
 

This document is issued within the frame and for the purpose of the CROSSCON project. This project has received funding from the European 
Union’s Horizon Europe Programme under Grant Agreement No.101070537. The opinions expressed and arguments employed herein do not 
necessarily reflect the official views of the European Commission.  
The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may 
be made of the information it contains. This deliverable is subject to final acceptance by the European Commission. 
This document and its content are the property of the CROSSCON Consortium. The content of all or parts of this document can be used and 
distributed provided that the CROSSCON project and the document are properly referenced. 
Each CROSSCON Partner may use this document in conformity with the CROSSCON Consortium Grant Agreement provisions.  

(*) Dissemination level: (PU) Public, fully open, e.g. web (Deliverables flagged as public will be automatically published in CORDIS project’s 
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement.  (Classified EU-R) EU RESTRICTED under the Commission 
Decision No2015/444.  (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU SECRET under 
the Commission Decision No2015/444. 

 

 

Cross-platform Open Security Stack for Connected Device 

D5.2 Integrated CROSSCON Security Stack - First 
Version 

 

 

 

Keywords: 

CROSSCON Stack Demonstrator, Integration, Use Case Prototypes 

  

Document Identification 

Status Final Due Date 31/07/2024 

Version 1.0 Submission Date 31/07/2024 

Related WP WP5 Document Reference D5.2 

Related 
Deliverable(s) 

D1.4, D1.6, D2.1, D3.1, 
D3.2, D4.1, D4.2 

Dissemination Level (*) PU 

Lead Participant 

 

CYSEC Lead Author Yannick Roelvink 

Contributors 3MDEB, BIOT, TUD, 
UMINHO, UWU 

Reviewers Ziga Putrle  

(BEYOND) 

Gergely Eberhardt  

(SLAB) 



 

 
Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 2 of 33 

Reference: D5.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Document Information 

List of Contributors 

Name Partner 

Yannick Roelvink CYSEC 

Emna Amri CYSEC 

Artur Raglis  3MDEB 

Tymoteusz Burak 3MDEB 

Shaza Zeitouni TUD 

Ainara García Barinaga  BIOT 

David Puron BIOT 

David Cerdeira UMINHO 

Lukas Petzi UWU 

 

Document History 

Version Date Change editors  Changes 

0.1 03/07/2024 Yannick Roelvink  Initial version, document layout definition and 
allocation of sections to contributors. Included 
first draft of Introduction chapter. 

0.2 15/07/2024 Artur Raglis 

Yannick Roelvink  

Integration of first version of UC1 prototype 
sections, first version of Chapter 2 - CROSSCON 
Stack Development Progress. 

0.3  16/07/2024  Shaza Zeitouni Contribution to Chapter 2 & inclusion of UC5 
prototype section. 

0.4 17/07/2024 Ainara García 

Yannick Roelvink 

Inclusion of UC2, UC3 & UC4 prototype sections. 

0.5 18/07/2024 Yannick Roelvink  Reformatting of UC descriptions, initial version of 
conclusion added submitted for internal review. 

0.6 25/07/2024 Yannick Roelvink  

Emna Amri 

David Puron 

Integrated comments from reviewers regarding 
Chapters 1, 2, 3.2, 3.3 and 4. 

0.7 26/07/2024 Yannick Roelvink 

Shaza Zeitouni 

Tymoteusz Burak 

Integrated comments from reviewers regarding 
Chapters 3.1, and 3.5 

0.8 29/07/2024 Yannick Roelvink  Final version for QA. 

0.9 30/07/2024 Juan Alonso  Quality Assessment. 

1.0 31/07/2024 Hristo Koshutanski  Final version submitted. 

 

Quality Control 

Role Who (Partner short name) Approval Date 

Deliverable leader Yannick Roelvink (CYSEC) 29/07/2024 

Quality manager Juan Alonso (ATOS) 30/07/2024 

Project Coordinator Hristo Koshutanski (ATOS) 31/07/2024 

 



 

 
Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 3 of 33 

Reference: D5.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Table of Contents 

Document Information ........................................................................................................................... 2 

Table of Contents ................................................................................................................................... 3 

List of Tables........................................................................................................................................... 4 

List of Figures ......................................................................................................................................... 5 

List of Acronyms ..................................................................................................................................... 6 

Executive Summary ................................................................................................................................ 7 

1 Introduction........................................................................................................................................ 8 

1.1 Purpose of the document ............................................................................................................ 8 

1.2 Relation to other project work ..................................................................................................... 8 

1.3 Structure of the document ........................................................................................................... 8 

2 CROSSCON Stack Development Progress ........................................................................................... 9 

2.1 Status of CROSSCON Stack Components .................................................................................... 10 

2.2 Status of CROSSCON Stack Trusted Services .............................................................................. 13 

3 Use Case Integration Prototypes ...................................................................................................... 17 

3.1 UC 1 - Device Multi-Factor Authentication ................................................................................ 17 

3.1.1 Prototype Architecture ..................................................................................................... 17 

3.1.2 Required Security Features ............................................................................................... 19 

3.1.3 Integration Timeline ......................................................................................................... 20 

3.2 UC 2 - Firmware Updates of IoT Devices .................................................................................... 21 

3.2.1 Prototype Architecture ..................................................................................................... 21 

3.2.2 Required Security Features ............................................................................................... 22 

3.2.3 Integration Timeline ......................................................................................................... 22 

3.3 UC 3 – Commissioning and Decommissioning of IoT Devices..................................................... 23 

3.3.1 Prototype Architecture ..................................................................................................... 23 

3.3.2 Required Security Features ............................................................................................... 24 

3.3.3 Integration Timeline ......................................................................................................... 24 

3.4 UC 4 - Remote Attestation for Identification and Integrity Validation of Agricultural UAVs ...... 25 

3.4.1 Prototype Architecture ..................................................................................................... 25 

3.4.2 Required Security Features ............................................................................................... 27 

3.4.3 Integration Timeline ......................................................................................................... 27 

3.5 UC 5 - Intellectual Property Protection for Secure Multi-Tenancy on FPGA............................... 28 

3.5.1 Prototype Architecture ..................................................................................................... 28 

3.5.2 Required Security Features ............................................................................................... 30 

3.5.3 Integration Timeline ......................................................................................................... 31 

4 Conclusions ...................................................................................................................................... 32 

References ........................................................................................................................................... 33 

  



 

 
Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 4 of 33 

Reference: D5.2 Dissemination:  PU Version: 1.0 Status: Final 

 

List of Tables 

Table 1: Progress overview of CROSSCON Stack components .............................................................. 10 
Table 2: Progress overview of CROSSCON Stack trusted services ......................................................... 13 
Table 3: Integration timeline for UC 1 .................................................................................................. 20 
Table 4: Integration timeline for UC 2 .................................................................................................. 22 
Table 5: Integration timeline for UC 3 .................................................................................................. 24 
Table 6: Integration timeline for UC 4 .................................................................................................. 27 
Table 7: Integration timeline for UC 5 .................................................................................................. 31 
 

 

 



 

 
Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 5 of 33 

Reference: D5.2 Dissemination:  PU Version: 1.0 Status: Final 

 

List of Figures 

Figure 1: Detailed CROSSCON Stack architecture[3] ............................................................................... 9 
Figure 2: MFA implementation prototype for low-end to high-end device authentication................... 17 
Figure 3: MFA implementation prototype for mutual authentication between two high-end devices . 18 
Figure 4: Secure firmware update implementation prototype ............................................................. 21 
Figure 5: Secure (de)commission of IoT devices implementation prototype ......................................... 23 
Figure 6: UC 4 prototype architecture & integration with CROSSCON Stack ........................................ 26 
Figure 7: CROSSCON FPGA-SoC architecture & components ................................................................ 28 
Figure 8: vFPGA partitions .................................................................................................................... 29 
Figure 9: UC 5 integration with the CROSSCON Stack ........................................................................... 30 
 
 

 



 

 
Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 6 of 33 

Reference: D5.2 Dissemination:  PU Version: 1.0 Status: Final 

 

List of Acronyms 

Abbreviation / 
acronym  

Description 

API Application Programming Interface 

D5.2 Deliverable number 2 belonging to WP5 

EC European Commission 

FCU Flight Control Unit 

FPGA Field Programmable Gate Arrays 

GNN Graph Neural Network 

HW Hardware 

IoT Internet of Things 

IPC Inter-Process Communication 

MFA Multi-Factor Authentication 

MitM Man-in-the-Middle (cybersecurity attack) 

ML Machine Learning 

MPU Memory Protection Unit 

MS5 5th Project Milestone 

mTLS Mutual Transport Layer Security 

OS Operating System 

PG Perimeter Guard 

PUF Physical Unclonable Function 

RA Remote Attestation 

REE Rich Execution Environment 

SoC System on Chip 

SPMP S-mode Physical Memory Protection 

SRAM Static Random-Access Memory 

SW Software 

TA Trusted Application 

TEE Trusted Execution Environment 

UAV Unmanned Aerial Vehicle 

UC Use Case 

vFPGA Virtual Field Programmable Gate Arrays  

VM Virtual Machine 

WP Work Package 

 

 

 

 

 

  



 

 
Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 7 of 33 

Reference: D5.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Executive Summary 

Deliverable D5.2 details the effort performed regarding the integration of the CROSSCON Stack. This 
includes (1) an update of the development status of the CROSSCON Stack components and trusted 
services, on which the integration, testing and validation activities of WP5 depend, as well as (2) a 
detailed description of the use case implementation prototypes that will be integrated into the testbed 
defined in T5.1, as preparation of the testing and validation activities of T5.3 and T5.4. 

Where available, the development status of the CROSSCON Stack is illustrated using a description of a 
component’s or trusted service’s technical functionality. In addition, for each of the Use Case 
prototypes, a detailed description of their implementation architecture and their required 
components, trusted services and interfaces of the CROSSCON stack will be provided. Furthermore, 
the deliverable will provide an initial timeline of the integration of each of the use cases into the 
testbed environment. 

Deliverable D5.2 contributes to the accomplishment of milestone MS5 “First version of integrated 
CROSSCON Stack and extension primitives, and first version of business model and market 
proposition”. 
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1 Introduction 

1.1 Purpose of the document 

This document provides a demonstration of the current operational functionality of the CROSSCON 
Stack. This is achieved by listing and demonstrating the development status of the Stack’s components 
and trusted services required for the integration, testing and validation activities of WP5, as well as a 
detailed overview of each of the use case implementation prototypes and their required security 
features. In addition, based on the status of the CROSSCON Stack, a timeline of the integration of each 
of the use case prototypes into the testbed is provided. This is crucial, as these use case prototypes 
will be used as a first reference for the activities of T5.3 and T5.4, related to the security testing of the 
use cases and CROSSCON Stack validation, respectively.  

1.2 Relation to other project work  

This document aims to summarize the overall status of the CROSSCON Stack. As such, it derives the 
use case descriptions and operational scenarios, used to define the use case implementation 
prototypes, from D1.4[1]. In addition, the implementation prototypes presented in this document will 
be validated according to the validation criteria provided in D1.6. 

The CROSSCON Stack components, trusted services and extension primitives presented in this 
document are based on the definitions of the CROSSCON Stack as provided in D3.1[4] and D4.1[6], 
respectively. In addition, some of the technical demonstration descriptions provided in this document 
are based on the development advancements presented in D3.2[5] and D4.2[7].  

The outputs of this document are necessary inputs for the security testing and validation of the use 
case prototypes, as defined in D5.3 & D5.4.  

1.3 Structure of the document 

This document is structured in 3 major chapters. After this introductory chapter, Chapter 2 will provide 
an overview of the development progress of the CROSSCON Stack, detailing the status of each of its 
components and trusted services, as well as providing a demonstration of their functionality where 
available.  Afterwards, Chapter 3 will provide a detailed overview of the use case integration 
prototypes, including their required security features, and an associated integration plan, split into 
sections for each of the use cases. Lastly, Chapter 4 will summarize the key conclusions of the work 
presented in this document.  
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2 CROSSCON Stack Development Progress 

This chapter provides an overview of the current development status of the CROSSCON Stack. In 
section 2.1, we present the status of the core components needed to realize the different 
instantiations of the CROSSCON, while in section 2.2, we describe the status of the high-level security 
function provided by the trusted services. 

Figure 1, taken directly from D2.1[3], recalls the detailed architecture of the CROSSCON stack and its 
components. 

 

Figure 1: Detailed CROSSCON Stack architecture[3] 
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2.1 Status of CROSSCON Stack Components 

Table 1 provides an overview of each of the CROSSCON Stack components’ development progress, including a description of the component, its current 
integrability into the use case setups and a demonstration of its current technical capabilities, where available. For a more detailed description regarding each 
of the components, please refer to sections 3.2, 3.4 and 3.5 of D3.1[4]. For an overview of the code used for the technical demonstrations, please refer to 
D3.2[5] and D4.2[7]. 

Table 1: Progress overview of CROSSCON Stack components 

Component Description Current Integration Status Technical Demonstration 

CROSSCON 
Hypervisor  

The CROSSCON Hypervisor is a static partitioning 
Hypervisor that aims to provide strong isolation and 
real-time guarantees. It is based on the Bao[8] 
hypervisor, but implements additional features 
such as (1) dynamic VM creation & management, (2) 
per-VM TEE service support and (3) multiple Virtual 
Machine Manager (VMM) support. 

Although the per-VM TEE service support has 
been integrated and tested, the other two 
features are still under development. 

In addition, the CROSSCON Hypervisor is 
currently only compatible with QEMU[9], an 
open-source emulator used to virtualize 
hardware platforms. While QEMU allows for 
the testing of the Hypervisor and its 
components prior to integration, work is 
currently being performed to ensure 
compatibility with several of the use case 
hardware platforms required for integration. 

Using the QEMU platform, the 
CROSSCON Hypervisor is able to 
demonstrate the ability to provide 
per-VM TEE services, isolating the 
TEE by running multiple TEE VMs 
instead of a single TEE instance in the 
normal world.  

CROSSCON 
bare metal 

TEE 

In order to still provide security for low-end systems 
that are not compatible with the aforementioned 
CROSSCON Hypervisor, CROSSCON proposes a 
software-based bare‐metal TEE, to allow bare‐
metal devices to interact securely with the rest of 
the CROSSCON Stack. The TEE will ensure the basic 
security primitives such as memory isolation, 
privilege separation and cross-domain 
communication. 

The bare-metal TEE has been integrated and 
validated on both non-MPU and MPU devices.  

Although both solutions provide a similar set 
of security guarantees to deployed 
applications, they do so using a slightly 
different isolation mechanism. 

Two prototypes of the bare-metal 
TEE are currently available: one 
where the MPU version is 
implemented on an ARMv7-M 
architecture and another where the 
non-MPU version is deployed on a 
MSP430 architecture, both 
illustrating the required basic security 
primitives. 
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Component Description Current Integration Status Technical Demonstration 

Two distinct versions of the bare-metal TEE are 
being developed, one for bare-metal devices that 
do not have a Memory Protection Unit (MPU), and 
one for devices that do.  

CROSSCON 
TEE Toolchain 

In order to manage the development and 
implementation of TEEs and TAs on the CROSSCON 
Stack, a toolchain is being developed that aims to 
support these activities. 

 

More specifically, the toolchain will be used to 
perform two critical tasks:  

● Secure IoT firmware updates: Based on the 
IETF proposed standard as detailed in RFC 
9019 (SUIT), it allows for a secure 
mechanism to perform firmware updates 
on IoT devices[12]. 

● Secure cross-compilation of TAs for 
different TEEs: The toolchain will include a 
secure compiler, used to guarantee the 
memory safety of the TAs deployed on the 
TEEs within the CROSSCON Stack. 

The advancements of the TEE Toolchain can 
be grouped into three categories: 

Secure Update: The design for the secure 
firmware update feature is done, and 
the development for a first 
implementation is still ongoing.  More 
information regarding this secure 
update mechanism can be found in 
D5.1 

Integration into DevSecOps: The 
toolchain will be integrated into the 
DevSecOps pipeline that will be used 
for the integration of the TAs onto the 
CROSSCON Hypervisor within the 
testbed environment of T5.1. This 
integration is currently still ongoing. 

Secure TA cross-compilation: The 
definition of a secure compiler, which 
takes code written from a simplified 
version of C to a memory safe version 
of the same code, has been 
performed. The implementation of 
this compiler, as well as the extension 

Not available 
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Component Description Current Integration Status Technical Demonstration 

to lower programming languages, is 
currently ongoing.  

CROSSCON 
SoC 

CROSSCON SoC1 is a system-on-chip (SoC) design, 
developed as part of the CROSSCON project, that 
provides a secure RISC-V execution environment for 
mixed-criticality IoT devices that require strong 
security guarantees, flexibility, small code size and 
low power consumption. The CROSSCON SoC 
guarantees strong software isolation with the ability 
to share hardware modules connected to the SoC 
interconnect between TEEs without compromising 
isolation guarantees. 

A first implementation of the CROSSCON SoC 
has been developed, designed around the 
BA51-H core, which also integrates an 
implementation of unified (2-stage) S-mode 
Physical Memory Protection (SPMP) RISC-V 
extension. 

In addition, although a basic deployment is 
already available, work is still being 
performed to fully port the CROSSCON 
Hypervisor on top of the BA51-H CROSSCON 
SoC, in order to provide a full secure Stack 
implementation.  

The current implementation of the 
CROSSCON SoC has successfully been 
integrated with the BA51-H core, and 
provides a Perimeter guard 
demonstrator that allows one to 
share the SRAM module between 
isolated domains / VMs. 

  

CROSSCON 
Perimeter 

Guard 

A Perimeter Guard (PG) module is a hardware (HW) 
module that can be used to share HW modules 
between isolated domains, without compromising 
the isolation itself. PG achieves this by (1) 
controlling which SoC interconnect master / 
application can access the protected HW module 
and by (2) managing the HW module’s state during 
domain switching (i.e. when the HW access get 
handed over from one application to another), to 
ensure no unwanted information flows occur. 

A prototype implementation, which supports 
a lock-release with time-sharing operation 
mode, is available as part of the current 
implementation of the CROSSCON SoC. 

The development of additional modes of 
operation and arbitration is currently 
ongoing, and additional tests are being 
performed to extend the range of HW 
modules the PG can be applied to. 

The current implementation of the 
PG module has successfully been 
integrated into the CROSSCON SoC, 
and can be used to limit access to the 
Static Random-Access Memory 
(SRAM) HW module. 

 

 
1 Description of CROSSCON SoC (chapter 2.2 of D4.2[7])  
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2.2 Status of CROSSCON Stack Trusted Services 

Table 2 provides an overview of each of the CROSSCON Stack trusted services’ development progress, including a description of the service, its current 
integrability into the use case setups and a demonstration of its current technical capabilities, where available.  For a more detailed description regarding each 
of the trusted services, please refer to section 3.3 of D3.1[4]. For an overview of the code used for the technical demonstrations, please refer to D3.2[5] and 
D4.2[7].   

Table 2: Progress overview of CROSSCON Stack trusted services 

Trusted Service Description Current Integration Status Technical Demonstration 

PUF-based 
authentication 

CROSSCON aims to innovate and integrate a 
secure, efficient, lightweight and scalable 
PUF-based authentication scheme, 
facilitating resource-constraint embedded 
devices to authenticate themselves between 
each other, based on their inherent 
hardware variations.  During the project, 
three main implementation methods have 
been identified: 

ZK-PUF: PUF-based authentication via  
zero‐knowledge proofs,  

PAVOC: PUF‐based authentication via 
one‐way chains, and 

PAWOS: PUF‐based authentication via 
one‐time signatures. 

All three of the proposed PUF-based 
authentication schemes have been 
implemented and tested on the NXP 
LPC55S6x hardware board, as part of the 
integration efforts for UC1. This 
implementation shows the compatibility of 
the trusted service with a virtualization-less 
deployment of the CROSSCON Stack.  

 

We are currently working on integrating the 
PUF-based authentication mechanisms into 
the CROSSCON Stack as a Trusted 
Application (TA) 

The three implementations on the 
LPC55S6x hardware board are able to 
demonstrate both of the operational 
phases of PUF-based authentications 

Enrollment: The systems correctly 
generated the public data from 
the PUF responses of the IoT 
device. 

Authentication: The verification 
device is able to correctly verify 
the authenticity of the IoT 
device using its PUF responses 
and the public data. 

Context-based 
authentication 

As an additional authentication method, a 
context-based authentication scheme is 
being developed, which utilizes the Wi-Fi 
landscape around a device to provide it with 

A first implementation of the context-based 
authentication has been implemented on 
the RPi 4B board, which was able to collect 
samples of the metadata of the Wi-Fi 

Not available 
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a unique fingerprint. This fingerprint can  be 
used to authenticate the device to an 
authoritative party, based on Siamese 
networking and machine learning to validate 
the similarity between a submitted and 
enrolled fingerprint of the networking 
landscape of the device. 

landscape required for fingerprint 
generation. Tests are currently ongoing to 
expand its compatibility with other 
hardware platforms.  

 

In addition, first experiments with the 
Siamese networking have been performed, 
but further testing is required before it can 
be integrated and validated as a trusted 
service. 

Secure FPGA 
provisioning 

The secure FPGA provisioning service of the 
CROSSCON Stack will allow its clients to 
deploy and operate remote shared FPGA 
hardware platforms, while at the same time 
ensuring (1) the confidentiality of the 
proprietary FPGA workloads and designs, 
and (2) protection against malicious 
workloads from other users and/or malicious 
logic insertions into the design itself. 

 

It achieves this by provided two main  sub-
services: 

● FPGA Configuration service: Which 
is responsible for securely deploying 
and configuring a user’s FPGA design 
onto a remote FPGA hardware 
module. 

● FPGA Bitstream Scanning service: 
Which is responsible for ensuring 
the user’s designs are free from 

Although the secure FPGA provisioning 
service is still in development, an important 
step toward has been made regarding the 
design and implementation of the FPGA 
shell in the FPGA fabric. This shell will be 
responsible for configuring the rest of the 
setup at runtime. 

The current prototype of the secure 
FPGA provisioning service is able to 
reconfigure two virtual FPGAs at 
runtime with different accelerators 
through the internal configuration port. 
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malicious circuits before being 
deployed on the FPGA device. 

Behavioral‐based 
network anomaly 

detection 

A network anomaly detection service is 
being developed, which will monitor the 
networking activities of an embedded 
device, and detect any deviations from its 
regular behavior. These deviations include, 
but are not limited to, suspicious port 
numbers being exposed by the device, or 
suspicious communication and/or protocols 
being used with other devices or IP 
addresses. 

The behavioral-based network anomaly 
detection service implementation of the 
CROSSCON Stack is currently still under 
development. Once the service is ready, it 
will be integrated into the CROSSCON Stack 
as a Trusted Application (TA). 

Not available 

Control flow 
integrity 

CROSSCON aims to extend protection 
against control flow attacks, i.e. attacks 
aimed at diverting the sequence of executed 
instructions of an application, to IoT devices 
that either lack or are not compatible with 
existing hardware-specific solutions.  

 

Two control flow integrity service 
implementations, protecting either the 
backwards edge, ensuring that each 

function returns to the point in the code 
where it was called, and/or the forwards 
edge of the control flow, ensuring the 
destination address of the execution is part 
of a set of allowed destinations, are 
developed: 

Flashadow: backwards edge control 
flow protection for the CROSSCON 

A first implementation of both the 
Flashadow and uIPS control flow 
mechanisms have been integrated onto the 
CROSSCON bare metal TEE for non-MPU 
and MPU hardware modules, respectively. 
More testing is currently ongoing to further 
validate these implementations. 

 

 

The current implementation for both 
MPU and non-MPU devices are able to 
demonstrate the ability to protect the 
forward and backward edges (where 
applicable) of the control flow, detecting 
unsafe deviations from the original 
sequence of operations and halting the 
execution in such cases. 
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non-MPU bare metal TEE (designed 
for Class 0 devices, as defined in 
D1.5[2]) 

uIPS: backwards and forwards edge 
control flow protection for the 
CROSSCON MPU bare metal TEE 
(designed for Class 1 devices, as 
defined in D1.5[2]) 

Remote attestation 

Remote attestation is an existing security 
mechanism that allows a device to verify the 
integrity and authenticity of another remote 
device, ensuring it has not been 
compromised or tampered with. CROSSCON 
aims to enhance the capabilities of regular 
remote attestation by providing a service 
that allows users to easily configure and call 
a remote attestation of one of the VMs 
running upon its Stack.  

The remote attestation implementation of 
the CROSSCON Stack is currently still under 
development. Once the service is ready, it 
will be integrated into the CROSSCON Stack 
as a Trusted Application (TA). 

Not available 

ML-based control 
flow attestation 

This service allows the user to utilize remote 
attestation to verify the integrity of the 
control flow of a vulnerable and/or security‐
relevant application, using Unsupervised 
Graph Neural Networks (GNNs) to detect any 
deviations from regular operational 
sequences. 

The implementation of the ML-based 
runtime attestation of the CROSSCON Stack 
is currently still under development. Once 
the service is ready, it will be integrated into 
the CROSSCON SoC as a peripheral. 

 

Not available 
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3 Use Case Integration Prototypes 

Within Chapter 3, a detailed description of each of the use case implementation prototypes will be 
provided, split into sections for each use case. In addition to the architecture of the use case integration 
prototypes, this chapter will highlight the components and trusted services each of the use cases will 
leverage for increased security, as well as a first integration timeline.  

It is important to note that the prototype architectures and integration timelines are subject to 
changes, depending on the input and development timeline of the CROSSCON Stack, as well as its 
components and services. 

3.1 UC 1 - Device Multi-Factor Authentication 

3.1.1 Prototype Architecture 

The main goal of UC 1 is to provide a Multi-Factor Authentication (MFA) implementation for 
lightweight and resource-constraint IoT devices, in order to protect their users from Man-in-the-
Middle (MitM) attacks, amongst others. It achieves this by implementing a basic first authentication 
factor based on a mutual Transport Layer Security (mTLS) TA implementation. For the secondary 
authentication, the UC will leverage either the PUF-based or Context-based authentication schemes 
developed as part of the trusted services of the CROSSCON Stack, depending on their availability on 
the underlying hardware (see Table 1 of D3.1[4] for an overview of the features of each of the 
hardware platforms considered for CROSSCON). 

More specifically, UC 1 aims to provide a MFA implementation for two distinct operational scenarios: 

3.1.1.1 Scenario 1: One-way authentication between a low-end and a high-end device 

Within the first operational scenario, UC 1 proposes the following implementation to provide a one-
way authentication mechanism between the resource-constrained IoT devices and gateways: 

 

Figure 2: MFA implementation prototype for low-end to high-end device authentication 
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Utilizing the architecture as defined in Figure 2, the following workflow will be implemented: 

0. The constrained IoT device, based on a NXP LPC55S6x, enrolls its PUF responses to a public 
database, as described in Section 3.3.1 of D3.1[4], prior to its required authentication. 

1. The constrained IoT device sends a mTLS request to the gateway, itself based on a Raspberry 
Pi 4B.  

2. Once the gateway receives the request from the constrained device, it verifies the provided 
certificate.  

a. If the certificate is valid, a secure encrypted channel is established between the 
constrained device and the gateway.  The gateway then sends an authentication 
response to the constrained device, prompting for a second authentication factor.  

b. If the certificate provided by the constrained device is invalid, the gateway sends a 
negative authentication response and does not prompt for the second authentication 
factor.  

3. In case of a successful first authentication, the constrained IoT generates a secondary 
authentication using its PUF-based MFA implementation, and forwards this to the gateway.  

4. The gateway verifies the received PUF-based authentication using the aforementioned public 
data.  

a. If the second factor authentication fails, the gateway sends a negative authentication 
response back to the IoT device.  

b. If the second factor is valid, the gateway sends a positive authentication response.  

3.1.1.2 Scenario 2: Mutual authentication between two high-end devices 

Where the first scenario focuses on the one-way authentication of a low-end to a high-end device, the 
second scenario explores the possibility to provide a more complex, mutual authentication between 
two high-end devices. The proposed implementation architecture can be found in Figure 3: 

 

Figure 3: MFA implementation prototype for mutual authentication between two high-end devices 

  



 

 
Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 19 of 33 

Reference: D5.2 Dissemination:  PU Version: 1.0 Status: Final 

 

As the high-end gateway devices are more powerful and have extended capabilities compared to the 
low-end devices of the first scenario, the MFA will be based on context-based, rather than PUF-based 
authentication, as described in the following workflow: 

0. Both Gateway A and Gateway B, each based on a Raspberry Pi 4B hardware module, have 
enrolled their Wi-Fi landscape fingerprints with each other, in order to be able to validate each 
other’s Context-based MFA.  

1. Gateway A sends a mTLS request to Gateway B.  

2. Once Gateway B receives the authentication request, it verifies the provided certificate.  

a. If the certificate is valid, a secure encrypted channel is established between the two 
gateways. Gateway B then sends an authentication response to Gateway A, prompting 
for a second authentication factor.  

b. If the certificate provided by Gateway A is invalid, Gateway B sends a negative 
authentication response and does not prompt for the second authentication factor.  

3. In case of a successful first authentication, the Gateway A generates a secondary 
authentication using its Context-based MFA implementation, and forwards this to Gateway B.  

4. Gateway B verifies the Context-based authentication using the Siamese network 
implementation of the MFA TA.  

a. If the second factor is invalid, Gateway B sends a negative authentication response.  

b. If the second factor is valid, the Gateway B sends a positive authentication response, 
and provides its own secondary Context-based authentication factor to Gateway A.  

5. Gateway A verifies the received Context-based authentication from Gateway B using its own 
Siamese network.  

a. If the second factor is invalid, Gateway A sends a negative authentication response.  

b. If the second factor is valid, Gateway A returns a positive authentication response. 

3.1.2 Required Security Features 

The integration and operation of the two architectures described before will leverage the following 
security features, obtained from the components and trusted services of the CROSSCON Stack: 

• CROSSCON Hypervisor support on hardware platforms: The implementations of both the first and 
second operational scenario of UC 1 are designed to operate using the CROSSCON Hypervisor on 
top of either a NXP LPC55S6x or Raspberry Pi 4B hardware platform. However, as described in 
Section 2.1, the CROSSCON Hypervisor is currently only compatible with QEMU, and efforts to 
ensure its compatibility with the required hardware platforms are ongoing. 

• PUF-Based Authentication Prover API for Low-End devices: An API will have to be developed for 
the PUF-based authentication implementation on low-end devices, such that they can generate 
PUF responses whenever a MFA is required. 

• PUF-Based Authentication Verifier API for High-End devices: An API will have to be developed for 
the PUF-based authentication implementation on high-end devices, such that they can validate 
the PUF-based authentication of low-end devices, when requested. 

• Context-Based Authentication Prover & Verifier API for High-End devices: An API will have to be 
developed for the Context-based authentication implementation on high-end devices, such that 
they can both (1) generate their Wi-Fi landscape fingerprint, and (2) validate the Wi-Fi landscape 
fingerprint of another high-end device, when requested. 
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3.1.3 Integration Timeline 

Considering the proposed implementation architectures and operational scenarios, as well as the 
ongoing development of the CROSSCON Stack, the following integration timeline is predicted for the 
use case prototype: 

Table 3: Integration timeline for UC 1 

Integration Activity  
2024 2025 

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 

Integration of the CROSSCON 
Stack on Raspberry Pi 4B 

                                

Integration of the CROSSCON 
authentication implementations 

                                

Integration of the MFA 
application 

                                

Testing and validation activities                                 

Preparation of final 
demonstrator 
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3.2 UC 2 - Firmware Updates of IoT Devices 

3.2.1 Prototype Architecture 

The integration prototype architecture for the UC2, focussing on a secure Over-the-Air (OTA) firmware 
update implementation lead by BIOT, is the following: 

 

Figure 4: Secure firmware update implementation prototype 

As depicted in Figure 4, Barbara Secure OS will be deployed inside a VM on top of the CROSSCON 
Hypervisor, operating on a Raspberry Pi 4B hardware platform. Within the Barbara VM, the UC2 
operational application (UC2 APP) will be deployed, which will be responsible for performing the OTA 
firmware updates. It leverages an external update server2 to provide the required materials to execute 
the OTA updating operations.  

The UC2 application will utilize a specialized Trusted Application, called UC2-TA, responsible for 
validating the signature of the downloaded firmware file, using the TEE client API[10]. This TA is 
deployed on OP-TEE, a TEE instance operating on top of the CROSSCON Hypervisor. Afterwards, the 
UC2-TA application will utilize the TEE internal Core API[11], in order to perform its critical 
cryptographic functions. 

The operational workflow of UC 2 will be the following:   

0. An Operating System update image will be generated and stored in the dedicated update 
server.  

1. The UC2 OTA will ask the CROSSCON API for a unique ID. This ID will be stored on the device 
using a secure storage area, provided by the OP-TEE implementation operating on top of the 
CROSSCON Hypervisor. 

2. The CROSSCON Stack will be used to set up the secure communication channel between the 
IoT device and the update server, and the OS update image will be downloaded as an 
encrypted binary file. 

3. The UC2-TA application will verify the signature of the encrypted binary file, using the TEE 
cryptographic operations. 

4. If the signature is valid, the UC2-TA application will decrypt the update image file using the TEE 
cryptography operations provided by the TEE API. 

 
2 This server will be deployed and operated independently of the aforementioned implementation prototype, not requiring 
integration with the CROSSCON Stack, and has therefore been omitted from the detailed architecture of Figure 4. 
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3.2.2 Required Security Features 

The integration and operation of the two architectures described before will leverage the following 
security features, obtained from the components and trusted services of the CROSSCON Stack: 

• CROSSCON Hypervisor support on RPI4: The architecture of UC 2 is designed to operate using the 
CROSSCON Hypervisor on top of a Raspberry Pi 4B hardware platform. However, as described in 
Section 2.1, the CROSSCON Hypervisor is currently only compatible with QEMU, and efforts to 
ensure its compatibility with the Raspberry Pi 4B hardware platform are ongoing. 

• CROSSCON TEE implementation: The UC2-TA application requires to be deployed on a OP-TEE 
implementation on top of the CROSSCON Hypervisor, as the TA will leverage the TEE 
implementation to (1) provide the secure storage capabilities, (2) allow for the generation of a 
unique identifier and (3) perform the cryptographic operations required for the use case. 

• Unique identifier (ID) provisioning: The OTA firmware update application requires a unique 
device ID to be provisioned by the CROSSCON Stack. The implementation of this service is not 
considered as a trusted service, but will instead leverage the secure storage capabilities of the 
CROSSCON TEE implementation to generate and store the unique ID. 

• Secure storage capability: The CROSSCON Stack will provide the ability to allocate secure storage 
to store sensitive data (e.g. cryptographic keys, unique ID, etc.) only accessible by allowed 
applications. 

• Secure Communication Channel: To ensure the authenticity, integrity and confidentiality of the 
communication between the IoT device and the firmware update server, a method to establish a 
secure communication channel will have to be available. 

3.2.3 Integration Timeline 

At first, the integration of the prototype into the testbed will be performed, which will serve as a first 
evaluation of the CROSSCON Stack, and provide feedback to the developers of WP2, 3 and 4. The 
integration schedule of this first implementation is presented in Table 4, and has been divided in three 
integration phases:   

1. Development of the emulated environment setup, where we can begin creating and 
running the Hypervisor, the TEE and Barbara OS on top of CROSSCON Hypervisor.   

2. Development of UC2-TA, and its integration within the CROSSCON TEE environment 

3. Development of the UC2 OTA update application, its integration within the Barbara OS VM 
and the establishment of the communication between the UC2 OTA update application 
and the UC2-TA. 

After the integration, a continuous testing and integration framework will be implemented, in order 
to continue validating the advancements made, and to provide feedback to the development of the 
CROSCONN Stack.  

Table 4: Integration timeline for UC 2 

Integration Activity  
2024 2025 

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 

Development of the emulated 
environment setup 

                                

Development of UC2-TA                                 

Development of the UC2 OTA 
update application 

                                

Continuous Testing and 
validation activities 

                                

Preparation of final 
demonstrator 
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3.3 UC 3 – Commissioning and Decommissioning of IoT Devices 

3.3.1 Prototype Architecture 

The integration prototype architecture for the UC 3, focussing on a secure framework for 
commissioning and decommissioning of IoT devices lead by BIOT, is the following: 

 

 

Figure 5: Secure (de)commission of IoT devices implementation prototype 

As depicted in Figure 5, the implementation of UC 3 follows almost exactly the same architecture as 
that of UC 2: A Barbara Secure OS will be deployed inside a VM on top of the CROSSCON Hypervisor, 
operating on a Raspberry Pi 4B hardware platform. Within the Barbara VM, the UC 3 operational 
application (UC3 APP) will be deployed, which will be responsible for performing the 
(de)commissioning operations of the IoT device. It leverages an external provisioning server3 to 
provide the required materials to execute these (de)commissioning operations.  

The UC3 application will utilize a specialized Trusted Application, called UC3-TA, responsible for 
executing the required security-related operations, using the TEE client API[10]. This TA is deployed on 
OP-TEE, a TEE instance operating on top of the CROSSCON Hypervisor. Afterwards, the UC3-TA 
application will utilize the TEE internal Core API[11], in order to perform its critical cryptographic 
functions. 

The operational scenario of UC 3 will be the following:   

0. Upon first boot, the UC3-TA application will generate a unique ID and store it using a secure 
storage area provided by the OP-TEE implementation operating on top of the CROSSCON 
Hypervisor. It will also generate a generic certificate and store it in the same secure storage. 

1. Next, the UC3 application will login to the dedicated provisioning server using the 
aforementioned generic certificate and unique ID, provided by the UC3-TA. 

2. The provisioning server verifies the credentials provided by the IoT device, and upon successful 
authentication, sends an official production certificate back to the IoT device. This certificate 
is then stored in the aforementioned secure storage area, replacing the generic certificate 
used during the enrollment process. 

3. After enrollment, the IoT device can be operated, utilizing the production certificate from step 
3 to officially authenticate itself to third-party applications if required. 

 

3  This server will be deployed and operated independently of the aforementioned implementation prototype, not requiring 
integration with the CROSSCON Stack, and has therefore been omitted from the detailed architecture of Figure 5. 
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3.3.2 Required Security Features 

The integration and operation of the aforementioned architecture depend on the advancement of the 
following components and trusted services of the CROSSCON Stack: 

• CROSSCON Hypervisor support on RPI4: The architecture of UC 3 is designed to operate using the 
CROSSCON Hypervisor on top of a Raspberry Pi 4B hardware platform. However, as described in 
Section 2.1, the CROSSCON Hypervisor is currently only compatible with QEMU, and efforts to 
ensure its compatibility with the Raspberry Pi 4B hardware platform are ongoing. 

• CROSSCON TEE implementation: The UC3-TA application requires to be deployed on a OP-TEE 
implementation on top of the CROSSCON Hypervisor, as the TA will leverage the TEE 
implementation to (1) provide the secure storage capabilities, (2) allow for the generation of a 
unique identifier and (3) perform the cryptographic operations required for the use case. 

• Unique identifier (ID) provisioning: The (de)commissioning application requires a unique device 
ID to be provisioned by the CROSSCON Stack. The implementation of this service is not considered 
as a trusted service, but will instead leverage the secure storage capabilities of the CROSSCON TEE 
implementation to generate and store the unique ID. 

• Secure storage capability: The CROSSCON Stack will provide the ability to allocate secure storage 
to store sensitive data (e.g. cryptographic keys, unique ID, etc.) only accessible by allowed 
applications. 

• Secure Communication Channel: To ensure the authenticity, integrity and confidentiality of the 
communication between the IoT device and the provisioning server, a method to establish a secure 
communication channel will have to be available. 

3.3.3 Integration Timeline 

The integration schedule of this first implementation is presented in Table 5, and has been divided in 
three integration phases, similar to the one introduced for UC 2:   

1. Development of the emulated environment setup, where we can begin creating and running 
the Hypervisor, the TEE and Barbara OS on top of CROSSCON Hypervisor (which follows the 
same timeline as the UC2 integration timeline).  

2. Development of UC3-TA, and its integration within the CROSSCON TEE environment 

3. Development of the UC3 OTA update application, its integration within the Barbara OS VM and 
the establishment of the communication between the UC2 OTA update application and the 
U2-TA. 

After the integration, a continuous testing and integration framework will be implemented, in order 
to continue validating the advancements made, and to provide feedback to the development of the 
CROSCONN Stack.  

Table 5: Integration timeline for UC 3 

Integration Activity  
2024 2025 

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 

Development of the emulated 
environment setup 

                                

Development of UC3-TA                                 

Development of the UC3 
(de)commissioning application 

                                

Continuous Testing and 
validation activities 

                                

Preparation of final 
demonstrator 

                                

 



 

 
Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 25 of 33 

Reference: D5.2 Dissemination:  PU Version: 1.0 Status: Final 

 

3.4 UC 4 - Remote Attestation for Identification and Integrity Validation of 
Agricultural UAVs 

3.4.1 Prototype Architecture 

Within UAVs, the Flight Control Unit (FCU), is responsible for the operations of the drone's movements, 
executing either the commands received from the UAV pilot’s controller, or acting as an auto-pilot for 
preloaded flight plans. In addition, it is often the sole entrance point for the UAV flight peripheral 
sensor data (e.g. GPS, air speed, etc), used by the FCU to maintain flight, as well as the only 
communication point to the flight controllers. Hence, it is a critical component for the operational 
safety of the UAV, and therefore crucial to secure.  

However, in almost all cases the FCU is either a separate hardware or software module that is not 
developed or maintained by the UAV owner, and as such cannot be inherently trusted. In addition, the 
FCU often operates alongside a business payload, which executes the commercial applications of the 
agricultural UAV (e.g. spraying, monitoring, etc). As these commercial operations required input from 
the drone’s flight peripherals, another main task of the FCU is to share any required data with the 
business payload, meaning that any tampering performed on the FCU will have a direct impact on the 
commercial implementations of the UAV.  

For these reasons, UC 4 aims to ensure the operational safety and security of the UAV by ensuring the 
FCU operates nominally. It achieves this by implementing the following operational scenario, 
leveraging Remote Attestation (RA) as a means to validate the status of the FCU: 

1. The business payload requests the sensor data from the FCU during operations, but before 
utilizing its values for the business logic, it checks them against a list of critical values 
preinstalled by the UAV owner (e.g. max legal airspeed, gps restrictions, etc).  

a. If these values are within the specified critical range, the operations are nominal and 
no further actions are taken. 

b. However, if the values exceed the critical range, the business payload will trigger the 
RA service to validate the integrity of the FCU implementation. 

2. If the critical range is exceeded, the RA service will perform an attestation of the status of the 
FCU and send the attestation report to a RA verifier, located on a centralized server, via a 
secure communication channel. The RA verifier will check whether the FCU has been 
compromised, and will report back to the RA service on the UAV regarding its conclusion. 

a. If the attestation fails, i.e. the FCU has been compromised, an evasive action needs to 
be taken to ensure the operational safety of the UAV. As the exact operations that 
could be considered in this scenario depend on the architecture of the drone, its 
components and/or the criticality of the mission, UC 4 does not impose any evasive 
actions that need to be taken. Instead, it allows the UAV owner to pre-program a 
system to execute an evasive action in case a failed attestation occurs. 

b. If the attestation does pass, i.e. the FCU has not been compromised with, an additional 
check is performed to locate the reason for the previously measured out-of-range 
values of the sensor data. 

3. If the RA service validates the integrity of the FCU, the business logic will request an additional 
set of sensor data results. 

a. If these additional sensor data points are also out of range, the FCU is instructed to 
correct its operations to return to a safe state (e.g. reducing its flight velocity, lowering 
its altitude, etc). Example scenarios where such unsafe conditions could occur include, 
but are not limited to, dangerous manual flying from the UAV pilot, or an erroneous 
UAV remote control.  

b. If the new sensor data sample is showing data that is no longer out of range, the output 
of the sensor in question is no longer trustworthy (e.g. it is being jammed or is 
defective). Depending on the hardware capabilities of the UAV, evasive actions can be 
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taken, to ensure the faulty sensor data is not interfering with the operations of the 
UAV. For example, if there are redundant alternatives to the corrupted sensor, the 
FCU can be instructed to ignore its output completely. Once again, UC 4 does not 
impose any evasive actions, but instead allows the UAV owner to pre-program a 
system to execute an evasive action in line with their design and requirements. 

4. Of course, an attacker could bypass the attestation of step 2 if it tampers with the FCU and 
masks its efforts by altering the output data to the business peripheral, making it seem as if 
the sensor values are within the critical range, even when they are not. To combat this, the 
UAV owner will be able to schedule periodic attestations from within the business payload 
application, which would trigger step 2 of the aforementioned plan and attest the status of 
the FCU, even when no incorrect sensor data is detected. 

In order to execute and validate the operational scenario described above, a stationary UAV-like setup 
has been designed, implementing the TEE‐less environment with virtualization and trusted VMs 
instantiation of the CROSSCON Stack, as defined in section 3.1.4 of D2.1[3]. 

An overview of the prototype architecture, based on a real-world UAV implementation, is provided in 
the Figure 6: 

 

Figure 6: UC 4 prototype architecture & integration with CROSSCON Stack 

More specifically, three main applications can be identified operating on top of the CROSSCON 
Hypervisor within the prototype architecture: 

• Flight Control: Within the stationary UC4 prototype setup, the operational capabilities of the flight 
control have been omitted, focussing solely on sensor data handling:  

o A Sensor Data Generation module will be developed and deployed inside a dedicated 
Flight Control VM, which will emulate the output of a range of flight peripherals. Note that 
this emulated data generation module will be used to validate the initial implementation 
of the UC4 prototype, with the possibility to replace it with real-world sensors in a later 
stage of the project. 

o Alongside the aforementioned Sensor Data Generation module, a Sensor Data Acquisition 
module will be placed. Its operational functionality will be twofold: During nominal 
operations, it will simply retrieve the sensor data from the Sensor Data Generation 
module, and share it with the business payload VM, following the inter-process 
communication (IPC) implementation of CROSSCON, as defined in D2.1[3]. However, in the 
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scenario where the RA service needs to be triggered, it will also be able to adjust the sensor 
data before transmitting, in order to emulate a compromised FCU implementation.  

• Business Payload: CYSEC’s trusted operating system (OS), called ARCA OS, will be implemented to 
provide minimal protection and hardening of the Business Payload VM. Similar to the Flight Control 
VM, no operational business peripheral functionalities will be integrated into the Business Payload 
VM, focussing instead only on the verification of the sensor data obtained from the Flight Control 
VM. To achieve this, a Sensor Data Validation module will be implemented, responsible for (1) 
retrieving the sensor data from the Sensor Data Acquisition module via the IPC, (2) validation of 
the retrieved sensor data against a list of predefined critical values and (3) trigger the RA service 
through its API when the sensor data exceeds the aforementioned critical values. 

• RA Service: Lastly, the RA service of the CROSSCON Stack will be implemented into the prototype,  
hosted as a Trusted Application within a Trusted VM, as described in D2.1[3]. It will be responsible 
for performing the attestation of the Flight Control VM and the secure communication with the 
RA verifier. As the development of the RA service is still ongoing, the exact API with which the RA 
service can be configured and operated will be defined at a later stage.  

o The RA verifier, required by the RA service described above, will be deployed alongside 
the prototype implementation depicted in Figure 6. However, as it will be operated 
independently and does not require integration with the CROSSCON Stack, it has been 
omitted from the detailed architecture.  

3.4.2 Required Security Features 

Before integration efforts for the UC 4 implementation prototype can be started, several components 
and trusted services introduced in Chapter 2 will need to be finalized: 

• CROSSCON Hypervisor support on RPi: The implementation of UC4 depends on the ability to 
deploy and operate the CROSSCON Hypervisor on top of the Raspberry Pi 4B hardware platform. 
However, as described in Section 2.1, the CROSSCON Hypervisor is currently only compatible with 
QEMU, and efforts to ensure its compatibility with the required hardware platforms are ongoing. 

• RA Service: The RA Trusted Application is central for the secure operation of the UC 4 prototype, 
ensuring the integrity of the Flight Controller. However, as described in Section 2.1, the RA service 
is currently still under development. 

• Secure Communication Channel: To ensure the authenticity, integrity and confidentiality of the 
attestation report while it is being transmitted between the RA service and verifier, a method to 
establish a secure communication channel will have to be available within the RA service 
implementation. 

3.4.3 Integration Timeline 

Considering the proposed implementation architectures and operational scenarios, as well as the 
ongoing development of the CROSSCON Stack, the following integration timeline is predicted for the 
use case prototype: 

Table 6: Integration timeline for UC 4 

Integration Activity  
2024 2025 

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 

Integration of the CROSSCON 
Stack on Raspberry Pi 4B 

                                

Development of the Flight 
Control & Business payload VMs 

                                

Integration of the Remote 
Attestation TA 

                                

Testing and validation activities                                 

Preparation of final 
demonstrator 
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3.5 UC 5 - Intellectual Property Protection for Secure Multi-Tenancy on FPGA 

3.5.1 Prototype Architecture 

Field Programmable Gate Arrays (FPGAs) are versatile hardware platforms designed for customization. 
They comprise several key components, including configurable logic blocks (CLBs), block random 
access memory (RAM), and digital signal processing units (DSPs). These elements are interconnected 
through a programmable routing network (network of routing blocks (R) as shown in Figure 7), 
enabling the creation of any digital circuit configuration. The description of a digital circuit goes 
through several steps including, synthesis and place & route to produce the final binary file, referred 
to as the bitstream, that is to program the targeted FPGA.   

FPGAs can be integrated with the processing system on a single chip, interconnected through on-chip 
buses, creating what is known as an FPGA-SoC (System on Chip). Alternatively, FPGAs can function as 
standalone peripherals, connected to the platform via external buses. This flexibility allows for diverse 
application scenarios, enhancing both performance and system design options. 

 

Figure 7: CROSSCON FPGA-SoC architecture & components 

In UC5, our primary objective is to extend the trusted execution environment to FPGAs within a multi-
tenant deployment model while maximizing FPGA utilization. To achieve this, we aim to enable secure 
sharing of FPGA resources among multiple users and applications, facilitating true multi-tenancy. This 
involves supporting secure configuration and deployment of intellectual property (IP) hardware 
designs on shared and virtualized FPGAs and enforcing access control to IP designs on the FPGA and 
their data. By doing so, we ensure that FPGA resources are utilized efficiently, providing robust security 
measures to protect each user’s data and IP, and maintaining the integrity and confidentiality of all 
operations conducted on the FPGA platform.   

In our prototype, we divide the physical FPGA into several virtual FPGAs, each equipped with its own 
set of resources (CLBs, BRAMs, DSPs, etc.). These virtual FPGAs can be managed independently, 
meaning they can be allocated, configured, and deallocated without affecting each other. This is made 
possible by leveraging the dynamic reconfigurability feature of FPGAs, which allows us to partition the 
FPGA into one static region and multiple reconfigurable regions (virtual FPGAs). This feature permits 
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the reconfiguration of any reconfigurable region at runtime, without impacting the other regions. Note 
that the static region can only be configured at boot time, i.e., after a power cycle.  

In UC5, we partition the FPGA into two virtual FPGAs and a static region, as illustrated in Figure 8. The 
static region, referred to as the FPGA shell, abstracts the FPGA-specific details (such as I/O pins and 
interfaces) for users by providing standard I/O interfaces. Additionally, it handles the runtime 
configuration of the virtual FPGAs, ensuring efficient and secure management of the FPGA resources. 

 

Figure 8: vFPGA partitions 

To enforce isolation between the different regions on the FPGA, we utilize empty logic blocks to create 
an isolation fence, ensuring that signals from different regions are not routed adjacent to each other, 
thus preventing crosstalk-based attacks.  

With the capability to create and manage different virtual FPGAs independently, we now focus on 
enabling the secure configuration of IP hardware designs, e.g., accelerators, on these virtual FPGAs. 
This involves implementing mechanisms for the decryption and verification of IP bitstreams before 
they are partially configured on the FPGA. Each user or IP provider should be able to encrypt and sign 
their IP bitstream with their own secret key. This secure configuration process involves encrypting and 
authenticating each IP hardware design using the application or user's secret key, safeguarding the 
integrity and confidentiality of the IP throughout its lifecycle.  

Once the virtual FPGAs are successfully allocated and configured, strict access control measures must 
be enforced to ensure that only the user or application requesting the acceleration can communicate 
with and share data with the FPGA-based accelerator. This access control also extends to the FPGA 
shell, which should be accessed only by the trusted application that manages and provides FPGA 
services.  

At system boot time, the FPGA shell and the isolation fence are configured on the FPGA, while the 
virtual FPGAs remain blank. This initial setup ensures a secure and isolated environment for 
subsequent operations.  

In Figure 9, we illustrate our vision for integrating secure FPGA services into the CROSSCON Stack. 
These FPGA services are provided through a dedicated trusted application (TAFPGA), ensuring robust 
security and management of the FPGA resources within the system. In the following we briefly discuss 
the functionality of TdAFPGA.  
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Figure 9: UC 5 integration with the CROSSCON Stack 

TAFPGA is responsible for the following activities:  

1. Managing Virtual FPGAs: This involves the allocation and deallocation of virtual FPGAs to 
requesting applications. When an application (App x) sends a request to TAFPGA, it checks for an 
available virtual FPGA (e.g., vFPGA1). If available, TAFPGA informs App x of the allocation. 
Deallocation can occur in two ways: either the virtual FPGA is allocated for a predefined time slot 
and then blanked using a special bitstream, or TAFPGA notifies App x that the virtual FPGA will be 
revoked shortly.  

2. Session Key Exchange: TAFPGA and App x share a session key through a session key exchange using 
public key cryptography (e.g., RSA). This session key is used to encrypt the bitstream or to encrypt 
App x’s secret key, which in turn encrypts and authenticates the bitstream. The encrypted 
bitstream is then shared with TAFPGA. TAFPGA provides a shared memory region for communicating 
bitstreams. This memory region allows other applications to write their encrypted bitstreams, 
authentication data, and tags, which TAFPGA can read.  

3. Bitstream Decryption & Verification: Once TAFPGA receives the encrypted bitstream, it decrypts 
and verifies the bitstream before writing it to a private memory region shared with the FPGA shell. 
The FPGA shell then reads the bitstream and configures it on the intended virtual FPGA (vFPGA1). 
For this step, we use AES-GCM mode with a 256-bit key size.  

4. Access Control Rules: After successfully configuring the accelerator on the virtual FPGA, TAFPGA 
provides access control enforcement to vFPGAs by only allowing requesting applications to 
communicate to their accelerators on the vFPGAs. Enforcing fine-grained access control to 
different FPGA resources, i.e. virtual FPGAs and the FPGA shell, can be also supported by the 
CROSSCON SoC through the Perimeter guard (PG). In our prototype, based on the AMD Xilinx 
ZCU102 board, we utilize Xilinx Peripheral Protection Units (XPPUs) and Xilinx Memory Protection 
Units (XMPUs) to complement the protection provided by MMUs and IOMMUs.  

Currently, steps 1 and 3 have been implemented, while steps 2 and 4, along with integration within 
the CROSSCON Stack, are work in progress.   

3.5.2 Required Security Features 

The trusted FPGA services rely on the CROSSCON Stack and the underlying TEE technology to provide 
isolation for the TAFPGA. More specifically, the implementation of UC 5 requires: 

● CROSSCON Hypervisor support:  

o The implementation of UC 5 depends on the ability to deploy and operate the CROSSCON 
Hypervisor on top of the selected AMD Xilinx ZCU102 board. However, as described in 
Section 2.1, the CROSSCON Hypervisor is currently only compatible with QEMU, and 



 

 
Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 31 of 33 

Reference: D5.2 Dissemination:  PU Version: 1.0 Status: Final 

 

efforts to ensure its compatibility with the different required hardware platforms are 
ongoing. 

o Service discovery mechanisms should be put in place for applications to locate TAFPGA and 
communicate with it using its identifier. 

o The CROSSCON Hypervisor should allow TAFPGA to configure isolation components, e.g., 
MMUs and IOMMUs, to control access to virtual FPGAs and their associated memory 
regions. 

● API implementation: The design of a clear and efficient API is crucial for facilitating 

communication between applications and TAFPGA, including functions for requesting FPGA 

resources, managing job submissions, and retrieving results. 

3.5.3 Integration Timeline 

Considering the proposed implementation architectures and operational scenarios, as well as the 
ongoing development of the CROSSCON Stack, the following integration timeline is predicted for the 
use case prototype: 

Table 7: Integration timeline for UC 5 

Integration Activity  
2024 2025 

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 

Finalization of missing 
dependencies 

                                

Finalization of APIs                                 

Integration with the CROSSCON 
Stack 

                                

Testing and validation activities                                 

Preparation of final 
demonstrator 
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4 Conclusions 

This document has provided an overview regarding the initial integration efforts of the CROSSCON 
Stack, as preparation of the testing and validation activities of T5.3 and T5.4, respectively. 

Chapter 2 detailed the development status of each of the CROSSCON Stack’s components and trusted 
services. Although development of some of these core parts of the CROSSCON Stack is still ongoing, 
most of the services required for the integration of the first use case prototypes were demonstrated 
to be either ready for integration, or in the final stages of development. As such, we are confident that 
the integration activities will advance as planned. 

As part of the next steps of the integration activities, Chapter 3 provided a detailed overview of each 
of the use case prototypes, including their implementation architectures, operational workflows, 
required security features and predicted integration timeline. 
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