

hypervisor in HS-mode. 

B. Spike SPMP Hypervisor 

Spike is a RISC-V ISA simulator [16] that provides a 
functional model for RISC-V cores. It allows one to run RISC-
V programs with a variety of different RISC-V extensions, 
including the RA32I, PMP, and the Hypervisor extension. It is 
generally considered the golden model of the RISC-V 
specification.  

Before we implemented the BA51-H core, we have first used 
the Spike simulator to set up a reference execution environment 
that is as close as possible to the BA51-H core. Having a 
reference execution environment is extremely useful as it 
allowed us to test the implementation BA51-H against the 
reference environment and, at the same time, allowed us to start 
porting Bao to the referenced execution environment before the 
BA51-H was implemented. Hopefully, the Spike simulator 
already supported most of the extensions needed for the 
referenced execution environment. For the initial execution 
environment, we have configured Spike to simulate a single 32-
bit core with rv32imafch_pmp_sstc_zc_zicntr ISA with memory 
mapping disabled. We further extended the Spike simulator with 
the SPMP for hypervisor extension [17]. It encompassed adding 
the SPMP and vSPMP-related registers, copying and adjusting 
the logic of PMP extension, and taking into consideration when 
the core is in V-mode. 

As a final note, we want to highlight that our reference 
execution environment does not support the simulation of the 
APLIC interrupt controller. We have considered adding APLIC 
to the Spike simulator, but because Bao is able to switch 
seamlessly between the PLIC and APLIC at compile time, we 
have decided to skip this due to time constraints. 

C. Beyond BA5X-H  

To the best of our knowledge, the BA51-H is the smallest 
silicon area RISC-V core with hardware virtualization support 
featuring unified SPMP, Sstc, and APLIC. The silicon area 
footprint comprises two components: the processor core logic 
size (gate count) and memory size. For best results, it is key to 
balance the added gate count of additional processor 
functionality with memory size reductions (smaller hypervisor 
code size overhead). Moving functionality from software to 
hardware (i.e., interrupts delegation) additionally minimizes the 
overheads associated with virtualization. The BA51-H is 

compliant with the base RV32IMAFC ISA. It supports several 
other standard RISC-V extensions, namely: (i) the Zc extension, 
to reduce the code size by adding to the 16-bit instruction set 
defined in extension C; (ii) the unified SPMP extension, which 
adds support for the supervisor mode physical memory 
protection; and (iii) the Sstc extension, which provides timer 
services in supervisor mode. 

Hardware virtualization support into the BA51-H is mostly 
supported by supervisor-level architecture, documented by the 
Hypervisor ISA extension specification. This support required 
changes to the instruction decoding, the control and status 
register (CSR) array, and the trap handling mechanisms. Since 
the BA51-H, by design, does not provide support for memory 
virtualization, features related to address translation and 
memory protection were not incorporated into the core. Instead, 
the SPMP was extended with a dual-stage architecture to enforce 
memory protection and isolation between hypervisor domains. 

We have also implemented Supervisor-mode timer facilities 
(Sstc extensions) and the Advanced Platform-Level Interrupt 
Controller (APLIC), enabling interrupt delegation. 
Implementing these specifications alleviates the hypervisor code 
size and reduces the virtualization impact on performance to 
little more than that of an inter-process context switch. 

D. Bao BA51-H support 

Despite being targeted initially at processors featuring a 
dual-stage MMU, the Bao Hypervisor has recently expanded 
towards lower-end MPU-based microcontrollers. MPU support 
first targeted the 32-bit Armv8-R family, which includes 
virtualization hardware support with a dual-stage MPU. In 
supporting the BA51-H, Bao has become the pioneering 
hypervisor running on virtualization-capable and SPMP-based 
RISC-V processors. 

Bao SPMP Hypervisor support. To enable seamless porting 
between multiple MPU-based architectures, the Bao memory-
protection design is architected into two layers. The top layer is 
an architecture-independent layer where each address space, i.e., 
the hypervisor and each VM, is assigned a virtual MPU spanning 
all processors on which that address space is hosted. Then, 
locally, on each core, the bottom layer multiplexes entries of the 
multiple virtual MPUs of the address spaces hosted on that core 
in the physical MPU. This enables both (i) agnostic memory 
management and checks and (ii) optimized MPU entry 
management according to the architecture’s specific MPU 
capabilities. Specifically, in RISC-V, this design facilitates the 
hypervisor to use NAPOT entries, minimizing the use of SPMP 
entries. However, in the currently implemented unified model, 
the permission combinations provided by the SPMP do not 
enable all possible use cases of shared regions between the 
hypervisor and guest. For example, it is not possible to define a 
shared region with RW permissions for the hypervisor and RWX 
for the guest. This is desirable if some protocol requires sharing 
an (original) guest RWX region between them while limiting 
execution of such region by the hypervisor, as it might constitute 
an attack vector. To circumvent this, Bao does not make use of 

 

Fig. 3. Virtualization-based TEE architecture for RISC-V MCUs. 
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shared permissions. It duplicates these regions with a flipped 
mode bit and keeps all guest regions deactivated during its 
execution, re-enabling them upon guest entry while disabling 
(most) hypervisor regions and vice-versa upon a guest exit. 

Bao CPU sharing. The BA51-H is a single-core processor, and 
Bao features a purely static partitioning architecture with 1:1 
vCPU to pCPU assignment. This specific combination requires 
CPU sharing by multiple vCPUs to enable the consolidation of 
various VMs. Currently, an experimental branch of the Bao 
hypervisor implements vCPU context switch and a simple 
round-robin preemptive scheduler. However, the available 
SPMP context-switch optimizations still need to be leveraged, 
and guest SPMP entries are fully swapped on each scheduling 
point. Thus, we are currently developing an algorithm to balance 
SPMP entry allocation to minimize swapped entries. 

V. PRELIMINARY EVALUATION  

Our preliminary validation and evaluation were performed 
on Spike and on a target FPGA platform, i.e., Arty 100-T. The 
software stack encompasses Bao v1.0 and baremetal VMs. Bao 
and the baremetal VMs were compiled using the RISC-V 
toolchain with Beyond Studio with -O2 optimizations. We 
focused on BA51-H hardware resources, and Bao TCB size.  

BA5X-H Hardware Resources. Figure 4 shows the 
preliminary synthesis results of BA51 compact configuration 
(CC) and BA51-H feature-rich configuration (FRC). We have 
synthesized both designs using the ASIC synthesis tools on an 
advanced node process with a 100 MHz nominal timing 
constraint. As is usual and because we are interested in the 
relative size of a particular feature, we use gate count as a 
process-independent indication of area. Furthermore, we 
estimate that one bit of SRAM has the size equivalent to one gate 
as a process-independent measurement of SRAM area. The 
“BA51 compact” is a compact setup of BA51 with PIC, M-mode 
only, and C, E, Zicsr extensions, where “BA51-H FRC” is a 
feature-rich setup of BA51 with APLIC (8 interrupts), Debug 
module, Power management, PMP with 16 entries (16e), unified 
sPMP with 16 entries (16e), Memory debugger, CLINT, 
Triggers (8), Sstc, Trace, M-mode, S-mode, U-mode, and H 
(without virtual memory), A, C, F, H, I, M, N, Sspmp, Sstc, Zc, 
Zicntr, Zicsr, and Zifencei extensions. 

From the preliminary synthesis results, we can see that adding 
virtualization support (H, PMP (16e) + unified SPMP (16e), 
APLIC, and SSTC extensions) does account for 5.1% of the area 
of the BA51-H FRC. But when we add 64KiB SRAM, the 
percentage of the area used by the added virtualization support 
drops to 1.4% of the whole area, which is an acceptable trade-
off, especially if looking at the alternative of using multiple 
processing cores to obtain similar isolation guarantees. 
Furthermore, by using SPMP with 16 entries + unified SPMP 
with 16 entries instead of only SPMP with 32 entries, we only 
increased the design size by 490 gates. 

Bao TCB Size. In security-critical systems, the size of the 
hypervisor code, measured in source lines of code (SLoC), is 
critical. It should be minimal as it is part of the trusted computing 
base (TCB) of all VMs. As well understood in the literature, a 
larger TCB typically has more bugs and a broader attack surface, 
resulting in a higher probability of vulnerabilities. We measured 

SLoC for the target configurations using cloc. Bao for the BA51-
H has a total of 6.5K SLoC, which translates into 31.2 KiB of 
size (.text). 

VI. ROADMAP AND NEXT STEPS  

RISC-V SPMP Hypervisor spec. As already mentioned, the 
vanilla SPMP specification has not yet been ratified. We 
highlight thus that the SPMP for hypervisor extension is still at 
a very embryonic stage, with the current proposal shifting from 
a dual SPMP to a unified (dual-stage) SPMP. We plan to drive 
and lead the design of this specification among the RISC-V 
ecosystem and thus to update, expand, and adapt the Spike 
model, the BA51-H CPU, and the Bao hypervisor port as this 
specification goes from develop, ARC to public review, and then 
final ratification. We also plan to build the support for this 
specification on QEMU. 

Multi-Domain Accelerators. Software running inside of the 
VMs often interface and interact with additional system bus 
masters that are not a part of the main processing core, e.g., 
cryptographic accelerators and/or peripheral devices with DMA 
capabilities. Sharing HW accelerator cores between different 
VMs can create unexpected information flows that break the 
isolation between VMs provided by the main CPU(s). This 
makes sharing of external HW modules problematic in terms of 
preserving isolation between domains. One way to address such 
problems is to better control how the information flows between 
the core and HW accelerator/bus masters. The design of such a 
mechanism is a topic for a separate article; but on a high-level, 
such a mechanism can be provided by propagating a part of the 
current execution context of a core over the interconnect to the 
external HW accelerators. For example, the BA51-H could 
expose an additional CSR to which Bao could write an identifier 
(ID) of the VM currently running on the core. The VM ID can 
then be propagated to HW modules with each transaction made 
over the bus interconnect and, based on this propagated 
information, the HW module could then decide how to handle 
the transfer based on which VM caused the transfer. 

VII. CONCLUSION   

This paper presented a novel TEE architecture to secure the 
next-generation RISC-V MCUs. The proposed system is 
centered on hardware-enforced, software-defined virtualization-
based TEEs, facilitated by upcoming hardware virtualization 
primitives on RISC-V MCUs without virtual memory (but with 
SPMP). We have pioneered a reference architecture that 
includes (i) the open-source Spike model, (i) a commercial 
RISC-V CPU, i.e., BA51-H, and (iii) the open-source Bao 
hypervisor, which we expect to deploy on a commercial pilot 
use case for secure AI at the edge. 

 

Fig. 4. The size (in the number of gates) of the preliminary synthesis 
results of compact BA51 and feature rich BA51-H configuration 

with and without 64KB of SRAM. 
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