

This document is issued within the frame and for the purpose of the CROSSCON project. This project has received funding from the European
Union’s Horizon Europe Programme under Grant Agreement No.101070537. The opinions expressed and arguments employed herein do not
necessarily reflect the official views of the European Commission.
The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may
be made of the information it contains. This deliverable is subject to final acceptance by the European Commission.
This document and its content are the property of the CROSSCON Consortium. The content of all or parts of this document can be used and
distributed provided that the CROSSCON project and the document are properly referenced.
Each CROSSCON Partner may use this document in conformity with the CROSSCON Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g. web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission
Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU SECRET under
the Commission Decision No2015/444.

Cross-platform Open Security Stack for Connected Device

D5.2 Integrated CROSSCON Security Stack - First
Version

Keywords:

CROSSCON Stack Demonstrator, Integration, Use Case Prototypes

Document Identification

Status Final Due Date 31/07/2024

Version 1.0 Submission Date 31/07/2024

Related WP WP5 Document Reference D5.2

Related
Deliverable(s)

D1.4, D1.6, D2.1, D3.1,
D3.2, D4.1, D4.2

Dissemination Level (*) PU

Lead Participant

CYSEC Lead Author Yannick Roelvink

Contributors 3MDEB, BIOT, TUD,
UMINHO, UWU

Reviewers Ziga Putrle

(BEYOND)

Gergely Eberhardt

(SLAB)

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 2 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Yannick Roelvink CYSEC

Emna Amri CYSEC

Artur Raglis 3MDEB

Tymoteusz Burak 3MDEB

Shaza Zeitouni TUD

Ainara García Barinaga BIOT

David Puron BIOT

David Cerdeira UMINHO

Lukas Petzi UWU

Document History

Version Date Change editors Changes

0.1 03/07/2024 Yannick Roelvink Initial version, document layout definition and
allocation of sections to contributors. Included
first draft of Introduction chapter.

0.2 15/07/2024 Artur Raglis

Yannick Roelvink

Integration of first version of UC1 prototype
sections, first version of Chapter 2 - CROSSCON
Stack Development Progress.

0.3 16/07/2024 Shaza Zeitouni Contribution to Chapter 2 & inclusion of UC5
prototype section.

0.4 17/07/2024 Ainara García

Yannick Roelvink

Inclusion of UC2, UC3 & UC4 prototype sections.

0.5 18/07/2024 Yannick Roelvink Reformatting of UC descriptions, initial version of
conclusion added submitted for internal review.

0.6 25/07/2024 Yannick Roelvink

Emna Amri

David Puron

Integrated comments from reviewers regarding
Chapters 1, 2, 3.2, 3.3 and 4.

0.7 26/07/2024 Yannick Roelvink

Shaza Zeitouni

Tymoteusz Burak

Integrated comments from reviewers regarding
Chapters 3.1, and 3.5

0.8 29/07/2024 Yannick Roelvink Final version for QA.

0.9 30/07/2024 Juan Alonso Quality Assessment.

1.0 31/07/2024 Hristo Koshutanski Final version submitted.

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Yannick Roelvink (CYSEC) 29/07/2024

Quality manager Juan Alonso (ATOS) 30/07/2024

Project Coordinator Hristo Koshutanski (ATOS) 31/07/2024

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 3 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ... 2

Table of Contents ... 3

List of Tables... 4

List of Figures ... 5

List of Acronyms ... 6

Executive Summary .. 7

1 Introduction.. 8

1.1 Purpose of the document .. 8

1.2 Relation to other project work ... 8

1.3 Structure of the document ... 8

2 CROSSCON Stack Development Progress ... 9

2.1 Status of CROSSCON Stack Components .. 10

2.2 Status of CROSSCON Stack Trusted Services .. 13

3 Use Case Integration Prototypes .. 17

3.1 UC 1 - Device Multi-Factor Authentication .. 17

3.1.1 Prototype Architecture ... 17

3.1.2 Required Security Features ... 19

3.1.3 Integration Timeline ... 20

3.2 UC 2 - Firmware Updates of IoT Devices .. 21

3.2.1 Prototype Architecture ... 21

3.2.2 Required Security Features ... 22

3.2.3 Integration Timeline ... 22

3.3 UC 3 – Commissioning and Decommissioning of IoT Devices... 23

3.3.1 Prototype Architecture ... 23

3.3.2 Required Security Features ... 24

3.3.3 Integration Timeline ... 24

3.4 UC 4 - Remote Attestation for Identification and Integrity Validation of Agricultural UAVs 25

3.4.1 Prototype Architecture ... 25

3.4.2 Required Security Features ... 27

3.4.3 Integration Timeline ... 27

3.5 UC 5 - Intellectual Property Protection for Secure Multi-Tenancy on FPGA............................... 28

3.5.1 Prototype Architecture ... 28

3.5.2 Required Security Features ... 30

3.5.3 Integration Timeline ... 31

4 Conclusions .. 32

References ... 33

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 4 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1: Progress overview of CROSSCON Stack components .. 10
Table 2: Progress overview of CROSSCON Stack trusted services ... 13
Table 3: Integration timeline for UC 1 .. 20
Table 4: Integration timeline for UC 2 .. 22
Table 5: Integration timeline for UC 3 .. 24
Table 6: Integration timeline for UC 4 .. 27
Table 7: Integration timeline for UC 5 .. 31

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 5 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1: Detailed CROSSCON Stack architecture[3] ... 9
Figure 2: MFA implementation prototype for low-end to high-end device authentication................... 17
Figure 3: MFA implementation prototype for mutual authentication between two high-end devices . 18
Figure 4: Secure firmware update implementation prototype ... 21
Figure 5: Secure (de)commission of IoT devices implementation prototype ... 23
Figure 6: UC 4 prototype architecture & integration with CROSSCON Stack .. 26
Figure 7: CROSSCON FPGA-SoC architecture & components .. 28
Figure 8: vFPGA partitions .. 29
Figure 9: UC 5 integration with the CROSSCON Stack ... 30

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 6 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /
acronym

Description

API Application Programming Interface

D5.2 Deliverable number 2 belonging to WP5

EC European Commission

FCU Flight Control Unit

FPGA Field Programmable Gate Arrays

GNN Graph Neural Network

HW Hardware

IoT Internet of Things

IPC Inter-Process Communication

MFA Multi-Factor Authentication

MitM Man-in-the-Middle (cybersecurity attack)

ML Machine Learning

MPU Memory Protection Unit

MS5 5th Project Milestone

mTLS Mutual Transport Layer Security

OS Operating System

PG Perimeter Guard

PUF Physical Unclonable Function

RA Remote Attestation

REE Rich Execution Environment

SoC System on Chip

SPMP S-mode Physical Memory Protection

SRAM Static Random-Access Memory

SW Software

TA Trusted Application

TEE Trusted Execution Environment

UAV Unmanned Aerial Vehicle

UC Use Case

vFPGA Virtual Field Programmable Gate Arrays

VM Virtual Machine

WP Work Package

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 7 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

Deliverable D5.2 details the effort performed regarding the integration of the CROSSCON Stack. This
includes (1) an update of the development status of the CROSSCON Stack components and trusted
services, on which the integration, testing and validation activities of WP5 depend, as well as (2) a
detailed description of the use case implementation prototypes that will be integrated into the testbed
defined in T5.1, as preparation of the testing and validation activities of T5.3 and T5.4.

Where available, the development status of the CROSSCON Stack is illustrated using a description of a
component’s or trusted service’s technical functionality. In addition, for each of the Use Case
prototypes, a detailed description of their implementation architecture and their required
components, trusted services and interfaces of the CROSSCON stack will be provided. Furthermore,
the deliverable will provide an initial timeline of the integration of each of the use cases into the
testbed environment.

Deliverable D5.2 contributes to the accomplishment of milestone MS5 “First version of integrated
CROSSCON Stack and extension primitives, and first version of business model and market
proposition”.

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 8 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This document provides a demonstration of the current operational functionality of the CROSSCON
Stack. This is achieved by listing and demonstrating the development status of the Stack’s components
and trusted services required for the integration, testing and validation activities of WP5, as well as a
detailed overview of each of the use case implementation prototypes and their required security
features. In addition, based on the status of the CROSSCON Stack, a timeline of the integration of each
of the use case prototypes into the testbed is provided. This is crucial, as these use case prototypes
will be used as a first reference for the activities of T5.3 and T5.4, related to the security testing of the
use cases and CROSSCON Stack validation, respectively.

1.2 Relation to other project work

This document aims to summarize the overall status of the CROSSCON Stack. As such, it derives the
use case descriptions and operational scenarios, used to define the use case implementation
prototypes, from D1.4[1]. In addition, the implementation prototypes presented in this document will
be validated according to the validation criteria provided in D1.6.

The CROSSCON Stack components, trusted services and extension primitives presented in this
document are based on the definitions of the CROSSCON Stack as provided in D3.1[4] and D4.1[6],
respectively. In addition, some of the technical demonstration descriptions provided in this document
are based on the development advancements presented in D3.2[5] and D4.2[7].

The outputs of this document are necessary inputs for the security testing and validation of the use
case prototypes, as defined in D5.3 & D5.4.

1.3 Structure of the document

This document is structured in 3 major chapters. After this introductory chapter, Chapter 2 will provide
an overview of the development progress of the CROSSCON Stack, detailing the status of each of its
components and trusted services, as well as providing a demonstration of their functionality where
available. Afterwards, Chapter 3 will provide a detailed overview of the use case integration
prototypes, including their required security features, and an associated integration plan, split into
sections for each of the use cases. Lastly, Chapter 4 will summarize the key conclusions of the work
presented in this document.

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 9 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

2 CROSSCON Stack Development Progress

This chapter provides an overview of the current development status of the CROSSCON Stack. In
section 2.1, we present the status of the core components needed to realize the different
instantiations of the CROSSCON, while in section 2.2, we describe the status of the high-level security
function provided by the trusted services.

Figure 1, taken directly from D2.1[3], recalls the detailed architecture of the CROSSCON stack and its
components.

Figure 1: Detailed CROSSCON Stack architecture[3]

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 10 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

2.1 Status of CROSSCON Stack Components

Table 1 provides an overview of each of the CROSSCON Stack components’ development progress, including a description of the component, its current
integrability into the use case setups and a demonstration of its current technical capabilities, where available. For a more detailed description regarding each
of the components, please refer to sections 3.2, 3.4 and 3.5 of D3.1[4]. For an overview of the code used for the technical demonstrations, please refer to
D3.2[5] and D4.2[7].

Table 1: Progress overview of CROSSCON Stack components

Component Description Current Integration Status Technical Demonstration

CROSSCON
Hypervisor

The CROSSCON Hypervisor is a static partitioning
Hypervisor that aims to provide strong isolation and
real-time guarantees. It is based on the Bao[8]
hypervisor, but implements additional features
such as (1) dynamic VM creation & management, (2)
per-VM TEE service support and (3) multiple Virtual
Machine Manager (VMM) support.

Although the per-VM TEE service support has
been integrated and tested, the other two
features are still under development.

In addition, the CROSSCON Hypervisor is
currently only compatible with QEMU[9], an
open-source emulator used to virtualize
hardware platforms. While QEMU allows for
the testing of the Hypervisor and its
components prior to integration, work is
currently being performed to ensure
compatibility with several of the use case
hardware platforms required for integration.

Using the QEMU platform, the
CROSSCON Hypervisor is able to
demonstrate the ability to provide
per-VM TEE services, isolating the
TEE by running multiple TEE VMs
instead of a single TEE instance in the
normal world.

CROSSCON
bare metal

TEE

In order to still provide security for low-end systems
that are not compatible with the aforementioned
CROSSCON Hypervisor, CROSSCON proposes a
software-based bare‐metal TEE, to allow bare‐
metal devices to interact securely with the rest of
the CROSSCON Stack. The TEE will ensure the basic
security primitives such as memory isolation,
privilege separation and cross-domain
communication.

The bare-metal TEE has been integrated and
validated on both non-MPU and MPU devices.

Although both solutions provide a similar set
of security guarantees to deployed
applications, they do so using a slightly
different isolation mechanism.

Two prototypes of the bare-metal
TEE are currently available: one
where the MPU version is
implemented on an ARMv7-M
architecture and another where the
non-MPU version is deployed on a
MSP430 architecture, both
illustrating the required basic security
primitives.

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 11 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Component Description Current Integration Status Technical Demonstration

Two distinct versions of the bare-metal TEE are
being developed, one for bare-metal devices that
do not have a Memory Protection Unit (MPU), and
one for devices that do.

CROSSCON
TEE Toolchain

In order to manage the development and
implementation of TEEs and TAs on the CROSSCON
Stack, a toolchain is being developed that aims to
support these activities.

More specifically, the toolchain will be used to
perform two critical tasks:

● Secure IoT firmware updates: Based on the
IETF proposed standard as detailed in RFC
9019 (SUIT), it allows for a secure
mechanism to perform firmware updates
on IoT devices[12].

● Secure cross-compilation of TAs for
different TEEs: The toolchain will include a
secure compiler, used to guarantee the
memory safety of the TAs deployed on the
TEEs within the CROSSCON Stack.

The advancements of the TEE Toolchain can
be grouped into three categories:

Secure Update: The design for the secure
firmware update feature is done, and
the development for a first
implementation is still ongoing. More
information regarding this secure
update mechanism can be found in
D5.1

Integration into DevSecOps: The
toolchain will be integrated into the
DevSecOps pipeline that will be used
for the integration of the TAs onto the
CROSSCON Hypervisor within the
testbed environment of T5.1. This
integration is currently still ongoing.

Secure TA cross-compilation: The
definition of a secure compiler, which
takes code written from a simplified
version of C to a memory safe version
of the same code, has been
performed. The implementation of
this compiler, as well as the extension

Not available

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 12 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Component Description Current Integration Status Technical Demonstration

to lower programming languages, is
currently ongoing.

CROSSCON
SoC

CROSSCON SoC1 is a system-on-chip (SoC) design,
developed as part of the CROSSCON project, that
provides a secure RISC-V execution environment for
mixed-criticality IoT devices that require strong
security guarantees, flexibility, small code size and
low power consumption. The CROSSCON SoC
guarantees strong software isolation with the ability
to share hardware modules connected to the SoC
interconnect between TEEs without compromising
isolation guarantees.

A first implementation of the CROSSCON SoC
has been developed, designed around the
BA51-H core, which also integrates an
implementation of unified (2-stage) S-mode
Physical Memory Protection (SPMP) RISC-V
extension.

In addition, although a basic deployment is
already available, work is still being
performed to fully port the CROSSCON
Hypervisor on top of the BA51-H CROSSCON
SoC, in order to provide a full secure Stack
implementation.

The current implementation of the
CROSSCON SoC has successfully been
integrated with the BA51-H core, and
provides a Perimeter guard
demonstrator that allows one to
share the SRAM module between
isolated domains / VMs.

CROSSCON
Perimeter

Guard

A Perimeter Guard (PG) module is a hardware (HW)
module that can be used to share HW modules
between isolated domains, without compromising
the isolation itself. PG achieves this by (1)
controlling which SoC interconnect master /
application can access the protected HW module
and by (2) managing the HW module’s state during
domain switching (i.e. when the HW access get
handed over from one application to another), to
ensure no unwanted information flows occur.

A prototype implementation, which supports
a lock-release with time-sharing operation
mode, is available as part of the current
implementation of the CROSSCON SoC.

The development of additional modes of
operation and arbitration is currently
ongoing, and additional tests are being
performed to extend the range of HW
modules the PG can be applied to.

The current implementation of the
PG module has successfully been
integrated into the CROSSCON SoC,
and can be used to limit access to the
Static Random-Access Memory
(SRAM) HW module.

1 Description of CROSSCON SoC (chapter 2.2 of D4.2[7])

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 13 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

2.2 Status of CROSSCON Stack Trusted Services

Table 2 provides an overview of each of the CROSSCON Stack trusted services’ development progress, including a description of the service, its current
integrability into the use case setups and a demonstration of its current technical capabilities, where available. For a more detailed description regarding each
of the trusted services, please refer to section 3.3 of D3.1[4]. For an overview of the code used for the technical demonstrations, please refer to D3.2[5] and
D4.2[7].

Table 2: Progress overview of CROSSCON Stack trusted services

Trusted Service Description Current Integration Status Technical Demonstration

PUF-based
authentication

CROSSCON aims to innovate and integrate a
secure, efficient, lightweight and scalable
PUF-based authentication scheme,
facilitating resource-constraint embedded
devices to authenticate themselves between
each other, based on their inherent
hardware variations. During the project,
three main implementation methods have
been identified:

ZK-PUF: PUF-based authentication via
zero‐knowledge proofs,

PAVOC: PUF‐based authentication via
one‐way chains, and

PAWOS: PUF‐based authentication via
one‐time signatures.

All three of the proposed PUF-based
authentication schemes have been
implemented and tested on the NXP
LPC55S6x hardware board, as part of the
integration efforts for UC1. This
implementation shows the compatibility of
the trusted service with a virtualization-less
deployment of the CROSSCON Stack.

We are currently working on integrating the
PUF-based authentication mechanisms into
the CROSSCON Stack as a Trusted
Application (TA)

The three implementations on the
LPC55S6x hardware board are able to
demonstrate both of the operational
phases of PUF-based authentications

Enrollment: The systems correctly
generated the public data from
the PUF responses of the IoT
device.

Authentication: The verification
device is able to correctly verify
the authenticity of the IoT
device using its PUF responses
and the public data.

Context-based
authentication

As an additional authentication method, a
context-based authentication scheme is
being developed, which utilizes the Wi-Fi
landscape around a device to provide it with

A first implementation of the context-based
authentication has been implemented on
the RPi 4B board, which was able to collect
samples of the metadata of the Wi-Fi

Not available

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 14 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

a unique fingerprint. This fingerprint can be
used to authenticate the device to an
authoritative party, based on Siamese
networking and machine learning to validate
the similarity between a submitted and
enrolled fingerprint of the networking
landscape of the device.

landscape required for fingerprint
generation. Tests are currently ongoing to
expand its compatibility with other
hardware platforms.

In addition, first experiments with the
Siamese networking have been performed,
but further testing is required before it can
be integrated and validated as a trusted
service.

Secure FPGA
provisioning

The secure FPGA provisioning service of the
CROSSCON Stack will allow its clients to
deploy and operate remote shared FPGA
hardware platforms, while at the same time
ensuring (1) the confidentiality of the
proprietary FPGA workloads and designs,
and (2) protection against malicious
workloads from other users and/or malicious
logic insertions into the design itself.

It achieves this by provided two main sub-
services:

● FPGA Configuration service: Which
is responsible for securely deploying
and configuring a user’s FPGA design
onto a remote FPGA hardware
module.

● FPGA Bitstream Scanning service:
Which is responsible for ensuring
the user’s designs are free from

Although the secure FPGA provisioning
service is still in development, an important
step toward has been made regarding the
design and implementation of the FPGA
shell in the FPGA fabric. This shell will be
responsible for configuring the rest of the
setup at runtime.

The current prototype of the secure
FPGA provisioning service is able to
reconfigure two virtual FPGAs at
runtime with different accelerators
through the internal configuration port.

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 15 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

malicious circuits before being
deployed on the FPGA device.

Behavioral‐based
network anomaly

detection

A network anomaly detection service is
being developed, which will monitor the
networking activities of an embedded
device, and detect any deviations from its
regular behavior. These deviations include,
but are not limited to, suspicious port
numbers being exposed by the device, or
suspicious communication and/or protocols
being used with other devices or IP
addresses.

The behavioral-based network anomaly
detection service implementation of the
CROSSCON Stack is currently still under
development. Once the service is ready, it
will be integrated into the CROSSCON Stack
as a Trusted Application (TA).

Not available

Control flow
integrity

CROSSCON aims to extend protection
against control flow attacks, i.e. attacks
aimed at diverting the sequence of executed
instructions of an application, to IoT devices
that either lack or are not compatible with
existing hardware-specific solutions.

Two control flow integrity service
implementations, protecting either the
backwards edge, ensuring that each

function returns to the point in the code
where it was called, and/or the forwards
edge of the control flow, ensuring the
destination address of the execution is part
of a set of allowed destinations, are
developed:

Flashadow: backwards edge control
flow protection for the CROSSCON

A first implementation of both the
Flashadow and uIPS control flow
mechanisms have been integrated onto the
CROSSCON bare metal TEE for non-MPU
and MPU hardware modules, respectively.
More testing is currently ongoing to further
validate these implementations.

The current implementation for both
MPU and non-MPU devices are able to
demonstrate the ability to protect the
forward and backward edges (where
applicable) of the control flow, detecting
unsafe deviations from the original
sequence of operations and halting the
execution in such cases.

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 16 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

non-MPU bare metal TEE (designed
for Class 0 devices, as defined in
D1.5[2])

uIPS: backwards and forwards edge
control flow protection for the
CROSSCON MPU bare metal TEE
(designed for Class 1 devices, as
defined in D1.5[2])

Remote attestation

Remote attestation is an existing security
mechanism that allows a device to verify the
integrity and authenticity of another remote
device, ensuring it has not been
compromised or tampered with. CROSSCON
aims to enhance the capabilities of regular
remote attestation by providing a service
that allows users to easily configure and call
a remote attestation of one of the VMs
running upon its Stack.

The remote attestation implementation of
the CROSSCON Stack is currently still under
development. Once the service is ready, it
will be integrated into the CROSSCON Stack
as a Trusted Application (TA).

Not available

ML-based control
flow attestation

This service allows the user to utilize remote
attestation to verify the integrity of the
control flow of a vulnerable and/or security‐
relevant application, using Unsupervised
Graph Neural Networks (GNNs) to detect any
deviations from regular operational
sequences.

The implementation of the ML-based
runtime attestation of the CROSSCON Stack
is currently still under development. Once
the service is ready, it will be integrated into
the CROSSCON SoC as a peripheral.

Not available

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 17 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

3 Use Case Integration Prototypes

Within Chapter 3, a detailed description of each of the use case implementation prototypes will be
provided, split into sections for each use case. In addition to the architecture of the use case integration
prototypes, this chapter will highlight the components and trusted services each of the use cases will
leverage for increased security, as well as a first integration timeline.

It is important to note that the prototype architectures and integration timelines are subject to
changes, depending on the input and development timeline of the CROSSCON Stack, as well as its
components and services.

3.1 UC 1 - Device Multi-Factor Authentication

3.1.1 Prototype Architecture

The main goal of UC 1 is to provide a Multi-Factor Authentication (MFA) implementation for
lightweight and resource-constraint IoT devices, in order to protect their users from Man-in-the-
Middle (MitM) attacks, amongst others. It achieves this by implementing a basic first authentication
factor based on a mutual Transport Layer Security (mTLS) TA implementation. For the secondary
authentication, the UC will leverage either the PUF-based or Context-based authentication schemes
developed as part of the trusted services of the CROSSCON Stack, depending on their availability on
the underlying hardware (see Table 1 of D3.1[4] for an overview of the features of each of the
hardware platforms considered for CROSSCON).

More specifically, UC 1 aims to provide a MFA implementation for two distinct operational scenarios:

3.1.1.1 Scenario 1: One-way authentication between a low-end and a high-end device

Within the first operational scenario, UC 1 proposes the following implementation to provide a one-
way authentication mechanism between the resource-constrained IoT devices and gateways:

Figure 2: MFA implementation prototype for low-end to high-end device authentication

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 18 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Utilizing the architecture as defined in Figure 2, the following workflow will be implemented:

0. The constrained IoT device, based on a NXP LPC55S6x, enrolls its PUF responses to a public
database, as described in Section 3.3.1 of D3.1[4], prior to its required authentication.

1. The constrained IoT device sends a mTLS request to the gateway, itself based on a Raspberry
Pi 4B.

2. Once the gateway receives the request from the constrained device, it verifies the provided
certificate.

a. If the certificate is valid, a secure encrypted channel is established between the
constrained device and the gateway. The gateway then sends an authentication
response to the constrained device, prompting for a second authentication factor.

b. If the certificate provided by the constrained device is invalid, the gateway sends a
negative authentication response and does not prompt for the second authentication
factor.

3. In case of a successful first authentication, the constrained IoT generates a secondary
authentication using its PUF-based MFA implementation, and forwards this to the gateway.

4. The gateway verifies the received PUF-based authentication using the aforementioned public
data.

a. If the second factor authentication fails, the gateway sends a negative authentication
response back to the IoT device.

b. If the second factor is valid, the gateway sends a positive authentication response.

3.1.1.2 Scenario 2: Mutual authentication between two high-end devices

Where the first scenario focuses on the one-way authentication of a low-end to a high-end device, the
second scenario explores the possibility to provide a more complex, mutual authentication between
two high-end devices. The proposed implementation architecture can be found in Figure 3:

Figure 3: MFA implementation prototype for mutual authentication between two high-end devices

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 19 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

As the high-end gateway devices are more powerful and have extended capabilities compared to the
low-end devices of the first scenario, the MFA will be based on context-based, rather than PUF-based
authentication, as described in the following workflow:

0. Both Gateway A and Gateway B, each based on a Raspberry Pi 4B hardware module, have
enrolled their Wi-Fi landscape fingerprints with each other, in order to be able to validate each
other’s Context-based MFA.

1. Gateway A sends a mTLS request to Gateway B.

2. Once Gateway B receives the authentication request, it verifies the provided certificate.

a. If the certificate is valid, a secure encrypted channel is established between the two
gateways. Gateway B then sends an authentication response to Gateway A, prompting
for a second authentication factor.

b. If the certificate provided by Gateway A is invalid, Gateway B sends a negative
authentication response and does not prompt for the second authentication factor.

3. In case of a successful first authentication, the Gateway A generates a secondary
authentication using its Context-based MFA implementation, and forwards this to Gateway B.

4. Gateway B verifies the Context-based authentication using the Siamese network
implementation of the MFA TA.

a. If the second factor is invalid, Gateway B sends a negative authentication response.

b. If the second factor is valid, the Gateway B sends a positive authentication response,
and provides its own secondary Context-based authentication factor to Gateway A.

5. Gateway A verifies the received Context-based authentication from Gateway B using its own
Siamese network.

a. If the second factor is invalid, Gateway A sends a negative authentication response.

b. If the second factor is valid, Gateway A returns a positive authentication response.

3.1.2 Required Security Features

The integration and operation of the two architectures described before will leverage the following
security features, obtained from the components and trusted services of the CROSSCON Stack:

• CROSSCON Hypervisor support on hardware platforms: The implementations of both the first and
second operational scenario of UC 1 are designed to operate using the CROSSCON Hypervisor on
top of either a NXP LPC55S6x or Raspberry Pi 4B hardware platform. However, as described in
Section 2.1, the CROSSCON Hypervisor is currently only compatible with QEMU, and efforts to
ensure its compatibility with the required hardware platforms are ongoing.

• PUF-Based Authentication Prover API for Low-End devices: An API will have to be developed for
the PUF-based authentication implementation on low-end devices, such that they can generate
PUF responses whenever a MFA is required.

• PUF-Based Authentication Verifier API for High-End devices: An API will have to be developed for
the PUF-based authentication implementation on high-end devices, such that they can validate
the PUF-based authentication of low-end devices, when requested.

• Context-Based Authentication Prover & Verifier API for High-End devices: An API will have to be
developed for the Context-based authentication implementation on high-end devices, such that
they can both (1) generate their Wi-Fi landscape fingerprint, and (2) validate the Wi-Fi landscape
fingerprint of another high-end device, when requested.

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 20 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

3.1.3 Integration Timeline

Considering the proposed implementation architectures and operational scenarios, as well as the
ongoing development of the CROSSCON Stack, the following integration timeline is predicted for the
use case prototype:

Table 3: Integration timeline for UC 1

Integration Activity
2024 2025

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10

Integration of the CROSSCON
Stack on Raspberry Pi 4B

Integration of the CROSSCON
authentication implementations

Integration of the MFA
application

Testing and validation activities

Preparation of final
demonstrator

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 21 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

3.2 UC 2 - Firmware Updates of IoT Devices

3.2.1 Prototype Architecture

The integration prototype architecture for the UC2, focussing on a secure Over-the-Air (OTA) firmware
update implementation lead by BIOT, is the following:

Figure 4: Secure firmware update implementation prototype

As depicted in Figure 4, Barbara Secure OS will be deployed inside a VM on top of the CROSSCON
Hypervisor, operating on a Raspberry Pi 4B hardware platform. Within the Barbara VM, the UC2
operational application (UC2 APP) will be deployed, which will be responsible for performing the OTA
firmware updates. It leverages an external update server2 to provide the required materials to execute
the OTA updating operations.

The UC2 application will utilize a specialized Trusted Application, called UC2-TA, responsible for
validating the signature of the downloaded firmware file, using the TEE client API[10]. This TA is
deployed on OP-TEE, a TEE instance operating on top of the CROSSCON Hypervisor. Afterwards, the
UC2-TA application will utilize the TEE internal Core API[11], in order to perform its critical
cryptographic functions.

The operational workflow of UC 2 will be the following:

0. An Operating System update image will be generated and stored in the dedicated update
server.

1. The UC2 OTA will ask the CROSSCON API for a unique ID. This ID will be stored on the device
using a secure storage area, provided by the OP-TEE implementation operating on top of the
CROSSCON Hypervisor.

2. The CROSSCON Stack will be used to set up the secure communication channel between the
IoT device and the update server, and the OS update image will be downloaded as an
encrypted binary file.

3. The UC2-TA application will verify the signature of the encrypted binary file, using the TEE
cryptographic operations.

4. If the signature is valid, the UC2-TA application will decrypt the update image file using the TEE
cryptography operations provided by the TEE API.

2 This server will be deployed and operated independently of the aforementioned implementation prototype, not requiring
integration with the CROSSCON Stack, and has therefore been omitted from the detailed architecture of Figure 4.

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 22 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

3.2.2 Required Security Features

The integration and operation of the two architectures described before will leverage the following
security features, obtained from the components and trusted services of the CROSSCON Stack:

• CROSSCON Hypervisor support on RPI4: The architecture of UC 2 is designed to operate using the
CROSSCON Hypervisor on top of a Raspberry Pi 4B hardware platform. However, as described in
Section 2.1, the CROSSCON Hypervisor is currently only compatible with QEMU, and efforts to
ensure its compatibility with the Raspberry Pi 4B hardware platform are ongoing.

• CROSSCON TEE implementation: The UC2-TA application requires to be deployed on a OP-TEE
implementation on top of the CROSSCON Hypervisor, as the TA will leverage the TEE
implementation to (1) provide the secure storage capabilities, (2) allow for the generation of a
unique identifier and (3) perform the cryptographic operations required for the use case.

• Unique identifier (ID) provisioning: The OTA firmware update application requires a unique
device ID to be provisioned by the CROSSCON Stack. The implementation of this service is not
considered as a trusted service, but will instead leverage the secure storage capabilities of the
CROSSCON TEE implementation to generate and store the unique ID.

• Secure storage capability: The CROSSCON Stack will provide the ability to allocate secure storage
to store sensitive data (e.g. cryptographic keys, unique ID, etc.) only accessible by allowed
applications.

• Secure Communication Channel: To ensure the authenticity, integrity and confidentiality of the
communication between the IoT device and the firmware update server, a method to establish a
secure communication channel will have to be available.

3.2.3 Integration Timeline

At first, the integration of the prototype into the testbed will be performed, which will serve as a first
evaluation of the CROSSCON Stack, and provide feedback to the developers of WP2, 3 and 4. The
integration schedule of this first implementation is presented in Table 4, and has been divided in three
integration phases:

1. Development of the emulated environment setup, where we can begin creating and
running the Hypervisor, the TEE and Barbara OS on top of CROSSCON Hypervisor.

2. Development of UC2-TA, and its integration within the CROSSCON TEE environment

3. Development of the UC2 OTA update application, its integration within the Barbara OS VM
and the establishment of the communication between the UC2 OTA update application
and the UC2-TA.

After the integration, a continuous testing and integration framework will be implemented, in order
to continue validating the advancements made, and to provide feedback to the development of the
CROSCONN Stack.

Table 4: Integration timeline for UC 2

Integration Activity
2024 2025

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10

Development of the emulated
environment setup

Development of UC2-TA

Development of the UC2 OTA
update application

Continuous Testing and
validation activities

Preparation of final
demonstrator

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 23 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

3.3 UC 3 – Commissioning and Decommissioning of IoT Devices

3.3.1 Prototype Architecture

The integration prototype architecture for the UC 3, focussing on a secure framework for
commissioning and decommissioning of IoT devices lead by BIOT, is the following:

Figure 5: Secure (de)commission of IoT devices implementation prototype

As depicted in Figure 5, the implementation of UC 3 follows almost exactly the same architecture as
that of UC 2: A Barbara Secure OS will be deployed inside a VM on top of the CROSSCON Hypervisor,
operating on a Raspberry Pi 4B hardware platform. Within the Barbara VM, the UC 3 operational
application (UC3 APP) will be deployed, which will be responsible for performing the
(de)commissioning operations of the IoT device. It leverages an external provisioning server3 to
provide the required materials to execute these (de)commissioning operations.

The UC3 application will utilize a specialized Trusted Application, called UC3-TA, responsible for
executing the required security-related operations, using the TEE client API[10]. This TA is deployed on
OP-TEE, a TEE instance operating on top of the CROSSCON Hypervisor. Afterwards, the UC3-TA
application will utilize the TEE internal Core API[11], in order to perform its critical cryptographic
functions.

The operational scenario of UC 3 will be the following:

0. Upon first boot, the UC3-TA application will generate a unique ID and store it using a secure
storage area provided by the OP-TEE implementation operating on top of the CROSSCON
Hypervisor. It will also generate a generic certificate and store it in the same secure storage.

1. Next, the UC3 application will login to the dedicated provisioning server using the
aforementioned generic certificate and unique ID, provided by the UC3-TA.

2. The provisioning server verifies the credentials provided by the IoT device, and upon successful
authentication, sends an official production certificate back to the IoT device. This certificate
is then stored in the aforementioned secure storage area, replacing the generic certificate
used during the enrollment process.

3. After enrollment, the IoT device can be operated, utilizing the production certificate from step
3 to officially authenticate itself to third-party applications if required.

3 This server will be deployed and operated independently of the aforementioned implementation prototype, not requiring
integration with the CROSSCON Stack, and has therefore been omitted from the detailed architecture of Figure 5.

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 24 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

3.3.2 Required Security Features

The integration and operation of the aforementioned architecture depend on the advancement of the
following components and trusted services of the CROSSCON Stack:

• CROSSCON Hypervisor support on RPI4: The architecture of UC 3 is designed to operate using the
CROSSCON Hypervisor on top of a Raspberry Pi 4B hardware platform. However, as described in
Section 2.1, the CROSSCON Hypervisor is currently only compatible with QEMU, and efforts to
ensure its compatibility with the Raspberry Pi 4B hardware platform are ongoing.

• CROSSCON TEE implementation: The UC3-TA application requires to be deployed on a OP-TEE
implementation on top of the CROSSCON Hypervisor, as the TA will leverage the TEE
implementation to (1) provide the secure storage capabilities, (2) allow for the generation of a
unique identifier and (3) perform the cryptographic operations required for the use case.

• Unique identifier (ID) provisioning: The (de)commissioning application requires a unique device
ID to be provisioned by the CROSSCON Stack. The implementation of this service is not considered
as a trusted service, but will instead leverage the secure storage capabilities of the CROSSCON TEE
implementation to generate and store the unique ID.

• Secure storage capability: The CROSSCON Stack will provide the ability to allocate secure storage
to store sensitive data (e.g. cryptographic keys, unique ID, etc.) only accessible by allowed
applications.

• Secure Communication Channel: To ensure the authenticity, integrity and confidentiality of the
communication between the IoT device and the provisioning server, a method to establish a secure
communication channel will have to be available.

3.3.3 Integration Timeline

The integration schedule of this first implementation is presented in Table 5, and has been divided in
three integration phases, similar to the one introduced for UC 2:

1. Development of the emulated environment setup, where we can begin creating and running
the Hypervisor, the TEE and Barbara OS on top of CROSSCON Hypervisor (which follows the
same timeline as the UC2 integration timeline).

2. Development of UC3-TA, and its integration within the CROSSCON TEE environment

3. Development of the UC3 OTA update application, its integration within the Barbara OS VM and
the establishment of the communication between the UC2 OTA update application and the
U2-TA.

After the integration, a continuous testing and integration framework will be implemented, in order
to continue validating the advancements made, and to provide feedback to the development of the
CROSCONN Stack.

Table 5: Integration timeline for UC 3

Integration Activity
2024 2025

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10

Development of the emulated
environment setup

Development of UC3-TA

Development of the UC3
(de)commissioning application

Continuous Testing and
validation activities

Preparation of final
demonstrator

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 25 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

3.4 UC 4 - Remote Attestation for Identification and Integrity Validation of
Agricultural UAVs

3.4.1 Prototype Architecture

Within UAVs, the Flight Control Unit (FCU), is responsible for the operations of the drone's movements,
executing either the commands received from the UAV pilot’s controller, or acting as an auto-pilot for
preloaded flight plans. In addition, it is often the sole entrance point for the UAV flight peripheral
sensor data (e.g. GPS, air speed, etc), used by the FCU to maintain flight, as well as the only
communication point to the flight controllers. Hence, it is a critical component for the operational
safety of the UAV, and therefore crucial to secure.

However, in almost all cases the FCU is either a separate hardware or software module that is not
developed or maintained by the UAV owner, and as such cannot be inherently trusted. In addition, the
FCU often operates alongside a business payload, which executes the commercial applications of the
agricultural UAV (e.g. spraying, monitoring, etc). As these commercial operations required input from
the drone’s flight peripherals, another main task of the FCU is to share any required data with the
business payload, meaning that any tampering performed on the FCU will have a direct impact on the
commercial implementations of the UAV.

For these reasons, UC 4 aims to ensure the operational safety and security of the UAV by ensuring the
FCU operates nominally. It achieves this by implementing the following operational scenario,
leveraging Remote Attestation (RA) as a means to validate the status of the FCU:

1. The business payload requests the sensor data from the FCU during operations, but before
utilizing its values for the business logic, it checks them against a list of critical values
preinstalled by the UAV owner (e.g. max legal airspeed, gps restrictions, etc).

a. If these values are within the specified critical range, the operations are nominal and
no further actions are taken.

b. However, if the values exceed the critical range, the business payload will trigger the
RA service to validate the integrity of the FCU implementation.

2. If the critical range is exceeded, the RA service will perform an attestation of the status of the
FCU and send the attestation report to a RA verifier, located on a centralized server, via a
secure communication channel. The RA verifier will check whether the FCU has been
compromised, and will report back to the RA service on the UAV regarding its conclusion.

a. If the attestation fails, i.e. the FCU has been compromised, an evasive action needs to
be taken to ensure the operational safety of the UAV. As the exact operations that
could be considered in this scenario depend on the architecture of the drone, its
components and/or the criticality of the mission, UC 4 does not impose any evasive
actions that need to be taken. Instead, it allows the UAV owner to pre-program a
system to execute an evasive action in case a failed attestation occurs.

b. If the attestation does pass, i.e. the FCU has not been compromised with, an additional
check is performed to locate the reason for the previously measured out-of-range
values of the sensor data.

3. If the RA service validates the integrity of the FCU, the business logic will request an additional
set of sensor data results.

a. If these additional sensor data points are also out of range, the FCU is instructed to
correct its operations to return to a safe state (e.g. reducing its flight velocity, lowering
its altitude, etc). Example scenarios where such unsafe conditions could occur include,
but are not limited to, dangerous manual flying from the UAV pilot, or an erroneous
UAV remote control.

b. If the new sensor data sample is showing data that is no longer out of range, the output
of the sensor in question is no longer trustworthy (e.g. it is being jammed or is
defective). Depending on the hardware capabilities of the UAV, evasive actions can be

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 26 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

taken, to ensure the faulty sensor data is not interfering with the operations of the
UAV. For example, if there are redundant alternatives to the corrupted sensor, the
FCU can be instructed to ignore its output completely. Once again, UC 4 does not
impose any evasive actions, but instead allows the UAV owner to pre-program a
system to execute an evasive action in line with their design and requirements.

4. Of course, an attacker could bypass the attestation of step 2 if it tampers with the FCU and
masks its efforts by altering the output data to the business peripheral, making it seem as if
the sensor values are within the critical range, even when they are not. To combat this, the
UAV owner will be able to schedule periodic attestations from within the business payload
application, which would trigger step 2 of the aforementioned plan and attest the status of
the FCU, even when no incorrect sensor data is detected.

In order to execute and validate the operational scenario described above, a stationary UAV-like setup
has been designed, implementing the TEE‐less environment with virtualization and trusted VMs
instantiation of the CROSSCON Stack, as defined in section 3.1.4 of D2.1[3].

An overview of the prototype architecture, based on a real-world UAV implementation, is provided in
the Figure 6:

Figure 6: UC 4 prototype architecture & integration with CROSSCON Stack

More specifically, three main applications can be identified operating on top of the CROSSCON
Hypervisor within the prototype architecture:

• Flight Control: Within the stationary UC4 prototype setup, the operational capabilities of the flight
control have been omitted, focussing solely on sensor data handling:

o A Sensor Data Generation module will be developed and deployed inside a dedicated
Flight Control VM, which will emulate the output of a range of flight peripherals. Note that
this emulated data generation module will be used to validate the initial implementation
of the UC4 prototype, with the possibility to replace it with real-world sensors in a later
stage of the project.

o Alongside the aforementioned Sensor Data Generation module, a Sensor Data Acquisition
module will be placed. Its operational functionality will be twofold: During nominal
operations, it will simply retrieve the sensor data from the Sensor Data Generation
module, and share it with the business payload VM, following the inter-process
communication (IPC) implementation of CROSSCON, as defined in D2.1[3]. However, in the

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 27 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

scenario where the RA service needs to be triggered, it will also be able to adjust the sensor
data before transmitting, in order to emulate a compromised FCU implementation.

• Business Payload: CYSEC’s trusted operating system (OS), called ARCA OS, will be implemented to
provide minimal protection and hardening of the Business Payload VM. Similar to the Flight Control
VM, no operational business peripheral functionalities will be integrated into the Business Payload
VM, focussing instead only on the verification of the sensor data obtained from the Flight Control
VM. To achieve this, a Sensor Data Validation module will be implemented, responsible for (1)
retrieving the sensor data from the Sensor Data Acquisition module via the IPC, (2) validation of
the retrieved sensor data against a list of predefined critical values and (3) trigger the RA service
through its API when the sensor data exceeds the aforementioned critical values.

• RA Service: Lastly, the RA service of the CROSSCON Stack will be implemented into the prototype,
hosted as a Trusted Application within a Trusted VM, as described in D2.1[3]. It will be responsible
for performing the attestation of the Flight Control VM and the secure communication with the
RA verifier. As the development of the RA service is still ongoing, the exact API with which the RA
service can be configured and operated will be defined at a later stage.

o The RA verifier, required by the RA service described above, will be deployed alongside
the prototype implementation depicted in Figure 6. However, as it will be operated
independently and does not require integration with the CROSSCON Stack, it has been
omitted from the detailed architecture.

3.4.2 Required Security Features

Before integration efforts for the UC 4 implementation prototype can be started, several components
and trusted services introduced in Chapter 2 will need to be finalized:

• CROSSCON Hypervisor support on RPi: The implementation of UC4 depends on the ability to
deploy and operate the CROSSCON Hypervisor on top of the Raspberry Pi 4B hardware platform.
However, as described in Section 2.1, the CROSSCON Hypervisor is currently only compatible with
QEMU, and efforts to ensure its compatibility with the required hardware platforms are ongoing.

• RA Service: The RA Trusted Application is central for the secure operation of the UC 4 prototype,
ensuring the integrity of the Flight Controller. However, as described in Section 2.1, the RA service
is currently still under development.

• Secure Communication Channel: To ensure the authenticity, integrity and confidentiality of the
attestation report while it is being transmitted between the RA service and verifier, a method to
establish a secure communication channel will have to be available within the RA service
implementation.

3.4.3 Integration Timeline

Considering the proposed implementation architectures and operational scenarios, as well as the
ongoing development of the CROSSCON Stack, the following integration timeline is predicted for the
use case prototype:

Table 6: Integration timeline for UC 4

Integration Activity
2024 2025

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10

Integration of the CROSSCON
Stack on Raspberry Pi 4B

Development of the Flight
Control & Business payload VMs

Integration of the Remote
Attestation TA

Testing and validation activities

Preparation of final
demonstrator

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 28 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

3.5 UC 5 - Intellectual Property Protection for Secure Multi-Tenancy on FPGA

3.5.1 Prototype Architecture

Field Programmable Gate Arrays (FPGAs) are versatile hardware platforms designed for customization.
They comprise several key components, including configurable logic blocks (CLBs), block random
access memory (RAM), and digital signal processing units (DSPs). These elements are interconnected
through a programmable routing network (network of routing blocks (R) as shown in Figure 7),
enabling the creation of any digital circuit configuration. The description of a digital circuit goes
through several steps including, synthesis and place & route to produce the final binary file, referred
to as the bitstream, that is to program the targeted FPGA.

FPGAs can be integrated with the processing system on a single chip, interconnected through on-chip
buses, creating what is known as an FPGA-SoC (System on Chip). Alternatively, FPGAs can function as
standalone peripherals, connected to the platform via external buses. This flexibility allows for diverse
application scenarios, enhancing both performance and system design options.

Figure 7: CROSSCON FPGA-SoC architecture & components

In UC5, our primary objective is to extend the trusted execution environment to FPGAs within a multi-
tenant deployment model while maximizing FPGA utilization. To achieve this, we aim to enable secure
sharing of FPGA resources among multiple users and applications, facilitating true multi-tenancy. This
involves supporting secure configuration and deployment of intellectual property (IP) hardware
designs on shared and virtualized FPGAs and enforcing access control to IP designs on the FPGA and
their data. By doing so, we ensure that FPGA resources are utilized efficiently, providing robust security
measures to protect each user’s data and IP, and maintaining the integrity and confidentiality of all
operations conducted on the FPGA platform.

In our prototype, we divide the physical FPGA into several virtual FPGAs, each equipped with its own
set of resources (CLBs, BRAMs, DSPs, etc.). These virtual FPGAs can be managed independently,
meaning they can be allocated, configured, and deallocated without affecting each other. This is made
possible by leveraging the dynamic reconfigurability feature of FPGAs, which allows us to partition the
FPGA into one static region and multiple reconfigurable regions (virtual FPGAs). This feature permits

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 29 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

the reconfiguration of any reconfigurable region at runtime, without impacting the other regions. Note
that the static region can only be configured at boot time, i.e., after a power cycle.

In UC5, we partition the FPGA into two virtual FPGAs and a static region, as illustrated in Figure 8. The
static region, referred to as the FPGA shell, abstracts the FPGA-specific details (such as I/O pins and
interfaces) for users by providing standard I/O interfaces. Additionally, it handles the runtime
configuration of the virtual FPGAs, ensuring efficient and secure management of the FPGA resources.

Figure 8: vFPGA partitions

To enforce isolation between the different regions on the FPGA, we utilize empty logic blocks to create
an isolation fence, ensuring that signals from different regions are not routed adjacent to each other,
thus preventing crosstalk-based attacks.

With the capability to create and manage different virtual FPGAs independently, we now focus on
enabling the secure configuration of IP hardware designs, e.g., accelerators, on these virtual FPGAs.
This involves implementing mechanisms for the decryption and verification of IP bitstreams before
they are partially configured on the FPGA. Each user or IP provider should be able to encrypt and sign
their IP bitstream with their own secret key. This secure configuration process involves encrypting and
authenticating each IP hardware design using the application or user's secret key, safeguarding the
integrity and confidentiality of the IP throughout its lifecycle.

Once the virtual FPGAs are successfully allocated and configured, strict access control measures must
be enforced to ensure that only the user or application requesting the acceleration can communicate
with and share data with the FPGA-based accelerator. This access control also extends to the FPGA
shell, which should be accessed only by the trusted application that manages and provides FPGA
services.

At system boot time, the FPGA shell and the isolation fence are configured on the FPGA, while the
virtual FPGAs remain blank. This initial setup ensures a secure and isolated environment for
subsequent operations.

In Figure 9, we illustrate our vision for integrating secure FPGA services into the CROSSCON Stack.
These FPGA services are provided through a dedicated trusted application (TAFPGA), ensuring robust
security and management of the FPGA resources within the system. In the following we briefly discuss
the functionality of TdAFPGA.

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 30 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Figure 9: UC 5 integration with the CROSSCON Stack

TAFPGA is responsible for the following activities:

1. Managing Virtual FPGAs: This involves the allocation and deallocation of virtual FPGAs to
requesting applications. When an application (App x) sends a request to TAFPGA, it checks for an
available virtual FPGA (e.g., vFPGA1). If available, TAFPGA informs App x of the allocation.
Deallocation can occur in two ways: either the virtual FPGA is allocated for a predefined time slot
and then blanked using a special bitstream, or TAFPGA notifies App x that the virtual FPGA will be
revoked shortly.

2. Session Key Exchange: TAFPGA and App x share a session key through a session key exchange using
public key cryptography (e.g., RSA). This session key is used to encrypt the bitstream or to encrypt
App x’s secret key, which in turn encrypts and authenticates the bitstream. The encrypted
bitstream is then shared with TAFPGA. TAFPGA provides a shared memory region for communicating
bitstreams. This memory region allows other applications to write their encrypted bitstreams,
authentication data, and tags, which TAFPGA can read.

3. Bitstream Decryption & Verification: Once TAFPGA receives the encrypted bitstream, it decrypts
and verifies the bitstream before writing it to a private memory region shared with the FPGA shell.
The FPGA shell then reads the bitstream and configures it on the intended virtual FPGA (vFPGA1).
For this step, we use AES-GCM mode with a 256-bit key size.

4. Access Control Rules: After successfully configuring the accelerator on the virtual FPGA, TAFPGA
provides access control enforcement to vFPGAs by only allowing requesting applications to
communicate to their accelerators on the vFPGAs. Enforcing fine-grained access control to
different FPGA resources, i.e. virtual FPGAs and the FPGA shell, can be also supported by the
CROSSCON SoC through the Perimeter guard (PG). In our prototype, based on the AMD Xilinx
ZCU102 board, we utilize Xilinx Peripheral Protection Units (XPPUs) and Xilinx Memory Protection
Units (XMPUs) to complement the protection provided by MMUs and IOMMUs.

Currently, steps 1 and 3 have been implemented, while steps 2 and 4, along with integration within
the CROSSCON Stack, are work in progress.

3.5.2 Required Security Features

The trusted FPGA services rely on the CROSSCON Stack and the underlying TEE technology to provide
isolation for the TAFPGA. More specifically, the implementation of UC 5 requires:

● CROSSCON Hypervisor support:

o The implementation of UC 5 depends on the ability to deploy and operate the CROSSCON
Hypervisor on top of the selected AMD Xilinx ZCU102 board. However, as described in
Section 2.1, the CROSSCON Hypervisor is currently only compatible with QEMU, and

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 31 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

efforts to ensure its compatibility with the different required hardware platforms are
ongoing.

o Service discovery mechanisms should be put in place for applications to locate TAFPGA and
communicate with it using its identifier.

o The CROSSCON Hypervisor should allow TAFPGA to configure isolation components, e.g.,
MMUs and IOMMUs, to control access to virtual FPGAs and their associated memory
regions.

● API implementation: The design of a clear and efficient API is crucial for facilitating

communication between applications and TAFPGA, including functions for requesting FPGA

resources, managing job submissions, and retrieving results.

3.5.3 Integration Timeline

Considering the proposed implementation architectures and operational scenarios, as well as the
ongoing development of the CROSSCON Stack, the following integration timeline is predicted for the
use case prototype:

Table 7: Integration timeline for UC 5

Integration Activity
2024 2025

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10

Finalization of missing
dependencies

Finalization of APIs

Integration with the CROSSCON
Stack

Testing and validation activities

Preparation of final
demonstrator

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 32 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

4 Conclusions

This document has provided an overview regarding the initial integration efforts of the CROSSCON
Stack, as preparation of the testing and validation activities of T5.3 and T5.4, respectively.

Chapter 2 detailed the development status of each of the CROSSCON Stack’s components and trusted
services. Although development of some of these core parts of the CROSSCON Stack is still ongoing,
most of the services required for the integration of the first use case prototypes were demonstrated
to be either ready for integration, or in the final stages of development. As such, we are confident that
the integration activities will advance as planned.

As part of the next steps of the integration activities, Chapter 3 provided a detailed overview of each
of the use case prototypes, including their implementation architectures, operational workflows,
required security features and predicted integration timeline.

Document name: D5.2 Integrated CROSSCON Security Stack - First Version Page: 33 of 33

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

References

[1] H. Koshutanski, D1.4 Use Cases Definition Final Version, 2023.

[2] A. García, D1.5 Requirements Elicitation Final Technical Specification, 2024

[3] M. Miettinen, S. Zeitouni, D2.1 CROSSCON Open Specification – Draft, 2023.

[4] S. Pinto, D3.1 CROSSCON Open Security Stack Documentation ‐ Draft, 2024.

[5] S. Pinto, D3.2 CROSSCON Open Security Stack – Initial Version, 2024.

[6] Ž. Putrle, S. Zeitouni, D4.1 CROSSCON Extensions to Domain Specific Hardware Architectures
Documentation – Draft, 2024.

[7] Ž. Putrle, D4.2 CROSSCON Extension Primitives to Domain Specific Hardware Architectures —
Initial Version, 2024.

[8] https://github.com/bao-project/bao-hypervisor

[9] https://www.qemu.org/

[10] TEE client API
https://optee.readthedocs.io/en/latest/architecture/globalplatform_api.html#tee-client-api

[11] TEE internal Core API
https://optee.readthedocs.io/en/latest/architecture/globalplatform_api.html#tee-internal-core-
api

[12] RFC 9019 https://datatracker.ietf.org/doc/html/rfc9019

https://github.com/bao-project/bao-hypervisor
https://www.qemu.org/
https://optee.readthedocs.io/en/latest/architecture/globalplatform_api.html#tee-client-api
https://optee.readthedocs.io/en/latest/architecture/globalplatform_api.html#tee-internal-core-api
https://optee.readthedocs.io/en/latest/architecture/globalplatform_api.html#tee-internal-core-api
https://datatracker.ietf.org/doc/html/rfc9019

