
Cross‐platform Open Security Stack for Connected Device

D3.1 CROSSCON Open Security Stack
Documentation ‐ Draft

Document Identification
Status Final Due Date 30/04/2024
Version 1.0 Submission Date 30/04/2024

Related WP WP3 Document Reference D3.1
Related D1.4, D1.5, D2.1 D3.2 Dissemination Level(*) PU
Deliverable(s)
Lead Participant UMINHO Lead Author Sandro Pinto (UMINHO)
Contributors UMINHO, UNITN,

UWU, TUD
Reviewers UNITN, UWU

Keywords
TEE Isolation and Abstraction, CROSSCON Hypervisor, CROSSCON New Trusted Services, CROSSCON TEE
Toolchain, CROSSCON Bare‐metal TEE.

This document is issued within the frame and for the purpose of the CROSSCON project. This project has received funding from the European
Union’s Horizon Europe Programme under Grant Agreement No.101070537. The opinions expressed and arguments employed herein do not
necessarily reflect the official views of the European Commission.
The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.
This document and its content are the property of the CROSSCON Consortium. The content of all or parts of this document can be used and
distributed provided that the CROSSCON project and the document are properly referenced.
Each CROSSCON Partner may use this document in conformity with the CROSSCON Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g. web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU‐R) EU RESTRICTED under the Commission Deci‐
sion No2015/444. (Classified EU‐C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU‐S) EU SECRET under the
Commission Decision No2015/444.

Ref. Ares(2024)3184908 - 30/04/2024

Document Information

List of contributors
Name Partner
Sandro Pinto UMINHO
David Cerdeira UMINHO
João Sousa UMINHO
Luís Cunha UMINHO
Bruno Crispo UNITN
Michele Grisafi UNITN
Marco Roveri UNITN
Alberto Tacchella UNITN
Tommaso Zoppi UNITN
Lukas Petzi UWU
Peter Ten UWU
Hristo Koshutanski ATOS
Shaza Zeitouni TUD

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 2 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Document history
Ver. Date Change editors Changes

0.1 08/01/2024
Sandro Pinto (UMINHO),

João Sousa (UMINHO), David
Cerdeira (UMINHO)

First draft ‐ Initial Contributions;

0.2 28/02/2024

Sandro Pinto (UMINHO),
João Sousa (UMINHO), David
Cerdeira (UMINHO), Pe‐
ter Ten (UWU), Lukas Petzi
(UWU), Akos Milánkovich
(SLAB), Bruno Crispo (UNITN),
Michele Grisafi (UNITN),
Alberto Tacchella (UNITN),
ommaso Zoppi (UNITN),
Shaza Zeitouni (TUD), Hristo
Koshutanski (ATOS)

Second draft ready consortium early
feedback;

0.3 09/04/2024

Sandro Pinto (UMINHO), João
Sousa (UMINHO), Luís Cunha
(UMINHO), David Cerdeira
(UMINHO), Peter Ten (UWU),
Lukas Petzi (UWU), Akos
Milánkovich (SLAB), Bruno
Crispo (UNITN), Michele
Grisafi (UNITN), Alberto
Tacchella (UNITN), ommaso
Zoppi (UNITN), Shaza Zeitouni
(TUD), Hristo Koshutanski
(ATOS)

Deliverable ready for review;

0.4 26/04/2024

Sandro Pinto (UMINHO),
João Sousa (UMINHO), David
Cerdeira (UMINHO), Luís
Cunha (UMINHO)

Document After Review of UWU and
UNITN;

0.9 29/04/2024 Juan Alonso (ATOS) QA Review;
1.0 30/04/2024 H. Koshutanski (ATOS) Final version submitted;

Quality Control
Role Who (Partner short name) Approval Date
Deliverable leader Sandro Pinto (UMINHO) 29/04/2024
Quality Manager Juan Alonso (ATOS) 30/04/2024
Project Coordinator H. Koshutanski (ATOS) 30/04/2024

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 3 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information.. 2
Table of Contents .. 4
List of Tables ... 5
List of Figures.. 6
List of Abbreviations.. 7
Executive Summary ... 10
1 Introduction .. 11

1.1 Purpose of the Document ... 11
1.2 Relation to Other Project Work... 11
1.3 Structure of the Document ... 11

2 Platform Selection ... 12
2.1 Platform Analysis and Selection ... 14

3 Research Results ... 17
3.1 TEE Isolation and Abstraction.. 17
3.1.1 TEEs and TEE Technologies .. 17
3.1.2 TEE Implementations... 21
3.1.3 TEE Vulnerabilities ... 23
3.1.4 TEE Isolation .. 27
3.1.5 TEE Abstraction.. 30
3.2 CROSSCON Hypervisor .. 32
3.2.1 Virtualization and Virtualization Technologies ... 32
3.2.2 Microarchitecture Isolation Techniques ... 38
3.2.3 Hypervisors Feature Analysis and Selection .. 39
3.2.4 Static Partitioning Hypervisor Analysis .. 42
3.2.5 CROSSCON Hypervisor Features and Design .. 44
3.3 New Trusted Applications ... 47
3.3.1 PUF‐based Authentication... 48
3.3.2 Context‐based Authentication... 54
3.3.3 Remote Attestation .. 56
3.3.4 FPGA Related Trusted Services .. 58
3.3.5 Behavioral‐Based Trusted Service .. 61
3.3.6 Control Flow Integrity Trusted Service.. 63
3.4 CROSSCON TEE Toolchain.. 64
3.4.1 Existing IoT Update Mechanisms and Standards .. 64
3.4.2 Requirements for Integration with DevSecOps Platforms ... 68
3.4.3 Literature Review on Secure Compilation and Trusted Application (TA) Cross‐Compiler 74
3.4.4 Design of CROSSCON Secure Update... 74
3.4.5 Implementation and Integration with DevSecOp .. 77
3.4.6 Secure Cross‐Compilation for TA ... 78
3.5 CROSSCON Bare‐Metal TEE ... 79
3.5.1 Review of Bare‐Metal Requirements and Platforms .. 79
3.5.2 State of the Art .. 80
3.5.3 Baremetal TEE .. 81

4 Conclusions .. 85
Bibliography.. 86

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 4 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1: Features of platforms selected for CROSSCON. .. 14
Table 2: Platform selection with the respective mapping to the class of the device, architecture,

partner, instantiation option and to the Use Case (UC)... 15
Table 3: Sources of reports: CVE (CVE databases), SP (scientific publications) and SB (security bul‐

letins). ... 24
Table 4: Number of disclosed CVEs per system from 2019 to 2024. ... 25
Table 5: List of CWE categorization... 26
Table 6: Mapping of each analysed CVE to the respective group of CWEs. .. 27

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 5 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1. General representation of TEE components and their interactions. .. 18
Figure 2. TEE models representation. ... 23
Figure 3. Overview of Trustzone's architecture decomposition on secure world.................................... 29
Figure 4. TEE decomposition in normal world. .. 30
Figure 5. Architectural overview of the assessed hypervisors: Jailhouse, Xen (Dom0‐less), Bao and

seL4 CAmkES VMM. .. 41
Figure 6. VM parent and VM child dynamic. ... 44
Figure 7. VM execution stack for CPU sharing... 45
Figure 8. CROSSCON Hypervisor dynamic VM support. ... 46
Figure 9. CROSSCON Hypervisor per‐VM TEE support. ... 47
Figure 10.Standard PUF‐based authentication protocol. .. 49
Figure 11.System Design Overview .. 51
Figure 12.vFPGAs interfacing options. ... 59
Figure 13.Refined CROSSCON Stack with T AFPGA. .. 59
Figure 14.Behavioral‐based trusted service workflow... 62
Figure 15.Difference between an unsecure application and an application using Flashadow. 63
Figure 16.The operations performed in the two Flashadow hooks. .. 64
Figure 17.The SUIT secure update architecture.. 67
Figure 18.The SUIT secure update architecture, with CROSSCON additions. ... 75
Figure 19.Workflow for update generation. ... 75
Figure 20.Workflow for update installation. ... 76
Figure 21.Secure cross‐compilation workflow. ... 79
Figure 22.High‐level comparison between the memory isolation provided by the two different

bare‐metal TEEs. ... 82
Figure 23.Memory isolation enforced between the three entities on a BareTEE‐MPU system. 83
Figure 24.Isolation enforced between the three entities on a BareTEE‐noMPU system......................... 84
Figure 25.Representation of the instrumentation/virtualisation technique of BareTEE‐noMPU. 84

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 6 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Abbreviations

Abbreviation /
acronym

Description

ABI Application Binary Interface
AES Advanced Encryption Standard
AIA Advanced Interrupt Architecture
API Application Programming Interface
APU Application Processing Unit
ASLR Address Space Layout Randomization
BOM Bill of Materials
CA Client Application
CCA Confidential Computing Architecture
CI/CD Continuous Integration / Continuous Development
CoVE Confidential VM Extension
CPU Central Processing Unit
CSI Channel State Information
CVE Common Vulnerabilities and Exposures
CWE Common Weakness Enumeration
DAST Dynamic Application Security Testing
DMA Direct Memory Access
DRM Digital rights management
DRTM Dynamic RTM
FOSE Firmware Object Signing and Encryption
FOTA Firmware OTA
FPGA Field‐Programmable Gate Array
GIC General Interrupt Controller
GPOS General Purpose OS
GPU Graphic Processing Unit
HAL Hardware Abstraction Layer
HBOM Hardware BOM
I/O Input/Output
IAST Interactive Application Security Testing
IDAU Implementation‐Defined Attribution Unit
IOMMU IO Memory Management Unit
IOMPU IO Memory Protection Unit
IOPMP IO Physical Memory Protection
IoT Internet of Things
IOVA IO Virtual Addresses
IP Intellectual Property
IPA Intermediate Physical Addresses
IPI Inter‐Processor Interrupt
ISA Instruction Set Architecture
JOSE JSON Object Signing and Encryption
MCS Mixed‐Criticality System
MCU Microcontroller Unit

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 7 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

ML Machine Learning
MMIO Memory‐Mapped I/O
MMU Memory Management Unit
MPU Memory Protection Unit
MSI Message‐Signaled Interrupt
MTE Memory Tagging Extension
MTT Memory Tracking Tables
OS Operating Systems
OTA Over‐the‐Air
OTP One‐Time‐Programmable
PLIC Platform Local Interrupt Controller
PMP Physical Memory Protection
PMU Performance Monitor Unit
PUF Physical Unclonable Function
RDC Resource Domain Controller
REE Rich Execution Environment
RFF Radio Frequency Fingerprinting
RFFI RFF Identification
RNG Random Number Generator
RSA Rivest‐Shamir‐Adleman
RTM Root‐of‐Trust Measurement
RTOS Real‐Time OS
RTU Real‐Time Processing Unit
SAST Static Application Security Testing
SAU Security Attribution Unit
SBOM Software BOM
SCA Software Composition Analysis
SCUBA Secure Code Update By Attestation
SEV Secure Encrypted Virtualization
SEV‐ES Secure Encrypted Virtualization‐Encrypted State
SEV‐SNP Secure Encrypted Virtualization‐Secure Nested Paging
SGX Software Guard Extensions
SIEM Security Information and Event Management
SMMU System Memory‐Management Unit
SoC System on Chip
SPDX Software Package Data eXchange
SPH Static Partitioning Hypervisor
sPMP supervisor Physical Memory Protection
SRTM Static RTM
SUIT Software Updates for Internet of Things
SWID Software Identification
TA Trusted Application
TCB Trusted Computing Base
TDX Trust Domain Extensions
TEE Trusted Execution Environment
TinyML Tiny Machine Learning
TPM Trusted Platform Module
TUF The Update Framework
UC Use Case

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 8 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

vFPGA virtual FPGA
VM Virtual Machine
VMM VMMonitor
Wi‐Fi Wireless Fidelity
WP Work Package

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 9 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

The Internet of Things (IoT) landscape is highly heterogeneous, consisting of devices with low‐power
Microcontroller Unit (MCU) with limited security capabilities, all the way to devices boasting advanced
Application Processing Unit (APU) with multiple cores leveraging reconfigurable hardware. Moreover,
a typical IoT stack encompasses various layers, including hardware, firmware, and Operating Systems
(OS), each layer contributing to the system's complexity and increasing the potential attack surface.
This heterogeneity introduces numerous challenges, including (i) the lack of interoperability and isola‐
tion across different Trusted Execution Environment (TEE) systems, (ii) providing the required dynam‐
icity and per‐Virtual Machine (VM) services without enlarging the Trusted Computing Base (TCB) and
lowering the isolation guarantees, (iii) the lack of novel trusted services, (iv) firmware updates and se‐
cure cross‐compilation, and (v) the of lack of security features on bare‐metal devices. The CROSSCON
Stack, as the core of the Work Package (WP) 3, aims to address these challenges by providing a highly
portable IoT security stack that can operate on various edge devices and multiple hardware platforms.
This work can be divided into five main areas: (i) TEE isolation and abstraction by decomposing trusted
services from trusted kernel, (ii) CROSSCON Hypervisor with dynamic VM and per‐VM TEE features, (iii)
new Trusted Services such as Physical Unclonable Function (PUF)‐based authentication, context‐based
authentication, (iv) CROSSCON TEE Toolchain, which manages firmware updates and a secure compi‐
lation process, and (v) CROSSCON Bare‐metal TEE which provides TEE security guarantees to resource
constrained devices. This document presents the initial results of our work based onWP2 specifications,
including initial analysis, design, and plan for future work.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 10 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the Document

This document selects target platforms for CROSSCON stack development, presents an initial version of
the CROSSCON open security stack, and outlines the research and development progress of its compo‐
nents. It includes a comprehensive literature review on TEE technologies and their primary vulnerabil‐
ities, proposing TEE isolation mechanisms to decompose trusted services from trusted kernels. More‐
over, it explores virtualization technologies, specifically static partitioning hypervisors, and their poten‐
tial to increase isolation and security assurances at both the architectural and microarchitectural levels.
To select the hypervisor to be used as the foundation for the CROSSCON Hypervisor, we compared the
most prominent open‐source static partitioning hypervisors. This document also emphasizes the signif‐
icance of creating innovative trusted services as complementary to existing ones, while describing the
proposed trusted services' functionality, architecture, and implementation. Furthermore, it examines
the current update mechanisms utilized in IoT and conducts a literature review on secure compilation
proposals, before establishing the CROSSCONToolchain. Finally, it discusses the existing solutions for im‐
plementing TEEs on low‐end devices and delineates the design of the proposed Baremetal TEEs.

1.2 Relation to Other Project Work

This document takes as direct input the initial version of the CROSSCON open specifications in deliver‐
able D2.1, and requirements elicitation final technical specification D1.5. Particularly relevant are the
draft specifications laid out in document D2.1 and the device classification and requirements established
in deliverable D1.5. Deliverable D3.2 is closely related to this document as it provides the source code
repositories where the current source code of the work done in WP3 can be found, along with docu‐
mentation for its use.

The outcomes presented in this document will serve as input for subsequent documents, notably for the
enhancement of the CROSSCON Stack specification in D2.3. This will involve incorporating new insights
into the system architecture and component interfaces. Furthermore, the components presented in this
document will be subject to validation tests which are specified in deliverable D1.6. Additionally, these
results will contribute to the development of the initial version of the integrated CROSSCON security
stack in D5.2. This will entail providing the foundational building blocks of the CROSSCON Stack toWP5,
which will integrate them into a functional prototype.

1.3 Structure of the Document

This document focuses on different aspects of the CROSSCON Open Security Stack. It begins with the
platform selection, Section 2, detailing the security capabilities of the selected platforms for CROSSCON
and how they map to each partner and Use Case (UC). Following this, the document presents the re‐
search and development results of the CROSSCON security stack components. Specifically, it addresses
TEE isolation and abstraction, Section 3.1, CROSSCON Hypervisor features and design, Section 3.2, novel
CROSSCON trusted services, Section 3.3, CROSSCON TEE Toolchain, Section 3.4, and the development
of CROSSCON Bare‐Metal TEE, Section 3.5. The document concludes by summarizing key findings in
Section 4.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 11 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2 Platform Selection

CROSSCON aims to develop a new, open, flexible, and highly portable IoT security stack that can operate
on various edge devices and multiple hardware platforms. The following section presents the method‐
ology used for selecting target platforms for CROSSCON development.

The platform selection uses several key outputs from previously submitted CROSSCON deliverables,
including the Device Classification from D1.5 and the CROSSCON instantiation options from D2.1. All
platform‐related information from these deliverables was considered in the platform selection pro‐
cess.

Summary of CROSSCON Device Classification (D1.5): To classify IoT devices in terms of security, deliv‐
erable D1.5 proposes a device classification process based on the provided security capabilities/services
and security guarantees.

Class 0 (NO SECURITY): Class 0 devices are the most resource‐constrained, usually low‐cost, and offer
ultra‐low‐power operation. Because of their limited resources, they are not adequate to perform critical
functions and do not provide any hardware security guarantee. Additionally, these devices rely entirely
on software‐based security, which makes them more vulnerable to attacks.

Class 1 (BASIC SECURITY):Class 1 devices are resource constrained, but feature basic security capabilities
(e.g., Memory Protection Unit (MPU)) and a small number of privilege levels (typically two). Despite
featuring a more secure stack than Class 0 devices, these devices are still vulnerable to several attacks
because of their reduced security capabilities.

Class 2 (STRONG SECURITY): Class 2 devices contain some integrated or discrete security hardware func‐
tions (e.g., secure storage, on‐time programmable memories) and additional privileged levels that en‐
able some form of isolated execution. Due to their capabilities, they can provide stronger security guar‐
antees than Class 1 devices.

Class 3 (EXTENDED SECURITY): Class 3 devices provide the most security capabilities and guarantees.
They typically include advanced security hardware components (e.g., RandomNumberGenerator (RNG),
PUF, HW‐based intrusion detection) and support for multiple privileged‐levels, including hypervisor and
TEE support.

Within these classes, it is useful to distinguish between the performance levels of the device. Here we
describe twomain performance classesMCU and APU. Nonetheless, our considerations extend across a
wide range of platforms, encompassing devices positioned at various points along this spectrum.

APU: An APU typically features a powerful Central Processing Unit (CPU) with multiple cores, targeting
general‐purpose tasks. They typically support General Purpose OS (GPOS), such as Linux, by featuring
memory virtualization hardware (e.g., MemoryManagement Unit (MMU)), and often include virtualiza‐
tion extensions to support the execution of a hypervisor.

MCU:MCUs commonly feature a low core count when compared to APUs. An MCU typically includes a
processing unit, memory and some peripherals on the same chip. They excel in meeting embedded ap‐
plications' real‐time and low‐power requirements and feature several integrated peripherals for diverse
functionalities. They may support real‐time OS, e.g., FreeRTOS, lacking memory virtualization hardware
capabilities required by feature‐rich OSes.

Summary of CROSSCON Design Specifications (D2.1): The CROSSCON stack design intends to cover
multiple architectures and vendors in a wide range of implementation scenarios. This heterogeneity has
materialized in several CROSSCON instantiation options, each conceptually corresponding to a different

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 12 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

CROSSCON stack configuration deployment. Given the functionalities provided by the CROSSCON stack
components and the security capabilities featured by the selected platforms (e.g., virtualization, TEE,
secure boot, RNG, or PUF), seven CROSSCON instantiation options emerged. Considered architectures
include: ArmV7‐A, ArmV8‐A (<V8.4), RISC‐V for APUs and TI MSP, AVR, ArmV6‐M, ArmV7‐M, ArmV8‐M,
Armv8‐R and RISC‐V for MCUs.

We redesigned the CROSSCON instantiation options from the initial options presented in D2.1. In the
new version of the instantiation options, we only consider virtualization support in platforms featuring
virtualization hardware capabilities, such as the second‐stage MMU. Additionally, we divided the in‐
stantiation options previously categorized as TEE‐ and Virtualization‐less environment into two distinct
options: the SW‐only isolation environment and the Basic memory isolation environment. This sepa‐
ration was necessary to distinguish between platforms lacking any security capabilities and those with
only basic security capabilities.

To map the selected platforms into the instantiation options, we considered all CROSSCON components
(e.g., CROSSCONHypervisor, Trusted Application (TA), Trusted OSes) and the capabilities provided by the
selected platforms that can support them. The operation of CROSSCON componentsmay depend on the
hardware they are running on. For example, a platformwithout specialized virtualization hardware (e.g.,
2nd stage MMU) does not contain capabilities to run hypervisor functionalities, but could feature TEE
support. Considering this, CROSSCON instantiation options encompass the following scenarios:

SW‐only isolation environment (i): This scenario addresses the security requirements of resource‐
constrained low‐end devices with no hardware resource protection. In this instantiation option, CROSS‐
CONadopts a software‐basedmethodology to ensure isolation betweennormal applications and trusted
applications.

Basicmemory isolationenvironment (ii): This scenario addresses the security requirements of resource‐
constrained devices with basic memory isolation technologies. In this instantiation option, CROSSCON
leverages basic security primitives, e.g., MPU, to ensure isolation between normal applications and
trusted applications.

TEE‐less environment with virtualization (iii): A platform can have dedicated hardware that facilitates
hypervisor implementations but lacks dedicated TEE hardware. In this CROSSCON instantiation option,
the hypervisor component operates above the firmware, managing guests and attributing physical re‐
sources to them. In platforms equipped with an APU, the hypervisor leverages virtual memory, while in
MCU‐enabled devices, it relies on hardware security primitives like 2nd stage MPU.

Virtualization‐less environmentwith TEE (iv): This CROSSCON instantiation option features TEE support
but does not include a hypervisor. However, different architectures may adopt different TEE technolo‐
gies. CROSSCON addresses this by supporting varied TEE implementations across multiple platforms,
including Arm, RISC‐V, and potentially others.

Environment with TEE and Virtualization (v): This CROSSCON instantiation option combines the flexi‐
bility the hypervisor provides with TEE security guarantees. This option encompasses all isolation capa‐
bilities.

Environment with Virtualization, TEE, and Field‐Programmable Gate Array (FPGA) (vi): A platform
could contain accelerators deployed in FPGA fabric. Through this instantiationoption, CROSSCONdemon‐
strates an awareness of the interface with these components, and carefully considers the security im‐
plications of FPGA‐enabled devices.

In addition to these CROSSCON instantiation options, in some contexts (e.g., when the platform lacks
dedicated hardware for running multiple trusted components), TEE components could be moved to
the Rich Execution Environment (REE) by leveraging virtualization (i.e., using a novel per‐VM feature of
CROSSCON Hypervisor described in Section 3.2.5.2) or TEE dedicated hardware (e.g., using Trustzone‐
M).

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 13 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2.1 Platform Analysis and Selection

The specification of the CROSSCON stack is general and does not depend on any specific manufacturer
or device. However, its implementation interacts directly with the hardware of the target device. There‐
fore, it was important to select instances of representative platforms on which the CROSSCON stack is
going to be implemented.

Considering CROSSCON's device classification, CROSSCON instantiation options, and selected UCs, we
selected a set of platforms to cover at least one platform per class and one platform per CROSSCON in‐
stantiationoptionand architecture (RISC‐V or Armarchitectures). The selectedplatforms areMSP430F5529LP,
NUCLEO‐G0B1RE,NUCLEO‐H743ZI2, nRF52840Dongle, ESP32‐C3‐AWS‐ExpressLink‐DevKit, NXP LPC55S6x,
Arty‐100T (BA5x), Beagle‐V, Raspberry PI 4B, Beagle‐bone AI‐64, ZCU 102 and Genesys 2.

Table 1 summarizes the security features of the selected platforms. These features include the presence
of TEE technology, memory and I/O isolation, cryptography accelerators, On‐The‐Fly Encryption/Decryp‐
tion (OTF), RNG, PUF, Universally Unique Identifier (UUID), Secure Element, Secure Boot and One‐Time‐
Programmable (OTP) Memories. Among these platform capabilities, we also distinguish them regarding
their target applications, i.e., APU, MCU, or FPGA.

Table 1: Features of platforms selected for CROSSCON.

Name TEE IO‐Isol. Core‐Isol. Crypt. Accel. OTF RNG PUF UUID Sec. Elem. Sec. Boot OTP

MCU

MSP430F5529LP ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
NUCLEO‐H743ZI2 ‐ ‐ MPU ‐ ‐ ‐ ‐ ‐ ‐
NUCLEO‐G0B1RE (STM32G0B1RE) ‐ ‐ MPU ‐ ‐ ‐ ‐ ‐ ‐
nRF52840 Dongle ‐ ‐ MPU ‐ ‐ ‐ ‐ ‐ ‐
ESP32‐C3‐AWS‐ExpressLink‐DevKit ‐ ‐ PMP ‐ ‐ ‐
NXP LPC55S6x (LPC55S6x) TF‐M MPU
Arty‐100T (BA5x) PMP ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

APU
Beagle‐V PMP ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
Raspberry PI 4B ‐ ‐ MMU(2nstage) ‐ ‐ ‐ ‐ ‐
Beaglebone AI‐64 TZ‐A MMU(2nstage) ‐ ‐ ‐ ‐

FPGA Genesys 2 PMP ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐
ZCU 102 TZ‐A MMU(2nstage) ‐ ‐ ‐

With a clear understanding of the security capabilities of each platform, we can carry out the classifica‐
tion according to their Class (0‐‐‐3) and corresponding instantiation option.

Class 0 Platforms: The MSP430F5529LP MCU platform lacks any hardware security primitives, relying
entirely on software for hardware security guarantees. No APU platforms apply to this category.

Class 1 Platforms: Among MCU platforms, we select: the NUCLEO‐G0B1RE (STM32G0B1RE), featuring
MPU, secure boot, and OTF encryption/decryption; the NUCLEO‐H743ZI2, equipped with MPU, RNG,
and PUF; and the nRF52840 Dongle, providing MPU, RNG, and cryptography accelerators. On the APU
side, we select the Beagle‐V, which includes Physical Memory Protection (PMP), RNG, and OTP function‐
alities.

Class 2 Platforms: The MCU segment features the ESP32‐C3‐AWS‐ExpressLink‐Devkit, offering capabili‐
ties such as PMP, RNG, cryptographic accelerators, secure boot, andOTP. For APU devices, the Raspberry
PI 4B offers MMU (2nd stage), RNG, cryptographic accelerators, secure boot, and OTP, while the Bea‐
glebone AI‐64 supports TEE via TrustZone‐A, MMU (2nd stage), cryptographic accelerators, RNG, secure
boot, and OTP.

Class 3 Platforms: The NXP LPC55S6x encompasses all identified security features. Platforms featuring
advanced security support and an FPGA include the ZCU‐102, Arty‐100T, and Genesys2. Particularly the
ZCU‐102, which features an APU with Trustzone‐A, MMU (2nd stage), cryptographic accelerators, PUF,
secure element, secure boot, and OTP.

We now match the platforms with the respective instantiation options, considering all CROSSCON com‐
ponents (e.g., CROSSCON Hypervisor, Trusted Application (TA)) and the platform's security capabili‐

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 14 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

ties.

Option 1 Platforms: The MSP430F5529LP was specifically chosen to meet the instantiation option i
because of its Class 0 classification.

Option2Platforms: Theplatforms chosen for instantiationoption ii include theNUCLEO‐G0B1RE,NUCLEO‐
H743ZI2, nRF52840Dongle, ESP32‐C3‐AWS‐ExpressLink‐DevKit, and the Beagle‐V. It's worthmentioning
that despite the Beagle‐V featuring RISC‐V architecture with a three‐privileged‐level system (M, S, and
U‐mode) and employing memory protection using Physical Memory Protection (PMP) and MMU, it is
still considered constrained in terms of security support, hence its inclusion in this option.

Option 3 Platforms: For instantiation option iii, the chosen platforms are the Raspberry Pi 4B and the
Beaglebone AI‐64.

Option 4 Platforms: The NXP LPC55S6 is the only board to support this instantiation option.

Option 5 Platforms: This instantiation option features the Beaglebone AI‐64 and the Genesys2. The
Genesys2 is inserted into this instantiation when running the CVA6 RISC‐V core with virtualization sup‐
port (H extension) and an IO Memory Management Unit (IOMMU).

Option 6 Platforms: This instantiation option requires the support for FPGA capabilities, TEE support,
and virtualization support. Therefore, the platformsmeeting these criteria are theArty‐100T, the ZCU102,
and the Genesys2. The Arty‐100T is categorized under this option when running the BA5x RISC‐V core
present in the CROSSCON SoC, while the Genesys2 is included when running the CVA6 RISC‐V core with
virtualization support (H extension) and an IOMMU.

With a wide array of selected platforms targeting different security features and different performance
levels, UC provider partners selected the platforms that best match their UC: The nRF52840 Dongle and
NXP LPC55S6 are selected for UC1; the Raspberry Pi 4B is selected by multiple UC provider partners,
being featured in UC1, UC2, UC3, and UC4; lastly, the ZCU102 is selected for UC5.

Table 2: Platform selection with the respectivemapping to the class of the device, architecture, partner,
instantiation option and to the UC.

Name Class Arch Partner Insta. Option UC

MCU

MSP430F5529LP 0 MSP430 UNIT (i)
NUCLEO‐G0B1RE 1 Armv6‐M UNIT (ii)
NUCLEO‐H743ZI2 1 Armv7‐M UNIT / UM (ii)
nRF52840 Dongle 1 Armv7‐M 3MDEB (ii) UC1
ESP32‐C3‐AWS 2 RISC‐V UNIT / UM (ii)‐ExpressLink‐DevKit

NXP LPC55S6x 3 Armv8‐M UWU / BIOT / (iv) UC1UM / 3MDEB

Arty‐100T (BA5x) 3 RISC‐V SLAB / UM / (vi)BEYOND

APU

Beagle‐V 1 RISC‐V UM (ii)

Raspberry PI 4B 2 Armv8‐A
3MDEB / SLAB / UC1 / UC2 /
CY / UWU / (iii) UC3 / UC4
BIOT / UM

Beaglebone AI‐64 2 Armv8‐A UM (iii) and (v)
Genesys2 3 RISC‐V UM (v), (vi)(CVA6 w/ H + IOMMU)

FPGA ZCU 102 3 FPGA TUD / UM (vi) UC5
Genesys 2 3 FPGA BEYOND (vi)

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 15 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Summary. Table 2 summarizes themapping between the selected platforms and device class and instan‐
tiation options. Additionally, it details the respective architectures, their availability to project partners,
and how they map to the UCs.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 16 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3 Research Results

This section outlines the research and innovation efforts involved in designing and implementing the
components for an initial validation of the research of the CROSSCON stack. The section begins focus‐
ing on TEE Isolation and Abstraction, covering TEE technologies, TEE vulnerabilities, TEE isolation, and
TEE abstraction discussions. Following this, it focuses on the CROSSCON Hypervisor, examining virtu‐
alization and microarchitecture isolation techniques, hypervisor feature analysis, and selection of the
hypervisor that serves as the starting point for CROSSCON Hypervisor development. Here the devel‐
opment progress of two features of the CROSSCON Hypervisor is reported: dynamic VM creation and
per VM TEE service support. Next, this document discusses the development of new trusted services:
PUF‐based authentication, remote attestation, FPGA‐related services, behavioral‐based services, and
control flow integrity services. After, it delves into the CROSSCON TEE Toolchain, detailing existing IoT
update mechanisms and standards, and requirements for integration with Dev‐Sec‐Ops platforms. It
also provides a literature review on secure compilation and the design of CROSSCON Secure Update.
Lastly, the document details the CROSSCON Bare‐Metal TEE, reviewing requirements and platforms,
state‐of‐the‐art approaches, and the implementation of Bare‐Metal TEE, including both MPU and non‐
MPU variants.

3.1 TEE Isolation and Abstraction

This section concentrates on two key aspects of integrating CROSSCON with TEEs: TEE Isolation and
Abstraction.

Regarding TEE isolation, in a previous work, we've demonstrated that TEE systems, TrustZone TEE sys‐
tem specifically, suffered from more than 200 TEE vulnerabilities in TEE systems from 2013 to 2018 [1].
Because new TEE vulnerabilities are constantly being discovered, we explore if existing TEEs continue to
suffer from the same security issues. To do this we once again investigate the root causes of the security
vulnerabilities affecting TEEs, analyzing TEE vulnerabilities from 2019 until the current date. The insights
obtained from this study help to achieve the goal of developing additional isolation capabilities to de‐
compose a single TEE domain into multiple TEE domains, an approach that has been shown to mitigate
the impact of TEE vulnerabilities [2, 3].

Regarding TEE abstraction, the main concern is to offer a solution that ensures the interoperability of
trusted services between TEEs. Initially, our goal was to map TA‐level interfaces between different TEEs;
however, given the widespread adoption of Global Platform TEE specifications [4], interoperability is not
a significant concern at the TA Application Programming Interface (API) level. Consequently, we have
redirected our efforts, in two directions. First, we aim to identify potentially useful APIs not covered
by the Global Platform specification, which could benefit the development of trusted services within
CROSSCON. Second, we aim to reduce interoperability issues between TEE technologies. Because of
the competitive TEE market (involving different TEE vendors), TEE technologies tend to be developed
independently with proprietary features, resulting in heterogeneous TEE programming models. This
prevents software reuse between TEE technologies, especially for legacy code.

3.1.1 TEEs and TEE Technologies

As a definition, a TEE is a secure area within a computing device, typically a processor or a separate
chip, where sensitive operations can be performed securely. Widely utilized across various computing
spectrums, from mobile to server platforms, TEEs are designed to protect sensitive operations against
unauthorized access or modification. These systems operate alongside a REE, which typically hosts a

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 17 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

general‐purpose OS utilizing a platform's hardware capabilities to implement rich functionalities. On
the other hand, through dedicated hardware, TEEs support the execution of security‐sensitive applica‐
tions within isolated secure domains (i.e, the TA), ensuring separation from components executing in
the REE. Their utilization extends to various applications such as mobile banking, Digital rights manage‐
ment (DRM), and secure key storage. Figure 1 presents an overview of a system incorporating a TEE,
showcasing dedicated hardware components (e.g., trusted cores, trusted RAM, trusted ROM, etc) and
trusted areas within shared memory and storage.

Peripherals

Crypto
AcceleratorsRAM Crypto

Accelerators

ROM Peripherals

OTP Memory

CPU Cores

Peripherals

Crypto
AcceleratorsTrusted RAM Trusted Crypto

Accelerators

Trusted ROM Trusted
Peripherals

Trusted OTP
Memory

External
Memory

Protected

External
Non-Volatile

 Storage

Protected

REE TEE

Trusted
CPU Cores

Untrusted Communications

Trusted Communications

Inter-domain Communications

Figure 1: General representation of TEE components and their interactions.

According to confidential computing consortium [5], TEE is an environment that provides a level of as‐
surance of:

▶ Data Integrity: preventing unauthorized entities from altering data when data is being processed;

▶ Data Confidentiality: unauthorized entities cannot view data while it is in use within the TEE;

▶ Code Integrity: The code in the TEE cannot be replaced or modified by unauthorized entities.

In existing literature, several works survey the numerous commercially available TEE solutions [6, 1],
aiming to find the design decision similarities and systematize them in terms of overall security goals.
In the following sections we follow a TEE analysis that systematizes TEEs according to their architectural
support of four security properties: secure boot, run‐time isolation, trusted Input/Output (I/O), and
secure storage.

3.1.1.1 TEE Secure Boot

Secure boot ensures that the execution environment will be configured correctly and the initial state of
a TA will act as expected. It refers to proving the correctness of the initial state of the TEE. The verifiable
launch process involves three main processes, (i) measurement, (ii) attestation, and (optionally) (iii)
secure storage.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 18 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Measurement: It is the first process before an enclave TA executes. Typically, it is assumed to be a fin‐
gerprint of TA 's initial state. Involving two steps: (i) mapping the binary executable (of the component
to be measured) into memory, and (ii) computing cryptographic hashes over it. The measurement pro‐
cess begins at the Root‐of‐Trust Measurement (RTM) and goes through a chain‐of‐trust measurement
until measuring the TA itself. There is Static RTM (SRTM) and Dynamic RTM (DRTM). SRTM is performed
at system reset before untrusted components have been started, until the enclave execution itself. It
could be implemented entirely in hardware or in immutable software (including all necessary compo‐
nents to boot the enclave securely). On the other hand, DRTM can be performed after untrusted code
initialization. Since some untrusted components could be active prior to this process, DRTM must de‐
tect the presence of adversaries present in already active untrusted components. After finishing the
measurement process, the measurement report needs to be stored and signed before being sent to the
verifier for the attestation process. The TEE uses the measurement as part of the attestation process to
prove its authenticity and integrity to a remote entity.

Attestation: It is the process of proving the system's identity and configuration to another party. It
involves a verifier to check that the system has been launched correctly and to ensure the execution
of an expected initial state. In the case of a TEE, the primary goal of attestation is to establish trust
in the TEE by providing evidence to a verifying party, either locally or remotely, to demonstrate the
trustworthiness and integrity of the trusted entity. Local attestation is applicable when a verifier is co‐
located on the same platform. In contrast, remote attestation is meant for use by a remote verifier that
is not on the same platform as the TEE being attested.

Secure storage: Provisioning secrets into enclaves is often the last optional step during its launch. Se‐
crets can include sensitive data, encryption keys, authentication credentials, or any other information
that needs to be protected and securely accessed by the enclave.

3.1.1.2 TEE Run‐Time Isolation

TEE Run‐Time Isolation ensures the protection of critical resources like the CPU and memory from po‐
tential threats, using protection mechanisms. This ensures the secure operation of TEE components,
preventing unauthorized access to security‐critical data.

Protection mechanisms aim to achieve isolation of TEE resources in three main ways, i.e., spatial parti‐
tioning, temporal partitioning, and spatio‐temporal partitioning.

Spatial isolation involves the separation of memory, resources, or execution environments, ensuring
that the resources allocated to one component are isolated from and inaccessible to other system stack
components. For example, in a system running multiple TAs, spatial isolation ensures that the memory
and resources allocated to one TA are inaccessible to another, enhancing the security and confidentiality
of the TA .

Temporal isolation is the separation of execution timelines between different components of the sys‐
tem stack. This ensures that different components can share resources during their execution without
interference. For example, if multiple applications run within the TEE, temporal isolation ensures that
the execution of one application does not impact the execution of another.

Lastly, spatio‐temporal isolation refers to a mix of both principles (temporal and spatial isolation), pre‐
venting interference not only across different spatial domains (e.g., memory spaces) but also across
different temporal domains (e.g., time periods). For example, this approach is particularly relevant in
cloud computing environments where multiple entities share the same underlying TEE infrastructure
while requiring strong isolation and controlled access to resources.

Apart from resource partitioning, TEEs must also follow logical and cryptographic isolation.

Logical isolation refers to the mechanisms used to prevent the TEE adversaries from gaining access to
protected data by intercepting data accesses. Since logical isolation involves themanagement of secure‐

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 19 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

sensitive data, this process is managed by a trusted component in the security system stack (e.g., the
firmware, or hypervisors), which couldmodify permissions in runtimeby re‐allocating resources through
system security primitives.

On the other hand, cryptographic isolation refers to the cryptography used for only allowing authorized
entities to access/decrypt the correct content. Unlike logical isolation, where protected data is entirely
inaccessible to unauthorized parties (ensuring integrity), in cryptographic isolation, unauthorized enti‐
tiesmay be able to read the ciphertext but are unable to retrieve the plaintext (ensuring confidentiality).
Typically, TEEs include a cryptographic engine, which can be used to enforce this type of isolation.

Another crucial aspect in run‐time isolation of TEEs is in process of context‐switch between trusted and
non‐trusted computing, i.e., transitions from TEE to REE and vice‐versa. To ensure logical isolation in
these transitions, and to ensure that the data used in the trusted world components does not leak to
any context of the untrusted world components, the context‐switch involves three steps, i.e., (i) saving
the current CPU context, (ii) purging the registers used for this transition, and (iii) restoring the next CPU
context.

3.1.1.3 TEE Trusted I/O

Establishing Trusted I/O in TEEs is critical for safeguarding the integrity and confidentiality of TAs when
utilizing peripherals, e.g., FPGA deployed accelerator. This involves ensuring secure communication
channels between TAs and devices, as well as protecting TA data processed by devices.

One approach for secure communication is logical isolation, which secures DirectMemory Access (DMA)
andMemory‐Mapped I/O (MMIO) accesses. This can be achieved through access control filters or secure
memory mappings, dynamically or statically configured during TEE runtime.

Alternatively, a cryptography‐based trusted path offers protection against fabric adversaries, involving
cryptographic material for authentication and attestation. Some TEE implementations utilize a combi‐
nation of cryptography and logic isolation for robust MMIO access protection.

However, ensuring TA data integrity and confidentiality under devices requires more than just a trusted
path. Accelerators like FPGAs or GPUs can leak TA information, necessitating a trusted device architec‐
ture. This can be achieved through spatial or temporal partitioning, ensuring exclusive resource usage
and secure context switching. Spatio‐temporal partitioning is useful for scenarios requiring flexibility,
like multi‐tenancy. While cryptography can enforce isolation, its performance overhead and cost impli‐
cations make it less preferable for hardware implementation.

3.1.1.4 TEE Secure Storage

To protect security‐critical data TEEs require a secure storagemechanism. Themost straightforwardway
to ensure the security of stored data is through a sealing and unsealing process. The process of sealing
involves the protection of data through an encryption process. Contrarily, the process of unsealing in‐
volves the process of decryption of this persistent data, i.e., through cryptography is possible to ensure
that any data is not available to unauthorized parties, and that any data tampering is detected.

Encryption can be implemented in software, by using software modules to encrypt information, or
through dedicated hardware, involving higher costs but improved performance. The process of en‐
cryption follows a symmetric or an asymmetric technique, where a symmetric maintains the same key
for the encryption and decryption process, and an asymmetric process uses different keys for different
processes. Advanced Encryption Standard (AES) is the most common symmetric encryption algorithm,
while Rivest‐Shamir‐Adleman (RSA) is the most common asymmetric encryption algorithm [7].

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 20 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.1.2 TEE Implementations

This section explores various advancements in hardware‐based security technologies, focusing on solu‐
tions offered by Arm, Intel, AMD, and RISC‐V architectures.

Arm TrustZone. Arm TrustZone, introduced in 2004, is a security technology integrated into a wide
range of Arm‐based processors, that enables the establishment of a secure execution environment [8].
TrustZone aims to protect critical data and code by isolating it from potential threats, whether origi‐
nating from the OS or hypervisor. In the TrustZone architecture, the system is divided into two distinct
execution environments: the ``Secure World'' and the``Normal World.'' The Secure World serves as an
isolated domain, protected from unauthorized access, including high‐privileged software components
like the OS. Access controls are enforced by the CPU and system‐level access controllers called Trust‐
Zone controllers. Additionally, TrustZone is often paired with secure boot mechanisms that verify the
authenticity and integrity of firmware during system initialization this guarantees the execution of only
verified firmware components.

Arm S.EL2/FFA. Arm TrustZone technology, as implemented in Armv8.4 with the inclusion of the se‐
cure hypervisor, offers an advanced security and virtualization solution that extends the capabilities of
TrustZone [9]. Armv8.4 extends Arm's security architecture to include a secure hypervisor mode (Secure
EL2 or Exception Level 2). This mode enables the execution of multiple VMs in the Secure World, each
isolated from one another and from the NormalWorld. The secure hypervisor manages these VMs, pro‐
viding secure isolation and control over their execution. The reference hypervisor is hafniumwhich does
not support dynamic instantiation of VMs, creating them only during boot. In essence, this iteration of
TrustZone adds a privilege level to the secure world. The introduction of S‐EL2 (Secure Exception Level
2) in Arm v8.4 architecture, lead to FF‐A (Firmware Framework for Arm) [10]. When transitioning be‐
tween exception levels (e.g., from EL1 to S‐EL1), each level has a separate binary, requiring agreement
on the Application Binary Interface (ABI). FF‐A aims to provide a consistent ABI across different trusted
OSs and hypervisors, making it easier to reuse certified Trusted Firmware and hypervisor configurations
across various setups.

Arm CCA. Arm Confidential Computing Architecture (CCA) is designed to enhance the security of data
and applications by providing isolated environments, known as Realms, where sensitive code and data
can be processed and stored securely [11]. This architecture is particularly relevant in the context of
cloud computing, edge computing, and IoT, where ensuring the confidentiality and integrity of data
and applications is paramount. With the increasing amount of sensitive data being processed and the
rising threats to data security, there's a growing need for more robust security solutions. Confidential
computing addresses this need by protecting data in use, in addition to data at rest and in transit. The
core concept of Arm CCA is the Realm, a secure, isolated environment. Realms are designed to provide
a high level of security for sensitive workloads. They operate separately from the normal OS environ‐
ment, thereby protecting a wide range of software attacks. CCA features encryption to protect against
memory attacks such as bus snooping or cold boot. It uses granule page tables (GPT), a page table‐like
mechanism, instead of TrustZone Controllers for access control.

TrustZone‐M.Arm TrustZone for Cortex‐M[12], TrustZone‐M, is integrated into select Armv8‐M architec‐
ture microcontrollers and offers a hardware‐based security framework through two orthogonal states:
secure and non‐secure. Unlike its TrustZone‐A counterpart, TrustZone‐M utilizes a memory map ap‐
proach; the secure state of the processor is determined bywhether the code runs from normal or secure
memory. Memory is tagged with attributes that include secure, non‐secure, and non‐secure callable,
the latter allowing secure entry points within a specific non‐secure callable region. To perform access
control attribution units, filling a similar role to the existing TrustZone controllers are used.

Intel Software Guard Extensions. Intel Software Guard Extensions (SGX), released in 2015, are special‐
ized security instructions integrated into select Intel CPUs, enabling the creation of isolated memory
regions known as "enclaves" within applications [13]. SGX is designed to protect enclaves from vulnera‐

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 21 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

bilities originating in the OS or hypervisor, or otherwise malicious software, and hardware‐level threats
such as bus‐snooping, or cold‐boot attacks. Thus, SGX enclaves serve as secure compartments, pro‐
tected from external inspection or access, even by high privileged software (e.g., the OS, or Hypervisor),
by CPU‐imposed access controls to prevent unauthorized memory access. The integrity of enclaves'
memory is guaranteed by a built‐in memory encryption engine, ensuring on‐the‐fly memory encryption
and decryptionwhen datamoves fromCPU tomemory or frommemory to CPU, respectively. Encryption
and decryption are performedwith a key inaccessible to any software. Additionally, Intel SGX establishes
remote attestation as a foundational security measure, enabling external entities to validate the secure
execution of a software application within an enclave on an SGX‐enabled platform.

Trust Domain Extensions. Intel Trust Domain Extensions (TDX), released in 2021, introduces hardware‐
based isolation features for VMs within designated Trusted Domains (TDs) [14]. Similar to SGX, TDX's
primary objective is to safeguard its isolated environment, specifically TDs, against high‐privileged soft‐
ware, notably the hypervisor, while also providing defense against hardware‐level attacks like bus‐snooping
and cold‐boot exploits. To address the protection against privileged software, TDX introduces a new exe‐
cution mode, denoted as SEAM (Secure‐Arbitration Mode). SEAMmode hosts the execution of the TDX
Module and associated VMs, ensuring their isolation from the broader system software. The TDX Mod‐
ule functions as a secondary, lightweight hypervisor, primarily responsible for defining access control
policies, while resource management remains the responsibility of the untrusted hypervisor. In con‐
trast to SGX, where a unified key is utilized for all enclaves, TDX adopts a per‐Trusted Domain key model,
assigning a distinct encryption key to each trusted domain, thereby enhancing security granularity. Ad‐
ditionally, akin to SGX, TDX incorporates a remote attestation mechanism, enabling the validation of
TDX protection to remote third parties.

AMD SEV, SEV‐ES, SEV‐SNP. AMD Secure Encrypted Virtualization (SEV), released in 2016, protects VMs
from security risks in virtualized environments [15]. It ensures the confidentiality of VM data and code,
isolates VMs frompotentially compromisedhypervisors andprotects against threats posedby co‐located
VMs and physical attacks. SEV encrypts the memory of each VM, using one key per VM to isolate guests
from the hypervisor. The keys are managed by the AMD Secure Processor (PSP). AMD has extended
SEV with improved security features since its release. The first is AMD Secure Encrypted Virtualization‐
Encrypted State (SEV‐ES), an extension of SEV that encrypts all CPU register contents when a VM stops
running. This prevents the leakage of information in CPU registers to the hypervisor, and can even
detect malicious modifications to a CPU register state. More recently, AMD developed Secure En‐
crypted Virtualization‐Secure Nested Paging (SEV‐SNP), another extension of SEV that adds memory
integrity protection to help prevent malicious hypervisor‐based attacks like data replay, and memory
re‐mapping.

Physical Memory Protection. The RISC‐V architecture features the PMP, a mechanism designed for per‐
forming access control over system resources [16]. PMP can be used to establish multiple isolated exe‐
cution environments, where each environment is restricted in the memory or peripherals it can access,
protecting against untrusted software stacks, or creating mutually distrusted execution environments
in the same platform. PMP operates through control registers, which enable the specification of access
permissions. Although the number of entries is implementation‐specific, it will necessarily be limited
when compared to virtual memory‐based solutions. The RISC‐V architecture incorporates a layered
privilege model, with the most privileged mode being Machine mode (M‐mode). M‐Mode software is
responsible for configuring the permissions for each core, and if needed, it can dynamically reconfigure
the access control policies.

Confidential VirtualMachine Extensions. TheRISC‐V Confidential VMExtension (CoVE) represents RISC‐
V's response to the confidential computing UC [17]. Analogous to AMD SEV and Intel TDX, it allows
for the execution of VMs shielded from an untrusted hypervisor, offering protection against hardware
attacks when coupled with memory encryption, aligning with other confidential computing solutions.
CoVE's APIs are deliberately designed to accommodate multiple implementations, adaptable to diverse

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 22 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

architectural constraints, thereby enabling versatile deployment strategies. A fundamental component
of the CoVE architecture is the introduction of the "Trusted Security Manager" (TSM), operating in the
Hypervisor Supervisor (HS) mode. The TSM is similar to the TDXModule in that its main responsibility is
establishing access control policies on trusted VMs. Notably, when coupled with the Memory Tracking
Tables (MTT), CoVE provides fine‐grained access control mechanisms similar to Arm's GPT. The MTT,
resembling memory page tables, enhances access control by surpassing the limitations of PMP in terms
of the number of regions, thereby enabling highly granular and adaptable access control policies.

Figure 2 consolidates the TEE models analyzed in this section. It delineates their architectural privileged
levels in ascending order, with greater privileges positioned at the bottom. On the left side, TrustZone
establishes communication between the OS in the normal world and the TEE in the secure world via a
secure monitor. FFA introduces a trusted hypervisor to oversee trusted VMs. CCA expands TrustZone to
incorporate the Realm world, housing the Realm Manager (RMM) responsible for creating confidential
VMs. SGX safeguards enclaves tied to specific processes from interference by other system software.
TDX and CoVE utilize a trusted hypervisor to create confidential VMs, leveraging resources provided by
an untrusted hypervisor andmanaging context switching. SEV allows an untrusted hypervisor tomanage
VMs, granting the option for full protection at startup or selectivememory protection. RISC‐V Instruction
Set Architecture (ISA) employs Physical Memory Protection (PMP) to establish security domains, with
SBI managing context switching.

...

Arm TrustZone

Secure
Monitor

Trusted OS

OS TEE
driver

App

Hypervisor

RISC-V ISA

TA
lib

SPMD

OS

App

Hypervisor

Arm FFA

SPMC
(Hyp)

SBI

Trusted OS

TATA
lib

T-Hyp

FW

T-OS

T-User

Hyp

User

OS OS

App

Hyp.

Intel SGX RISC-V CoVE

OS TEE
driver

App

Hyp.

AMD SEVIntel TDX

Hyp.

TDX Module
(Hyp)

enclave

Trusted
VM

FF-A
driver

Trusted
VM

Arm CCA

OS

App

FF-A
driver

App

Hypervisor

RMM
(Hyp)

Secure Monitor /
SPMD

Realm
driver

Conf.
VM
Conf.
VM

libliblib lib runtime

SPMC
(Hyp)

Secure
VM

Trusted
VM

Hyp.

Conf.
VM
Conf.
VM

VM VM

SBI

OS

App

Hypervisor

TSM

Conf.
VM

CoVE
driver

Conf.
VM

lib

Hyp.

VM VM
Conf.
VM
Conf.
VM

lib lib

Figure 2: TEE models representation.

3.1.3 TEE Vulnerabilities

As mentioned in previously, hardware TEE solutions emerged to provide confidentiality and integrity
of security‐sensitive applications. Compared to traditional systems, they usually feature a smaller TCB
and are thus expected to offer higher security. TEEs have become predominant across several areas,
including mobile systems, industry, servers, and low‐end devices. In the future, TEEs are expected to be
integrated into trillions of IoT devices. Unfortunately, studies have continually demonstrated vulnerabil‐
ities in TEE systems across vendors. For example, in [1], we analyse 207 TEE bug reports on Arm‐based
devices, from 2013 until mid‐2018. In this section, we continue this work by collecting and analyzing
numerous vulnerabilities and limitations affecting TEEs from 2019 onwards. Despite the widespread
utilization of this technology across hundreds of millions of devices, TEEs have encountered numerous
successful attacks in recent years [1]. Our analysis centers on Common Vulnerabilities and Exposures
(CVE) reports for TEE systems developed by various vendors, applicable to both APUs and MCUs classes
of devices. Through a detailed examination of publicly documented exploits and vulnerabilities dating
back to 2019, we have identified critical weaknesses within existing TEE implementations.

Before delving into the analysis of TEE vulnerabilities, we establish certain assumptions aligned with our
project goals. Our analysis focuses exclusively on vulnerabilities within TEE components, not including
any vulnerability present on the REE side. Specifically, our analysis considers vulnerabilities where at‐
tackers could acquire secrets from the TEE, access secrets from the REE, or otherwise escalate privileges

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 23 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

to the TEE.

In the analysis of the TrustZone TEE systems, we've considered those developed by Qualcomm, AMD,
Samsung, Trustonic, Nvidia, Linaro, and Arm. Qualcomm's TEE solution is known as Qualcomm Trusted
Execution Environment (QTEE)[18]; AMD PSP, a key component in AMD SEV, leverages TrustZone tech‐
nology [15]; Samsung maintains mTower[19] and TEEGRIS[20]; Trustonic maintains kinibi, Nvidia uses
Trusty, TZVault, and Trusted Little Kernel (TLK) trusted OSes accross its products; Linaro maintains OP‐
TEE, an open‐source TEE softwarewidely popular for TrustZonedevelopment; andArmmaintains Trusted
Firmware‐M (TF‐M) [Armtfm], which implements a Secure Processing Environment (SPE) for Armv8‐M.
These systems are actively maintained, widely adopted for commercial purposes, and offer a substantial
amount of information for analysis. Henceforth, for clarity, we will reference each analyzed TEE by the
respective company name rather than the software denomination (e.g., "Linaro TEE" for OP‐TEE).

Table 3: Sources of reports: CVE (CVE databases), SP (scientific publications) and SB (security bulletins).

TotalTEE System CVE SP SB MCU APU
Qualcomm 5 0 43 0 48

AMD 3 0 2 0 5
Samsung 26 13 2 13 28
Trustonic 1 0 0 0 1
Nvidia 2 0 21 0 23
Linaro 13 0 0 0 13
Arm 6 0 0 6 0

MCU 6 13 0 19Total APU 50 0 68 118

We investigate various sources categorized into three main areas, as detailed in Table 3. Our analysis
encompassed bug reports sourced from: the CVE database [21] pertaining to the TEE systems under
investigation; scientific publications; and CVE reports officially published by Qualcomm [22], AMD [23],
Samsung [24] and Nvidia [25], documented in the respective security bulletins. The CVE reports were
gathered through keyword searches for terms such as the names of TEEs, "TEE," "Trusted," " TA ," "Trust‐
Zone," etc. Additionally, we also distinguish the CVE reports from TEEs implemented for MCU and APU
classes of devices.

We collect a total of 136 CVE vulnerabilities. Qualcomm TEE stands out as the TEE with the highest
number of vulnerabilities among the categorized TEEs, totaling 48 CVEs. Meanwhile, recent MCU TEE
designs like Samsung TEE (mTower) and Arm TEE (TF‐M) present a total of 19 vulnerabilities.

After collecting the vulnerability reports, we manually analyzed and categorized them. For the vulnera‐
bilities assigned with a CVSS score [26], we adopted a classification metric based on the attribute score,
comprising it into four categories: critical (CVSS ≥ 9), severe (CVSS [7,9[), medium (CVSS [5,7[), and low
(CVSS [0,5[). The severity of a specific vulnerability may have different security implications. A critical
vulnerability is normally one that can lead to a complete compromise of confidentiality or integrity in
the TEE, in the REE, or both.

Table 4 quantifies the number of disclosed vulnerabilities associated with each system according to their
severity. The results highlight that:

▶ Samsung's TEE system has the highest number of critical vulnerabilities (20) and the second‐highest
number of severe vulnerabilities (19). Most of the critical issues come fromout‐of‐bounds read/write
accesses (e.g., CVE‐2019‐20537) and from the use of incompatible types on TEEGRIS (e.g., CVE‐2019‐
20571).

▶ Qualcomm's TEE system has the highest number of severe vulnerabilities with a total of 34, 2 CVEs

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 24 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Table 4: Number of disclosed CVEs per system from 2019 to 2024.

TEE System Critical Severe Medium Low Total
Qualcomm 2 34 12 0 48

AMD 0 2 2 1 5
Samsung 20 19 1 1 41
Trustonic 1 0 0 0 1
Nvidia 0 8 11 4 23
Linaro 7 5 1 0 13
Arm 0 4 2 0 6
Total 30 72 29 6 137

critical vulnerabilities and 12 CVEs classified as medium. Concurrency and memory management
issues (e.g., CVE‐2019‐10589, CVE‐2022‐33257, CVE‐2022‐33273) represent the most critical and se‐
vere Qualcomm TEE vulnerabilities.

▶ Linaro's TEE system has the second‐highest number of critical vulnerabilities (7 CVEs), with all cat‐
egorized as memory management issues (CVE‐2019‐1010296), and 5 severe vulnerabilities, also in‐
herited frommemorymanagement issues (CVE‐2019‐1010294), improper input handling (CVE‐2022‐
46152) and from the lack of security access configuration (CVE‐2021‐44149)

▶ Nvidia TEE system showsno critical vulnerabilities, 8 for severe (e.g., CVE‐2021‐34374), 11 formedium
(e.g., CVE‐2021‐34385) and 4 for low criticality level (e.g., CVE‐2021‐34393).

▶ AMDTEE system showsno critical vulnerabilities andhas a total of 5 vulnerabilities, distributed across
all severity levels (e.g., CVE‐2020‐12931).

▶ Arm TEE system shows no critical vulnerabilities and has a total of 6 vulnerabilities, four classified as
severe (e.g., CVE‐2021‐43619) and two classified as medium (e.g., CVE‐2021‐40327).

▶ Trustonic TEE system shows 1 critical vulnerability, where trustonic Kinibi allows arbitrary memory
mapping (CVE‐2020‐13831).

After collecting the vulnerability reports and assessing their severity, we proceeded to analyze the un‐
derlying causes of these vulnerabilities using the Common Weakness Enumeration (CWE) framework.
CWE provides a standardized taxonomy for describing security weaknesses, enabling us to categorize
and understand the root causes of vulnerabilities more effectively.

By mapping CVEs to CWEs, we identified the specific weaknesses or flaws in software systems that led
to the reported vulnerabilities. Additionally, our analysis revealed a range of CWEs that can be cate‐
gorized into distinct issue categories based on their nature and impact. Table 5 summarizes the CWEs
categorization by mapping CWE to the correspondent issue categories.

The grouping of CWEs into issue categories facilitates the process of mapping TEE system vulnerabilities
by preventing redundant issues from being categorized into different categories. For example, CWE‐119
(improper restriction of operationswithin the bounds of amemory buffer) and CWE‐125 (out‐of‐bounds
read), both refer to memory management issues by not preventing buffer overflow. Additionally, as
part of this categorization is important to note that the total number of CWEs may exceed the number
of CVEs themselves, i.e., one CVE can be mapped to multiple CWEs. For instance, CVE‐2021‐34376 is
assigned to both CWE‐20 (Improper Input Validation) and CWE‐119 (Improper Restriction of Operations
within the Bounds of a Memory Buffer), indicating dual categorization, either for improper input han‐
dling or memory management issues. Table 6 presents how many CVEs for each TEE map to each CWE
category.

Qualcomm. Qualcomm reveals numerous vulnerabilities across diverse categories. There are 33 in‐
stances of memory management issues, indicating potential risks in data storage and memory access.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 25 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Table 5: List of CWE categorization.

Category List of CWEs
Improper Input Handling CWE‐20: Improper Input Validation,

CWE‐94: Improper Control of Generation of Code,
CWE‐129: Improper Validation of Array Index,
CWE‐754: Improper Check for Unusual or Exceptional Conditions,
CWE‐755: Improper Handling of Exceptional Conditions,
CWE‐307: Improper Restriction of Excessive Authentication Attempts

MemoryManagement Is‐
sues

CWE‐119: Improper Restriction of Operations within the Bounds of a
Memory Buffer,
CWE‐120: Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow'),
CWE‐125: Out‐of‐bounds Read,
CWE‐190: Integer Overflow or Wraparound,
CWE‐191: Integer Underflow or Wraparound,
CWE‐252: Unchecked Return Value,
CWE‐401: Missing Release of Memory after Effective Lifetime,
CWE‐415: Double Free,
CWE‐416: Use After Free,
CWE‐476: NULL Pointer Dereference,
CWE‐697: Incorrect Comparison,
CWE‐732: Incorrect Permission Assignment for Critical Resource,
CWE‐787: Out‐of‐bounds Write

Authentication and Au‐
thorization Issues

CWE‐287: Improper Authentication,
CWE‐285: Improper Authorization,
CWE‐862: Missing Authorization,
CWE‐863: Incorrect Authorization

Cryptographic Issues CWE‐330: Use of Insufficiently Random Values,
CWE‐327: Use of a Broken or Risky Cryptographic Algorithm,
CWE‐347: Improper Verification of Cryptographic Signature

Concurrency Issues CWE‐367: Time‐of‐check Time‐of‐use (TOCTOU),
CWE‐362: Concurrent Execution using Shared Resource with Improper
Synchronization

Information Disclosure CWE‐200: Exposure of Sensitive Information to an Unauthorized Actor,
CWE‐203: Observable Discrepancy,
CWE‐212: Improper Removal of Sensitive Information Before Storage or
Transfer

Resource Management
Issues

CWE‐770: Allocation of Resources Without Limits or Throttling,
CWE‐276: Incorrect Default Permissions

Type Handling Issues CWE‐704: Incorrect Type Conversion or Cast
Type Confusion Issues CWE‐843: Access of Resource Using Incompatible Type
Other Issues CWE‐191: Integer Underflow (Wrap or Wraparound),

CWE‐269: Improper Privilege Management,
CWE‐254: Security Features,
CWE‐1066: Missing Serialization Control Element

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 26 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Table 6: Mapping of each analysed CVE to the respective group of CWEs.

CWE Qualcomm AMD Samsung Trustonic Nvidia Linaro Arm
Improper Input Handling 6 2 9 1 8 2 1
Memory Management 33 3 21 1 16 9 5

Authentication and Authorization 2 0 1 0 0 0 1
Cryptographic 0 0 0 0 1 2 0
Concurrency 2 1 1 0 0 0 0

Information Disclosure 4 0 1 0 0 0 0
Resource Management 0 0 2 0 3 0 0

Type Confusion 0 0 9 0 0 0 0
Type Handling 2 0 0 0 0 0 0

Other 0 0 0 0 2 1 0
Total 49 6 44 2 30 14 7

Additionally, 6 CWEs were identified in input validation handling, posing risks of unauthorized data in‐
filtration.

AMD. AMD reveals 3 memorymanagement issues, 2 improper input handling issues, and 1 concurrency
issue.

Samsung. Samsung emerges as the one with vulnerabilities distributed across more categories. Among
them, Table 6 underscores 9 CWEs in improper input handling, 21 in memory management, and 9 in
related to data type confusion issues.

Trustonic. Trustonic's 2 vulnerabilities are categorized as memory management and improper input
handling.

Nvidia. Nvidia presents 16 CWEs categorized as memory management, 8 as improper input handling,
3 as resource management, and 2 as other issues (related with CWE‐1066: Missing Serialization and
CWE‐754: Improper Check for Unusual or Exceptional Conditions).

Linaro. Linaro exhibits 9 issues identified as memory management, warranting attention to mitigate po‐
tential data integrity risks, 2 observed input validation issues, 2 cryptography, and 1 other issue (related
to CWE‐254: Security features).

Arm. Arm exhibits 5 issues identified memory management, 1 classified as authentication and autho‐
rization issues (related with CWE‐862: Missing Authorization), and 1 classified as improper input han‐
dling (related to CWE‐120: Buffer Copywithout Checking Size of Input ('Classic Buffer Overflow')).

Overall, the mapping allows for a clear understanding of the prevalent weaknesses across different TEE
implementations (i.e., thememorymanagement issues), aiding in the identification of common security
challenges. Additionally, it is evident that across all TEE technologies under study, there was at least one
memory management issue and one improper input handling issue.

Our analysis reveals widespread vulnerabilities across different TEE implementations, notably in mem‐
ory management and input handling. All analyzed trusted OSes exhibited issues in these areas. There‐
fore, decomposing TEE software into multiple isolated environments remains crucial to mitigate these
vulnerabilities and enhance overall system security.

3.1.4 TEE Isolation

Arm's TrustZone is widely used in the context of embedded and IoT systems. However, there's a sig‐
nificant issue with the secure‐world privilege level in TrustZone [1, 2]. Secure world components, e.g.,
trusted OS, can access any system resource in the entire system, leading to high‐impact security‐critical

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 27 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

vulnerabilities. To address this, we propose breaking down the monolithic design of TrustZone TEEs into
multiple domains. This decomposition should enable multiple trusted OS to co‐exist securely in the se‐
cure world, allowing the decomposition of trusted OS stacks into multiple isolated environments, for
example, to isolate system functionality TA from third‐party TA.

3.1.4.1 TEE Isolation Feature: APU TEE Isolation

Several works have targeted the topic of TEE isolation [27, 3, 28, 2], with FFA on Armv8.4 also enabling
this. To address this issue in commercial off‐the‐shelf platforms, existing research suggests three strate‐
gies: i) implementing software‐based virtualization techniques in the secure world, ii) utilizing existing
control units and auxiliary processors, and iii) transferring the secure world software stack to the normal
world using virtualization techniques.

Software‐BasedVirtualization: Works like TEEv [3] and PrOS [28] leverage software techniques to isolate
and create multiple trusted OS environments. This allows for the decomposition of the system's TCB,
preventing one single flaw in one environment from affecting the others. Although implementations
vary slightly, in this approach, the trusted OS code must be modified to prevent access to security‐
sensitive functionality such as the configuration of the page tables. There also needs to be a well‐
defined and secure entry point that transitions the execution from the guests to the hypervisor and
vice‐versa.

Repurposed Control Units: It is common for platforms to feature system‐wide control units to control
access to the system's resources. This control applies not only to the I/Odevices but also to the CPU itself.
These units can then be leveraged to create isolated environments in the secure world, by reconfiguring
the access control policy dynamically during context switches between the trusted OSes and the secure
monitor software and by ensuring that the policy is not subject to change by the trusted OS [2].

Virtualization: Approaches such as vTZ [27], MyTEE [29], and TEEVseL4 [30], leverage normal world
virtualization to execute trusted OSes in VMs.

To maintain maximum compatibility, we decided not to implement software‐based virtualization in the
secure world. This decision is primarily due to the required modifications to the Trusted OS that such an
implementation would necessitate. Instead, CROSSCON promotes the use of existing control units and
advocates for hardware‐assisted virtualization in the REE.

APU TEE Isolation ‐ Repurposed Control Units

Our approach is based on ReZone [2] and thus relies on similar assumptions and mechanisms. ReZone
requires that the platform features a Platform Partition Controller (PPC) mechanism, to control access
of bus masters to system resources, and an Auxiliary Control Unit (ACU), a co‐processor that can be
used to securely reconfigure access to the PPC. In ReZone the leveraged PPC is a platform MPU. For
CROSSCON TEE secure world isolationwe leverage SystemMemory‐Management Unit (SMMU) as a PPC
mechanism. We still require a PPC locking mechanism, which is based on a secure token to authenticate
secure monitor code with the ACU. The Trusted OS is configured to be aware of the available memory
regions, and the shared memory region is defined at compile time. During a context switch to a trusted
OS, the secure monitor reconfigures the PPC and locks the configuration using the ACU. Conversely,
during a context switch from the trusted OS, the secure monitor requests the ACU to unlock access to
the PPC, allowing execution to proceed. This approach ensures secure context switching and access
control in the system. Figure 3 illustrates the architecture for this solution.

Hardware Architecture. Hardware‐wise, the system relies on a typical TrustZone‐enabled platform. For
controlling memory access permissions, in addition to a TZASC controller, secure world TEE decompo‐
sition relies on a PPC hardware component. The PPC is dynamically configured to block secure world
accesses from the processor based on the processor's bus master ID (MID0). The PPC should be recon‐

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 28 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 Secure Monitor EL3

EL1

EL0

Secure WorldNormal World

Application

Rich OS

TAKApplication

TOS

GatekeeperTrampoline

Processor Core ACU

PPC

Memory

Softw
are

H
ardw

are
RegionMID

TOS

TAU

Figure 3: Overview of Trustzone's architecture decomposition on secure world.

figurable by a single bus master, predefined at bootstrapping time. In secure world TEE decomposition,
this bus master is the ACU (MID1). ACU and processor can communicate with each other efficiently
using a message queue implemented by a hardware peripheral.

Software Architecture. Software‐wise, secure world TEE decomposition comprises the secure monitor
and the gatekeeper. The former consists of standard securemonitor software (e.g., implementedbyArm
Trusted Firmware) augmented with a secure world TEE decomposition‐specific sub‐component named
trampoline. The secure monitor (and trampoline) runs on the main processor core and the gatekeeper
on the ACU; the PPC protects their private memory regions, which store security‐sensitive context infor‐
mation. Taken together, the trampoline and gatekeeper manage the execution of zones in the system.
They ensure that each zone can access only a private physical memory address space assigned to the
zone, and take care of all context‐switching tasks involving zone entering and exiting operations. These
operations occur when an REE application makes a call to a zone's guest TA (zone entry), and the TA
returns the results of the call (zone exit). REE and zone can share data through a shared memory region.
Secureworld TEE decomposition's software components are shippedwith the platform firmware. When
the system bootstraps, the firmware configures thememory layout and statically creates one ormultiple
zones indicating the composition of their respective software stacks, i.e., trusted OS and TAs.

APU TEE Isolation ‐ Virtualization

An important security limitation in TrustZone is the Trusted OS's access privileges [2, 1]. The Trusted
OS can access any normal and secure world resource, while the normal world can only access normal
world resources. With the CROSSCON Hypervisor, it is possible to restrict the memory access privileges
of Trusted OSes running in VMs, preventing them from arbitrarily accessing the resources of the GPOS.
Additionally, we allow for the instantiation of multiple TrustZone‐TEEs serving one GPOS. Several works
have targeted this topic [27, 3, 28, 2].

Software Architecture. To implement this feature, we build upon CROSSCON Hypervisor support for
per‐VM TEE support and develop it further. For details on running trusted OSes in VMs in CROSSCON
Hypervisor, refer to section 3.2.5.2. To support multiple TEE VMs per VMwe've updated the TEE CROSS‐
CON Hypervisor internal module, to be able to identify which TEE VM the GPOS is requesting interac‐
tion with. Additionally, this required modifications at the GPOS level, to be able to provide TEE driver
instances for each TEE separately. This means that when performing SMC calls, the OS will use different
IDs depending on the targeted trusted OS.

Figure 4a illustrates the architecture. A configuration file distributes the resources over the GPOS and
TOS VMs. The CROSSCON Hypervisor can host several GPOS and trusted OS VMs depending on the sys‐
tem design and requirements. Figure 4b illustrates the runtime VM hierarchy, where the GPOS controls
the execution of one or more Trusted OSes. The trusted OSes can be used for different purposes. For

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 29 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Configuration

Trusted
OS1

CROSSCON Hyp

Trusted
OS1

OS

App

GPOS

Trusted
OS

TATATA
lib

tz-tee
driverGPOS

TOS1

Boot Time Run Time

Trusted
OS

TATATA

TOS2

(a) TEE isolation architecture.

GPOS

TOS2TOS1

CROSSCON Hyp

(b) VM execution hierarchy.

Figure 4: TEE decomposition in normal world.

example, one Trusted OS can serve only system security needs, while other Trusted OS instances host
application‐focused functionality (e.g., DRM, electronic payments), with one trusted OS VM provided
for each trusted service developer.

3.1.4.2 TEE Isolation Feature: MCU TEE Isolation

Currently, TEEs in MCUs are only implemented by Arm in Armv8‐M CPUs with support for TrustZone‐M.
A proposal for isolating TEE software stacks in this context has been put forth by uTango [31]. In this
scenario, the secure world is comprised of monitor software that performs context switching between
software stacks in the normal world. This approach allows for effective isolation and secure operation
of different software components. We adapt this solution for the CROSSCON Hypervisor on MCUs. This
idea will be further developed and presented in the final WP3 deliverables.

3.1.4.3 TEE Isolation Feature: RTU TEE Isolation

Currently, there are no TEE solutions explicitly designed for Real‐Time Processing Unit (RTU). However,
leveraging real‐time virtualization support (based on a dual‐stage MPU) allows the instantiation of mul‐
tiple RTU‐TEE instances within VMs, akin to the deployment of trusted OS in normal‐world VMs on
general application platforms. This idea will be further developed and presented in the final WP3 deliv‐
erables.

3.1.5 TEE Abstraction

TEEs are often complex to program, requiring direct interactionwith the underlying firmware tomanage
the various security hardware modules. In response, industry and academia offer trusted OSes that can
abstract most of the complexity of the underlying systems. These OSes typically provide fundamental
security services, including cryptographic primitives and secure storage capabilities. Still, they support
the deployment of TAs, i.e., applications that leverage the trusted OS to offer specific services to the
unsecured world. Execution of such services requires TAs to interact seamlessly with the trusted OS,
whether for soliciting cryptographic keys or storing critical data. Consequently, the interface between
the trusted OS and the TA emerges as a key aspect in the TA's development lifecycle.

Several trusted OSes exist. Section 3.1.3 analysis QTEE, OP‐TEE, AMD‐TEE, mTomwer, TEEGRIS, Kinibi,
Trusty, TZVault. To aid the TA developers, these trusted OSes often offer SDK kits and extensive docu‐
mentation, thus allowing the development of a TA with the ability to interact with their specific trusted
OS. Although the trusted OSes are designed and implemented differently from one another, their in‐
terface often adheres to a standard to facilitate the TA developers. Unfortunately, some trusted OSes
(e.g., Trusty) don't make such an effort, sticking to proprietary APIs and hampering the TA developers. In
addition, proprietary operating systems that adhere to a standard rarely release public documentation

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 30 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

for their APIs.

To facilitate the TAdevelopment and enable TAs interoperability, i.e., allowing them tobe rununmodified
on different trusted OSes, CROSSCON envisions a public TEE abstraction model as a set of APIs that
should be implemented by any TEE running on top of the CROSSCON stack.

In addition to interoperability at the TA level, interoperability at the TEE model level is also a concern.
Given all TEE models presented in Figure 2, it is clear to understand their differences in system stack
structures and hardware‐based technologies they rely on. Since TEE technologies arewidely available on
different COTS platforms produced by different vendors, relying on different dedicated hardware, e.g.,
Arm TrustZone, Intel SGX, or AMD‐SEV, they tend to be more heterogeneous. Additionally, given the
market's competitive growth, there's a tendency for TEE vendors to produce TEEs independently with
proprietary features enforcement mechanisms, and protection models. Due to this TEE heterogeneity,
interoperability and compatibility challenges emerge as TEE developers struggle in terms of reusability,
requiring them to be proficient in various TEE technologies when moving platforms.

TEE Standard Selection

Initially, our goal was to map interfaces of different TEEs; however, given the widespread adoption of
Global Platform TEE specifications [4] among different TEE implementations, interoperability is not a
significant concern at the TA level. In this sense, rather than implementing an abstraction model from
scratch, we choose to follow an existing set of APIs to boost the compatibility of CROSSCON TEEs with
existing systems.

We consider mainly two different sets of APIs: PSA Certified API and GlobalPlatform APIs. PSA Certified
APIs are part of a broader set of standards (PSA Certified), whose goal is to establish a security baseline
from hardware to software, paving the way for the development of comprehensive secure systems.
GlobalPlatform APIs focus on the software interfaces between TEE OS, TA , and Client Application (CA).
PSA Certified APIs are proposed by Arm, and, although are compatible with any architecture, they are
part of an Arm‐focused vision. On the contrary, GlobalPlatform APIs are completely independent of any
architecture or chip manufacturer. Furthermore, they currently represent the leading standard, with
wide adoption from various chip manufacturers and software solutions. Most trusted OSes adhere to
these APIs, such as iTrustee, OPTEE, QTEE, and Kinibi, thusmaking themCROSSCON compliant. For these
reasons, we choose the GlobalPlatform APIs as our TEE Abstraction Model.

Global Platforms APIs are divided into two major sets: the client APIs and the core APIs. Although both
of these are important for the interoperability of security services, they define different interfaces. The
client APIs regulate the interaction between an untrusted client and an arbitrary TA . The core APIs
regulate the interaction between TA and TEE OS.

TEE Technology heterogeneity challenges

The challenge of TEE heterogeneity has prompted researchers to explore various solutions, including
emulation and hardware abstraction. Emulation efforts, such as HyperEnclave, aim to enable TEE func‐
tionality on platforms that lack native support, like Arm and AMD servers. However, these approaches
often lack support for coexisting TEE programming models and limit the development of novel or cus‐
tomizable TEEs. Keystone introduced hardware abstractions for customizable TEEs, utilizing RISC‐V PMP,
but its reliance on RISC‐V architecture hampers cross‐platform portability and lacks seamless compati‐
bility with existing TEE programming models, such as Arm TrustZone.

In response to TEE heterogeneity, two main challenges were considered, i.e., portability and interoper‐
ability. Portability refers to developers being able to run legacy stacks across various platforms and archi‐
tectures. Interoperability, allows them to run multiple and different TEE models simultaneously.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 31 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

We aim to develop a solution that tackles interoperability and portability challenges among TEE tech‐
nologies by addressing existing approach limitations. Our proposal utilizes hardware virtualization prim‐
itives found in COTS platforms such as Arm VE, Intel‐VT, and RISC‐V Hypervisor extension. These primi‐
tives are employed to establish TEE‐compatible isolated execution environments by emulating custom
platform behavior.

3.2 CROSSCON Hypervisor

Many IoT applications and embedded OSes anchor their security to the correctness of the TEE. How‐
ever, not all the applications could and should run inside the TEE. Isolation should be extended also to
applications outside the TEE in order to protect them from each other. The strong CPU and memory
isolation that many platforms already offer is still not enough to guarantee full isolation as many micro‐
architectural resources such as last‐level caches, interconnects, network stack, and memory controllers
remain shared among partitions. Existing VM, hypervisor, and containers technology (i.e., microK8) of‐
ten depend on a large general‐purpose OS (typically Linux) either to boot, manage VMs, or provide a
myriad of services, such as device emulation or virtual networks, thus are unsuitable to host security‐
critical applications.

This section explores the development of the CROSSCON Hypervisor to increase isolation and security
guarantees (at the architectural and microarchitectural level). CROSSCON Hypervisor aims to comple‐
ment TEEs with amicro‐kernel‐like architecture with a thin static partitioning hypervisor layer. However,
because static partitioning hypervisors lack of flexibility to dynamically create andmanage new VMs and
services, the main key challenge relies on providing this required dynamicity and per‐VM services with‐
out enlarging the TCB and lowering the isolation guarantees.

3.2.1 Virtualization and Virtualization Technologies

Virtualization enables the concurrent execution of multiple OSes on a single hardware platform through
the use of a hypervisor or VMMonitor (VMM), analogous to the role of an OS managing processes. The
core functionalities of this system include resourcemanagement, abstraction, and isolation. Specifically,
the hypervisor provides a VM abstraction layer for guest OSes, effectively separating and managing ac‐
cess to hardware resources.

Virtualization is extensively applied across various computing environments. In server settings, it aids
in load balancing and power management, optimizing resource utilization and energy efficiency. Desk‐
top applications benefit from cross‐platform compatibility and enhanced systems development environ‐
ments, allowing for seamless operation ofmultipleOSes on a single physicalmachine. Within embedded
systems and Mixed‐Criticality System (MCS), the hypervisor plays a crucial role in isolation, consolida‐
tion, and security.

CPU & Memory. CPU Virtualization extensions introduce an additional processor mode for hypervisor
operation. The new privilege layer, often called hypervisor mode, sits underneath the pre‐existing user
and kernel modes. The new privilege level allows guest software to utilize CPU features as intended,
facilitated by the replication and banking of system configuration registers across modes. CPU cores are
often further enhanced with registers for configuring virtualization features, like selective trapping for
sensitive instructions. Virtualization extensions typically introduce two‐level translation hardware sup‐
port. TheMMU is enhanced with two levels of translation, translating guest‐virtual to guest‐physical ad‐
dresses using guest‐managed page tables in the first stage, followed by a translation from guest‐physical
to host‐physical addresses via hypervisor page tables in the second translation stage.

Interrupts. In systems with limited virtualization support, certain challenges arise, particularly in the
context of interrupt handling. The interrupt controller, like other shared devices, must be emulated,

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 32 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

necessitating the hypervisor to trap and emulate most, if not all, access to the interrupt system. Fur‐
thermore, this emulation process introduces significant interrupt latency since the hypervisor is required
to intercept every interrupt before selectively injecting them into the appropriate VM. This step is cru‐
cial for maintaining system isolation between VMs but at the cost of increased latency and complexity
in interrupt handling.

On the other hand, systems designed with full virtualization support offer more efficient mechanisms
for interrupt management. Features such as direct virtual interrupt injection streamline the process, al‐
lowing interrupts to be delivered directly to the guest OS without the need for hypervisor intervention.
This reduces the overall complexity of the virtualization layer andminimizes interrupt latency, enhancing
system performance. Additionally, these systems provide guest interfaces for direct interrupt manage‐
ment, reducing performance costs associated with emulating the interrupt controller. This capability
not only simplifies the virtualization architecture but also improves the efficiency and responsiveness of
virtualized environments.

IO Protection. An IOMMU is a hardware component that provides memory management and access
control for I/O devices, handling address translation and isolation through virtual memory. Typically
an IOMMU is managed by the OS to control which memory addresses a device can read from or write
to, thereby enhancing the system's security. In a virtualization context, the IOMMU features a sec‐
ond level of translation tables, similar to virtualization support in the MMU. Another option is to use
an IO Memory Protection Unit (IOMPU). An IOMPU focuses specifically on protecting memory for I/O
operations, without applying translation tables. This could involve ensuring that devices only access
authorized memory regions and protecting against unauthorized or malicious memory access attempts
by I/O devices.

In the absence of an IOMMU or IOMPU, System on Chip (SoC)s with multiple bus masters, such as DMA‐
capable devices, crypto‐accelerators, and specialized processing units like FPGAs, or Graphic Processing
Unit (GPU), face several challenges. In these cases there are no hardware mechanisms for permission
checks or access control, exposing the system to buggy device drivers, malicious software, and misbe‐
having I/O devices. The solution is often to perform device emulation or mediation, however, this incurs
performance overheads and increases the TCB, increasing the risk for security vulnerabilities.

Conversely, the incorporation of I/O protection transforms both non‐virtualized and virtualized systems
significantly. For non‐virtualized systems, IOMMUand IOMPUprovidememory protection against unau‐
thorized access from other bus masters, with IOMMU further enabling the mapping of contiguous IO
Virtual Addresses (IOVA) to fragmented physical addresses. In virtualized environments, IOMMU ex‐
tends these benefits by facilitating memory protection, efficient virtual address translation for device
DMA, sharing of virtual address space between I/O devices and CPUs, and interrupt remapping and
virtualization.

Nested Virtualization. Nested virtualization involves running a guest hypervisor within a VM of a host
hypervisor. This capability is particularly beneficial for cloud service providers offering Infrastructure
as a Service (IaaS) and supports a variety of use cases, including full‐stack deployment, mobile app de‐
velopment, testing, validation, and education and training. Essentially, nested virtualization allows for
multi‐level virtualization, enabling the deployment of VMs within VMs on a cloud platform that itself
utilizes virtualization technology.

3.2.1.1 Application Class Virtualization

Application‐class processors, commonly known as APUs, are processors tailored for general‐purpose
tasks such as managing user interfaces and executing various applications on devices like smartphones,
tablets, and IoT devices. With the increasing demand for advanced functionalities andmultimedia capa‐
bilities in modern electronic devices, APUs play a crucial role in enabling feature‐rich user experiences

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 33 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

and powering a wide range of applications across diverse industries, including mobile computing, auto‐
motive, healthcare, and consumer electronics.

Virtualization in these systems enhances the capabilities of application processors by enabling the ef‐
ficient and secure execution of multiple virtualized environments on a single physical device, thereby
optimizing resource utilization and improving overall system flexibility and scalability.

Arm Virtualization

Arm's architecture is the most prevalent instruction set architecture in mobile devices, and it has also
gained significant traction in embedded systems, wearables, and increasingly in server and PC applica‐
tions [Armeverywhere]. Unlike traditional semiconductor companies, Arm does not manufacture the
chips it designs; instead, it licenses its Intellectual Property (IP) to partners who fabricate and sell these
chips.

CPU & Memory. Given the widespread proliferation of virtualization in the last decades, Arm imple‐
mented hardware support since version 7 of the ISA. The most recent versions of the architecture, i.e.,
Armv8/9‐A, also feature an architecture with a dedicated hypervisor privilege mode (EL2) which sits be‐
tween the secure firmware mode (EL3) and the kernel/user modes (EL1/EL0) [Arm_virt] where guests
execute. A hypervisor running at EL2 has fine‐grained control over which CPU resources are directly
accessible by guests (e.g., control registers). Attempted accesses to a denied resource by a guest OS
results in a trap to the hypervisor. Additionally, it is possible to route specific guest exceptions and sys‐
tem interrupts to EL2. Other resources that can be managed by the hypervisor include the CPU‐private
generic timer and the Performance Monitor Unit (PMU). EL1/EL0 memory accesses are subject to a
second stage of translation which is in full control of the hypervisor [Arm_virt]. Any guest access to a
memory region not mapped in the second stage of translation will result in a trap to EL2. Arm provides
multiple "translation granules", resulting in pages of different sizes: 4 KiB, 16 KiB, and 64 KiB. For each
page size, it is also possible to map large contiguous memory regions. These are known as superpages
(or hugepages), which reduce TLB pressure. The more commonly used 4KiB granule allows for 1GiB and
2MiB superpages. Arm also defines the SMMU, which extends memory virtualizationmechanisms from
the CPU to the bus, to restrict VM‐originated DMAs.

Interrupts. Arm virtualization acceleration spans the full platform, including the General Interrupt Con‐
troller (GIC). The GICv2 [Arm2022gicv2] standard has two main components: a central distributor and
a per‐core interface. All interrupts are routed first to the distributor, which then forwards them to the
interfaces. The distributor allows the configuration of interrupt parameters (e.g., priority, target CPU)
and the monitoring of interrupt state, while the interface enables the core management of interrupts.
GICv2 provides virtualization support only on the interface; there is a fully virtual interface with which
the guests can directly interact without VM exits. The distributor, however, must be fully emulated.
Furthermore, all interrupts must first be handled by the hypervisor, which can then inject them into the
VM, by writing to GIC list registers (LRs). These registers essentially take the place of the distributor for
the virtual interface: when a given interrupt (along with metadata such as priority or state) is present on
a register, it is forwarded to the virtual interface. The GICv2 spec limits the number of LRs to amaximum
of 16. GICv3 and v4 [Arm2022gic] provide support for direct delivery of hardware interrupts to VMs;
however, this feature is only implemented for Inter‐Processor Interrupt (IPI) and Message‐Signaled In‐
terrupt (MSI), i.e., interrupts implemented as write operations to special interrupt controller registers
and propagated via the system interconnect. Standard wired interrupts, propagated by dedicated sig‐
nals, are still subject to the mentioned limitation, i.e., hypervisor interrupt injection through the list
register.

System Memory Management Unit. At its core, the Arm SMMU provides hardware support for mem‐
ory address translation, enabling devices to use virtual addresses for memory access, which are then
translated to physical addresses by the SMMU. This capability is critical for implementing virtualized
systems where multiple VMs share physical hardware resources, enabling peripheral devices to only

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 34 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

access the VM memory to which they are assigned to. The SMMU architecture is characterized by sev‐
eral key components. The translation context bank contains context descriptors for various devices,
each holding the configuration for the address translation, including the base address of the transla‐
tion table. These context descriptors enable the SMMU to perform address translations specific to each
device, ensuring isolation and security between different VMs or applications. Devices are identified
by stream IDs, which are mapped to specific context banks through the stream table. This mapping
mechanism allows the SMMU to apply the correct translation context to the memory accesses made by
different devices, facilitating device‐specific memory management policies and isolation. To detect and
respond to various types of access violations or translation faults, the SMMU supports interrupt gener‐
ation upon fault detection. Often, the SMMU supports multiple stages of address translation, Stage 1
(S1) and Stage 2 (S2). S1 translation is applied first, translating device virtual addresses to Intermediate
Physical Addresses (IPAs), which are then subject to a second stage of translation, mapping IPAs to sys‐
tem physical addresses. The first stage of translation is managed by the guest OSes. The second stage,
managed by the hypervisor, allows for separation between VM and address translations, enhancing se‐
curity and flexibility in memorymanagement. Through the use of translation tables, the SMMU controls
access permissions and memory attributes for device accesses, including read/write permissions. This
ensures that devices can only access memory regions they are authorized to, with appropriate mem‐
ory type attributes applied. The evolution of the Arm SMMU architecture, including SMMUv2 [32] and
SMMUv3 [33], has introduced enhancements like increased scalability. SMMUv3, introduces features
such as fine‐grained stream matching, enabling more precise control over which devices are subject to
specific translation contexts, as well as memory‐based configuration of the translation contexts, which
eliminates the restrictions of a limited number of registers.

RISC‐V Virtualization

RISC‐V [34] is an open‐source, royalty‐free ISA for designing computer processors gaining significant
traction in the last few years. Unlike proprietary ISAs, e.g., Arm and x86, RISC‐V is openly available
for anyone to use, modify, and implement, allowing companies and developers to innovate and create
custom processors without licensing fees. It offers flexibility and customization, making it suitable for
various applications, from microcontrollers to data center servers.

CPU & Memory. The RISC‐V privileged ISA divides its execution model into 3 privilege levels [35]: (i)
machine mode (M‐mode) is the most privileged level, hosting the firmware which implements the su‐
pervisor binary interface (SBI) (e.g., OpenSBI); (ii) supervisor mode (S‐Mode) runs Unix type OS that re‐
quire virtual memory management; (iii) user mode (U‐Mode) executes userland applications. Although
the RISC‐V ISA allows the implementation of hypervisors resorting, for example, to classic virtualization
techniques (e.g., trap‐and‐emulation and shadow page tables), such techniques incur a prohibitive per‐
formance penalty. Thus, the RISC‐V privileged architecture specification introduced hardware support
for virtualization through the (optional) Hypervisor extension [35]. The RISC‐V Hypervisor extension
execution model follows an orthogonal design where the supervisor mode (S‐mode) is modified to a
hypervisor‐extended supervisor mode (HS‐mode) well‐suited to host both type‐1 or type‐2 hypervisors.
Additionally, two new privileged modes are added and can be leveraged to run the guest OS at virtual
supervisor mode (VS‐mode) and virtual user mode (VU‐mode). The Hypervisor extension also defines
a second translation stage (G‐stage) to virtualize the guest memory by translating guest physical ad‐
dresses into host‐physical addresses. The HS‐mode operates like S‐mode but with additional hypervisor
registers and instructions to control the VM execution and G‐stage translation. For instance, the hgatp
register holds the G‐stage root table pointer and translation‐specific configuration fields.

Interrupts. The Platform Local Interrupt Controller (PLIC) [36] was the first interrupt controller available
for RISC‐V architectures, offering a naive solution for interrupt management. The PLIC specification
presents several limitations in terms of scalability and features. The global configuration registers are
shared across two privilege levels: M‐mode and S‐mode, and lack support for MSI. MSIs offer significant
advantages in the flexibility of interrupt management, by implementing interrupt requests as messages

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 35 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

propagated through the system interconnect. The PLIC also lacks virtualization support, resulting in
hypervisors needing to rely on techniques like trap‐and‐emulate decreasing performance. In response to
the PLIC limitations, the RISC‐V community developed a new interrupt controller specification. The RISC‐
V Advanced Interrupt Architecture (AIA) [37] is the novel reference specification for interrupt‐handling
functionality. The AIA consists of (i) the Smaia/Ssaia RISC‐V extension to the privilege ISA and (ii) two
interrupt controllers, the APLIC and IMSIC. The protection against undesirable accesses is guaranteed
at the core level, via the PMP, and at the system level via the IO Physical Memory Protection (IOPMP)
or RISC‐V IOMMU. Virtualization support is offered through the MSIC, while APLIC offers compatibility
with interrupts signaled by wire on devices that do not support MSI.

IO Memory Management Unit. The RISC‐V IOMMU defines three methods for managing DMA‐capable
devices using virtual memory [38]. The first method, device pass‐through, permits direct control of
a device by a guest OS with minimal hypervisor intervention. Alternatively, a guest OS can share its
process address space with devices, which allows guest applications to program the device using IOVA.
Lastly, a host OS or hypervisor may choose to retain direct control of a device. The IOMMUmay option‐
ally redirect MSI from guest‐controlled devices to the corresponding guest interrupt controller. For this
purpose, the IOMMU uses the MSI address translation data structures provided by the hypervisor and
defined by the RISC‐V AIA specification. The RISC‐V IOMMU specification incorporates a memory‐based
mechanism for device and process context management, utilizing hardware‐provided unique identifiers
(device_id and process_id), device_id are similar to Arm's SMMU stream ID whereas process_id is sim‐
ilar to the SMMU's context banks, making the RISC‐V IOMMU most similar to Arm's SMMUv3, and not
SMMUv2. It employs a two‐stage address translation and a page‐based virtual memory system in line
with the RISC‐V Privileged specification, offering the flexibility to share or allocate distinct page tables
for CPU MMU and IOMMU operations. Additionally, it integrates a method for identifying virtual inter‐
rupt files and MSI address translations through MSI page tables as delineated by the RISC‐V Advanced
Interrupt Architecture. The architecture supports both MSI and wire‐signaled interrupts for software
service requests, enhancing system efficiency and response.

3.2.1.2 Real‐Time Class Virtualization

Real‐time class processors, commonly known as RTU, are specialized integrated circuits designed to exe‐
cute taskswith stringent timing requirements in embedded systems. These processors are engineered to
provide deterministic and predictable performance, making them suitable for applications where timely
response is critical, such as automotive systems, industrial control, and telecommunications.

Similarly to their APUs counterparts, virtualization in the context of real‐time class processors, such as
Cortex‐R processors, primarily serves two purposes: consolidation and isolation. Virtualization allows
multiple Real‐Time OS (RTOS) or real‐time applications to run concurrently on a single RTU, while also
providing the means to isolate critical real‐time tasks from non‐real‐time or less critical processes run‐
ning on the same hardware platform.

CPU & Memory. Virtualization in real‐time processors is achieved by introducing a hypervisor privilege
mode to the architecture, similar to application class processors. This mode controls access to security‐
sensitive system registers and resources. Unlike application class processors, real‐time processors do
not feature MMU. Instead, they utilize MPUs to establish access control policies for system resources.
Some processors can apply an offset to every memory or MMIO access performed by the guest, de‐
spite not offering virtual memory capabilities. In the context of Arm, real‐time processors implement
the Arm real‐time architecture. Currently, Arm provides the Armv8‐R architecture with optional virtu‐
alization extensions [Armv8r‐virt] for virtualization support. RISC‐V is in the process of specifying real‐
time virtualization, primarily through discussions related to the supervisor Physical Memory Protection
(sPMP) [39]. Current work in WP4 is integrating a preliminary version of this specification into a BA5x
core.

Interrupts. Interrupt management in real‐time virtualization processors closely resembles that of ap‐

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 36 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

plication class virtualization. The interrupt controller, a shared peripheral, requires the hypervisor to
control access and mediate guest’s access. For Arm real‐time platforms, a GICv2 controller, specifically
the GIC 400, is typically featured. In the case of RISC‐V, WP4 is currently working on implementing the
APLIC in this class of processors.

IOMPU. Platforms with real‐time processors may or may not include SMMUs. When present, they are
likely managed by the APU. However, real‐time processors typically feature IOMPUs, which are often
vendor‐specific. Therefore, real‐time hypervisor implementations must provide explicit support for the
platform's IOPMU mechanisms. On Arm, IOMPUs vary across vendors. For instance, Xilinx uses the
XMPU, NXP uses the Resource Domain Controller (RDC), and Texas Instruments uses Firewall. On RISC‐
V, working groups are developing the IOPMP specification. Work is underway inWP4 to provide a device
access control mechanism for RISC‐V called perimeter‐guard.

3.2.1.3 MCU Class Virtualization

Microcontrollers are generally focused on simple control tasks, and application processors are character‐
ized by their higher performance, often featuringmultiple CPU cores, advanced instruction sets, and spe‐
cialized hardware accelerators. Typically, they do not directly provide virtualization mechanisms.

CPU & Memory. Microcontroller Units (MCUs) do not have built‐in virtualization facilities, such as an
extra CPU execution mode for the hypervisor or virtual memory. However, some techniques can over‐
come some of the hardware limitations [40, 41, 42, 43]. Platforms with CPUs with Armv6‐M, Armv7‐M,
and Armv8‐Mwithout Trustzone, architectures feature two privilegemodes, thread and handler modes,
with handler mode being more privilege and being able to restrict access to software running in thread
mode e.g., through the MPU. In these platforms virtualization is achieved through para‐virtualization,
meaning that the guests are aware of the underlying hypervisor, and are modified to collaborate with
a hypervisor through specific hypercalls for performing sensitive/critical functions. RISC‐V platforms
targeting the same class of performance also offer two privilege modes, in this case, the machine and
user modes. However, RISC‐V MCUs benefit from a fully virtualizable architecture, meaning that it is
possible to transparently execute originally high‐privilege software at a low‐privilege level and securely
handle the execution of high‐privilege operations. On Armv8‐M platforms featuring TrustZone‐M, the
higher privilege of the secureworld can be leveraged to execute software that controls the normal world
execution, allowing for the establishment of access control over system resources and interrupt man‐
agement [42]. In other words, it is possible to use the Armv8‐M secure world to implement a hypervisor.
Software executing in the normal world cannot access the hypervisor's CPU state or memory. Execution
control can be taken, for example, through secure world interrupts, explicit invocations, or exceptions
on accesses to specific memory regions. For memory protection, the guest configuration of the MPU
must be saved and restored during context switches.

Interrupts. Interrupt management in these platforms also needs to be overseen by the hypervisor.
Specifically, this involves performing a context switch of the interrupt controller configuration itself. This
means thatwhenever a guest is scheduled to run, its configuration of theNested Vectored Interrupt Con‐
troller (NVIC) is restored. This allows for seamless transitions between different guests, ensuring each
has the appropriate access to system resources.

I/O Control. Flexible I/O control may be limited in these systems, making DMA operations challenging to
handle transparently. In Armv8‐M platforms featuring TrustZone‐M, I/O protection is achieved through
vendor‐specific controllers. These units control devices' access to normal and secure world memory. A
straightforward approach to solve thismight involve reprogramming this protection unit according to the
currently executing guest. However, this could lead to violations of the intended access control policy
for outstanding DMA operations after a context switch. Therefore, the most effective way to perform
I/O control on these platforms is to implement trap‐and‐emulate techniques or a front‐end back‐end
driver model. In both solutions the hypervisor mediates access to the DMA device and sanitizes the

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 37 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

DMA configuration before configuring the DMA device, ensuring that all DMA operations adhere to the
established access control policies.

3.2.2 Microarchitecture Isolation Techniques

A system'smicroarchitecture includes elements like thememory system, interconnects, and CPU design.
Since modern processors prioritize performance, security considerations at the microarchitecture level
are often overlooked due to their potential impact on performance. However, overlooking security at
this level can leave systems vulnerable to various attacks, including side‐channel attacks and speculative
execution vulnerabilities.

3.2.2.1 Attacks

Microarchitectural attacks leverage these optimizations, exposing vulnerabilities in cryptographic com‐
putations, general‐purpose computations, and the kernel. The leakage of sensitive information persists
across common isolation boundaries, including processes, containers, and VMs. This sectionwaswritten
mostly based on existing surveys [44, 45, 46, 47].

Cache. Cache attacks, particularly cache timing attacks, have primarily targeted cryptographic algo‐
rithms. Recent studies have identified three common cache attack techniques, which are agnostic to
specific cache and hardware configurations: Evict+Time, Prime+Probe, and Flush+Reload. Evict+Time
involves measuring how the execution time of an algorithm changes when a chosen cache set is evicted.
Prime+Probe assesses whether a victim computation affects the access time to every cache way within
a selected cache set. Flush+Reload entails flushing a shared memory location from the cache and then
measuring the time it takes to reaccess it.

Branch Prediction. The branch prediction functional unit leverages its own caches to store the branch‐
pattern table storing historical branch outcomes and the branch‐target buffer storing past branch tar‐
gets. Attackers targeting the branch prediction unit, prime the branch‐target buffer by executing a se‐
quence of branches. If the victim encounters a branch misprediction, it leads to the replacement of an
entry in the branch‐target buffer. Subsequently, the attacker observes an increased execution time due
to a misprediction in one of its branches.

Speculative Execution. Processors engage in speculative fetching and execution, executing instructions
before confirming the accuracy of predictions, with the ability to retract instructions in the event of a
misprediction. Recent vulnerabilities such as Spectre and Meltdown have demonstrated security risks
associated with speculative execution, by exploiting it to manipulate the processor cache state. Due to
the inadequate cleanup of processor cache state in contemporary processors following misspeculation
detection, a cache timing attack can be employed to extract sensitive information as a result of cache
state modification during speculative execution.

Interconnect. Essential architectural components like the CPU, memory, and peripherals need to be
interconnected. This connection is typically facilitated through a central interconnect, often referred
to as a bus matrix. When a bus master broadcasts an address, the bus matrix establishes a commu‐
nication channel between the main and secondary components. In situations where there are simul‐
taneous accesses, the bus can concurrently execute multiple non‐blocking full‐bandwidth transfers be‐
tween various busmasters and secondary ports. However, if two data transfers are directed to the same
bus secondary, the bus arbitration policy determines the specific order in which the transfers are exe‐
cuted. The arbitration policy may result in leaking information by enabling an attacker to detect delayed
accesses, which can be used to infer the application's internal state. During CROSSCON development
we've identified a novel instance of this attack in MCUs, which was published in IEEE Security & Privacy
2023 [48].

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 38 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.2.2.2 Countermeasures Available to the Hypervisor

The countermeasures used to prevent microarchitectural attacks are crucial for enhancing the security
and resilience of modern computing systems.

Manipulation of timing sources. Microarchitectural attacks commonly rely on precise timing measure‐
ments. In modern cloud environments, each VM possesses its own timing offsets, encompassing low‐
level timers such as cycle counter registers. However, microarchitectural attacks appear to be largely
unaffected by these variations.

Disabling cache‐line sharing and shared memory. Disabling resource sharing can be implemented at
various levels for different resources with distinct granularities. In the case of the last‐level cache, which
is usually physically‐indexed and physically‐tagged, cache lines can only be shared among processes
if they belong to a shared memory region. Adopting this approach leads to a substantial increase in
memory utilization and results in longer execution times due to elevated cache miss rates.

Avoiding cache‐set sharing. To mitigate cache‐set sharing, cache‐coloring has been proposed. This
involves allocating cache colors, i.e., sets, to specific VMs when applied by a hypervisor. Additionally,
one color can be reserved for the hypervisor itself.

Cache cleansing. Cache cleansing is employed to address the challenge of leakage that persists in the
cache after a victim has been scheduled out, assuming that the attacker and victim cannot access any
cache set simultaneously. The objective of cache cleansing is to maintain the cache in a state that re‐
veals no information, thus preventing cache attacks. However, with the rise of multi‐core processors,
the practical relevance of cache cleansing has diminished. Disabling hyperthreading may be a feasible
option, but disabling multi‐core or the last‐level cache is not practical. Even without the last‐level cache,
coherency protocols can maintain cache line coherence across processors and reintroduce timing dif‐
ferences that were thought to be eliminated.

Branch predictor cleansing. To address branch predictor‐based channels beyond processor caches, a
proposed solution involves clearing the branch predictor on a context switch. Regularly resetting the
predictor state ensures that current predictions are not influenced by past inputs, thus minimizing in‐
formation leakage. However, it's important to note that this defense mechanism comes at a cost to
performance since branch predictors depend on learning the branching history of running programs to
achieve a high hit rate.

Detecting Attacks. Continuous monitoring software has been proposed as a vigilant measure against
malicious activities within a system, actively identifying and halting potential threats posed by attacking
processes or VMs. Various detection approaches have been suggested: using performance counters to
discern abnormal cache behavior for example through the incorporation of unsupervised learning, or
monitoring performance variations in a program simulating a typical victim application.

3.2.3 Hypervisors Feature Analysis and Selection

CROSSCON Hypervisor utilizes a static partitioning hypervisor as a starting point, providing strong isola‐
tion between different partitions. This isolation is not just limited to the architectural level, isolating VMs
from each other, but extends to themicroarchitectural level as well. CROSSCONHypervisor achieves this
by implementing built‐in mechanisms like cache coloring, which ensures isolation for shared resources
such as last‐level caches.

The use of a thin static partitioning hypervisor layer also helps in maintaining a minimal TCB, which is
crucial for upholding high‐security guarantees. While existing technologies often rely on a large general‐
purposeOS or hypervisor, CROSSCON's approach can be applied to a broader range of devices. However,
this approach does come with its own set of challenges, such as the lack of flexibility to dynamically
create and manage new VMs and services. These challenges will be addressed by enhancing the static

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 39 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

partitioning design of the selected hypervisor.

3.2.3.1 Static Partitioning Virtualization (SPV)

Static partitioning is the practice of, either at a build or initialization time, distributing all platform re‐
sources to different subsystems. This can be materialized in many shapes and forms, depending on the
hardware primitives. Virtualization is a natural enabler for the static partitioning architecture, due to
the strong encapsulation guarantees and flexible resource assignment. Hypervisors designed for the
static partitioning UC (or providing such a configuration) have three fundamental properties: (i) exclu‐
sive assignment of virtual CPUs to physical CPUs (i.e., no scheduler); (ii) static allocation, assignment,
and mapping of all hypervisor and VMmemory at build or initialization time; and (iii) direct assignment
of devices to VMs (passthrough) and exclusive allocation of their interrupts to the same VM. To imple‐
ment this efficiently, these hypervisors are highly dependent on virtualization hardware support both
at the CPU and platform level (e.g., SMMU). Static Partitioning Hypervisor (SPH) also has non‐functional
requirements centered around minimizing interrupt latency and inter‐VM interference. Thus, over the
past few years, there have been efforts to enhance SPHwithmechanisms to address these requirements.
These include cache coloring and, analogously to what has been done for x86 [49], direct injection in
Arm processors. Furthermore, the code base needs to be minimal and follow industry coding standards
(e.g., MISRA); this eases functional safety (FuSa) certification efforts.

Cache Coloring. In SPH, VMs still share microarchitectural resources such as the last‐level cache (LLC).
The behavior and memory access pattern of one VMmight result in the eviction of another VM's cache
lines, impacting the latter's hit rate and consequently its execution time. Thus, there is the need to
partition shared caches, assigning each partition to a different VM. While in the past Armv7 processors
provided hardware means to apply this partitioning by way of per‐master cache‐locking, modern‐day
Arm CPUs do not provide those facilities. A solution is cache coloring, a software technique for index‐
based cache partitioning [50]. Cache coloring explores the intersection of the virtual addresses' cache
index and page number when creating virtual‐to‐physical memory mappings. Each color is a specific bit
pattern in this intersection that maps only to specific cache sets. Thus, hypervisors can control which
cache sets are assigned to a given VM by selecting which physical pages are mapped to it. By exclusively
assigning a cache partition (i.e., group of cache sets or colors) to a given VM, cache coloring fully elimi‐
nates the conflict misses resulting from inter‐VM contention. Cache coloring can also be applied to the
hypervisor itself by assigning it one or more specific colors.

Direct Interrupt Injection. Direct interrupt injection is a new technique implemented in Arm‐based SPH
to eliminate the need for the hypervisor mediating interrupt injection. With this technique, the hy‐
pervisor passes through the physical GIC CPU interface and routes all interrupts directly to the VM by
configuring the CPU to trigger interrupt traps directly at EL1, i.e., kernel mode. The hypervisor must
still emulate the shared distributor to ensure isolation between VMs, i.e., prevent misconfiguration of a
given VM's interrupts by another VM. This allows physical interrupts to be directly delivered to the VM
with no hypervisor intervention, reducing latency to native execution levels. The forfeiting of interrupts
should not be a major issue as SPH does not directly manage devices. However, SPH still needs to com‐
municate internally using IPI. Direct interrupt injection implementations address this issue by leveraging
standard software‐delegated exception interface (SDEI) [Arm_sdei] events instead of directly using IPI.
SDEI is implemented by firmware, allowing the hypervisor to register an event during initialization. The
hypervisor can then trigger the event by issuing a system call to firmware (via a secure monitor call
instruction, SMC), which will result in diverting execution to a predefined hypervisor handler, similar
to Unix signals. In reality, firmware maps these events to its own secure reserved IPI since, as part of
TrustZone, the GIC provides further facilities to reserve interrupts to EL3.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 40 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Xen (Dom0-less) HypervisorHyp

Sup

User

Bao Hypervisor

VM3VM2VM1

HW Platform

Rich OS RTOS

Rich Apps RT Apps

BM App

Jailhouse Hypervisor

Cell 2Cell 1Privileged

Root Cell

HW Platform

Linux
Inmate

Rich OS

Rich Apps RT Apps

Inmate

RTOS

DomU 2DomU 1Privileged Dom0

(optional in Dom0-less)

HW Platform

Dom0

Kernel
Rich OS

Rich Apps RT Apps

RTOS

System

Services

Native Drivers

seL4 microkernel

VM 1

HW Platform

Rich

OS

Rich

Apps

VMM 1 VM 2

RTOS

RT Apps

VMM 2

Figure 5: Architectural overview of the assessed hypervisors: Jailhouse, Xen (Dom0‐less), Bao and seL4
CAmkES VMM.

3.2.3.2 Static Partitioning Hypervisors

Multiple static partitioning hypervisors are currently available, developed by both academia and in‐
dustry. This section highlights the main features of the currently available works (depicted in Figure
5).

Jailhouse Hypervisor. Jailhouse [51, 52] is an open‐source hypervisor developed by Siemens. Unlike
traditional baremetal hypervisors, Jailhouse leverages the Linux kernel to boot and initialize the system
and uses a kernel module to install the hypervisor. Once Jailhouse is activated, it runs as a baremetal
component, taking full control over the hardware. Jailhouse has no scheduler and only leverages the ISA
virtualization primitives to partition hardware resources acrossmultiple isolated domains, a.k.a. ``cells".
Guest OSes or baremetal applications running inside cells are called ``inmates". The mainline includes
support for x86 and Armv7/8‐A, and a work‐in‐progress RISC‐V port[53]. The research community has
been actively contributing with mechanisms to enhance predictability, namely: cache coloring, DRAM
bank partitioning [54], memory throttling, and device quality of service (QoS) regulation [55]. An unof‐
ficial fork including these features is available [56]. Direct injection [57] was also implemented.

Xen (Dom0‐less) Hypervisor. Xen [58] is an open‐source hypervisor widely used in a broad range of
application domains. A key distinct feature of Xen is its dependency on a privileged VM (Dom0) that
typically runs Linux, to manage non‐privileged VMs (DomUs) and interface with peripherals. Xen was
initially designed for servers and desktops but has found also adoption on embedded applications. For
embedded and automotive applications, Xilinx has led the implementation of Xen Dom0‐less. With this
novel approach, it is possible to have a Xen deployment without any Dom0, booting all guests directly
from the hypervisor and statically partitioning the system. A patch for guest and hypervisor cache color‐
ing support [59] is available. There is also an SIG working towards facilitating downstream FuSa certifi‐
cations by fostering multiple initiatives within the community including MISRA refactoring or providing
the option of running Zephyr [60] as Dom0. Besides Armv8‐A, Xen also supports x86, and Armv8‐R and
RISC‐V ports are underway.

Bao Hypervisor. Bao [61] is an open‐source static partitioning hypervisor that was made publicly avail‐
able in 2020. It implements the pure static partitioning architecture, i.e., a minimal, thin layer of priv‐
ileged software that leverages the existing ISA virtualization primitives to partition the hardware. Bao
has no scheduler and does not rely on any external libraries or privileged VM (e.g., Linux), consisting of
a standalone component that depends only on standard firmware to initialize the system and perform
platform‐specific tasks such as power management. Bao originally targeted Armv8‐A [61]. The mainline
now includes support for RISC‐V [62], Armv7‐A, and Armv8‐R ports are in the making. Bao was specifi‐
cally designed to provide strong real‐time and safety guarantees. It implements hardware partitioning
mechanisms to guarantee true freedom from interference, i.e., cache coloring (VM and hypervisor), and
direct interrupt injection. There are ongoing efforts to implement memory throttling.

seL4 CAmkES VMM. seL4 is a formally verified microkernel [63]. Its design model revolves around the
use of capabilities. When used as a hypervisor, seL4 executes in hypervisor mode (e.g., EL2) and ex‐
poses extra capabilities and APIs to manage virtualization functionality [64]. A user‐level VMM uses

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 41 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

its resource capabilities to create VMs. As of this writing, only the seL4 CAmkES VMM [65, 66] code
is open‐source. Each CAmkES VMM manages a single VM. One current issue of the CAmkES VMM is
that, although it supports multicore VMs, each VMM runs as a single thread pinned to a single CPU.
seL4 supports x86, Armv7/8‐A, and RISC‐V, but the latter is not supported by CAmkES VMM. In CAmkES,
resources are statically allocated to each component using capabilities. Originally, seL4 provided only
a priority‐based preemptive scheduler. The newest MCS kernel extends it with scheduling context ca‐
pabilities, allowing time management policies to be defined in user space [67]. Cache coloring has also
been implemented in seL4 [68], not only at the user/VM level, but also for the kernel, but it was not
publicly available at the time of writing. seL4 has formal proofs for its specification, implementation
from C to binary, and security properties [69, 70]. There are also ongoing efforts to extend the formal
verification to prove the absence of covert timing channels [71]. Finally, CAmkES is being deprecated
shortly in favor of the seL4 Core Platform (seL4CP) [72].

3.2.4 Static Partitioning Hypervisor Analysis

We have performed an analysis of static partitioning hypervisors in [73]. The following are the work's
main insights.

Takeaway 1. Due to the lack of efficient hardware support for directly delivering interrupts to guests in
Arm platforms, all SPH increase the interrupt latency by at least one order of magnitude. However, by
design, SPHs such as Jailhouse and Bao can achieve the lowest latencies as they provide an optimized
path for hardware interrupt injection.

Takeaway 2. Interrupt latency increases tenfold under interference workloads. Applying cache coloring
to VMs proves very beneficial, but for it to be fully effective, it is imperative to reserve a color for the
hypervisor itself.

Takeaway 3. The direct injection technique is effective in addressing the shortcomings of GIC interrupt
virtualization, as results demonstrate that interrupt latency overhead is reduced to near‐native laten‐
cies.

Takeaway 4. Only Xen and Bao respect interrupt priority order. Additionally, we observe that for all SPH,
if multiple interrupts are triggered simultaneously, there is a partial priority inversion as lower priority
interrupts take precedence due to the need for the hypervisor to handle and inject them.

Takeaway 5. IPI latency reflects the same overheads of external interrupts. Future Arm platforms might
reduce them with GICv4.1 [Arm2022gic]. In the short term, direct injection might alleviate this issue.
However, both approaches fall short of achieving native latency as they still pay the price of emulating
the write to the ``IPI send" register.

Takeaway 6. Inter‐VM notification latencies are significant and, as is the case for hardware interrupts,
very susceptible to the effects of interference. However, for bulk data transfers, it does not seem to
significantly affect throughput if the shared buffer size is chosen on a range of about one‐fourth to half
the LLC size (i.e., 256 KiB to 512 KiB).

Takeaway7. Themajor bottleneck for theVMboot time is causedby thebootloader, not the hypervisors.
Notwithstanding, the hypervisor can significantly increase the boot time of a critical VM (small RTOS)
when booting it alongside a larger VM (e.g., in a dual‐OS Linux+RTOS configuration).

Takeaway 8. Hypervisors specifically targeting static partitioning have the smallest code bases. Despite
facilitating certification, none of the evaluated SPH provides other artifacts (e.g., requirements speci‐
fication, coding standards). Xen is the first to take steps in this direction; nevertheless, seL4's formal
proofs provide the most comprehensive guarantees.

Takeaway 9. SPHs do not incur meaningful performance impacts due to: (i) modern hardware virtual‐
ization support; (ii) 1‐to‐1 mapping between virtual and physical CPUs; and (iii) minimal traps. However,

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 42 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

one key aspect is that SPH must have support for / make use of superpages to minimize TLB misses and
page‐table walk overheads.

Takeaway 10. Multicorememory hierarchy interference significantly affects guests' performance. Cache
partitioning via page coloring is not a silver bullet as despite fully eliminating inter‐core conflict misses,
it does not fully mitigate interference (up to 38 pp increase in relative overhead).

3.2.4.1 Hypervisor Selection as Basis for CROSSCON

The CROSSCONHypervisor should prioritize security while maintaining low levels of performance degra‐
dation, and offer mechanisms to minimize interference and side‐channels. This section presents a com‐
parison between the static partitioning hypervisors seL4 CAmkES, Xen (Dom0‐less), Bao, and Jailhouse,
across the following dimensions:

The CROSSCONHypervisor should prioritize security while maintaining low levels of performance degra‐
dation, and offer mechanisms to minimize interference and side‐channels. This section presents a com‐
parison between the static partitioning hypervisors seL4 CAmkES, Xen (Dom0‐less), Bao, and Jailhouse,
across the following dimensions: Performance Impacts. Xen (Dom0‐less), Bao, and Jailhouse exhibit
similar levels of performance impact (<1%), whereas seL4 CAmkES can reach as high as 7%.

Interference mitigation. Interference significantly affects the benchmark execution over all hypervi‐
sors. On Jailhouse, Xen, and Bao performance is degraded by a similar factor, i.e., to a maximum of
about 105%; seL4‐VMM is more susceptible to interference, reaching up to 125% in the worst case.
Coloring can only reduce interference but not completely mitigate it. In the experiments, the interfer‐
ence workload runs continuously, however, in a more realistic scenario, it might be intermittent. seL4
CAmkES VMM cache coloring feature is not openly available yet.

Interrupt Latency. Bao and Jailhouse incur the smallest increase, albeit significant, to an interrupt la‐
tency of about 4x (840ns) and 5x (1090ns), respectively. Xen shows an increase of about 14x (2800ns).
seL4‐VMM presents the largest interrupt latency (47x, 9400 ns), an order of magnitude higher than
Jailhouse and Bao.

Interference impact on latency. When enabling coloring, we measured no significant difference in in‐
terrupt latency compared to the base case. When enabling cache coloring in the presence of inter‐VM
interference, there is a visible improvement in average latency and variance. By applying coloring also
to the hypervisor, Bao latency is reduced to almost no interference levels with negligible variance. Xen
latency also drops considerably to an average of 6300ns.

Direct Injection. For the base case, i.e., no interference, the interrupt latency is near to native (about
210ns). Interference somewhat increases latency, but much less than in the previous experiments. By
enabling coloring, it is possible to lower the average latency to near‐native, 243 and 232 ns for Bao and
Jailhouse, respectively.

Interrupt Priorities. Only Xen and Bao respect interrupt priority order.

TCB. Regarding Source Lines of Code (SLoC) Bao and Jailhouse have the smallest code base with about
8400 and 9900 SLoC. The hypervisor SLoC does not directly reflect the VM TCB, however. Although
by design SPH such as Bao has a smaller SLoC count, the seL4‐VMM is vastly superior from a security
perspective: shared TCB is limited only to the formally verifiedmicrokernel because each VM ismanaged
by a fully isolated VMM. From a functional safety certification standpoint, however, the VMM would
still need to be considered. Moreover, seL4 formal proofs are limited to a set of kernel configurations,
currently not including multicore. Regarding Jailhouse, despite its small size, the root cell is a privileged
component of the system. It executes part of all VM management logic, being in the critical path for
booting all other VMs. It is arguably part of all VM’s TCB, increasing it significantly. Analogously, Xenmust
depart from true Dom0‐less to leverage richer features (e.g., PV drivers, dynamic VM creation).

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 43 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Cross Architecture Support. Bao has support for Armv8, Armv7, and RISC‐V (w/ H extension). In the
near future, Bao will support micro‐controllers featuring TrustZone‐M. Jailhouse supports x86_64 and
Armv7 and Armv8. seL4 CAmKES VMM supports the major architectures, x86, Arm, and RISC‐V. Xen
supports x86, x86_64, and Arm architectures.

Hypervisor Selection. Overall Bao is the best candidate for CROSSCON Hypervisor. It offers low TCB,
and low‐performance impact, as well as state‐of‐the‐art mechanisms to mitigate interference between
guests, while offering compatibility with the major embedded systems architecture used in IoT devices,
including RISC‐V which is set to become an architecture with increasing presence in this space in the
future. The additional flexibility required by CROSSCONwill be incorporated into a fork of Bao to become
the CROSSCON Hypervisor.

3.2.5 CROSSCON Hypervisor Features and Design

The CROSSCON Hypervisor, being built upon Bao, is grounded in a static partitioning hypervisor. How‐
ever, the inherent constraints of pure static partitioning hypervisors limit their applicability in IoT sys‐
tems. Two primary limitations hinder widespread adoption in this domain: (i) the absence of dynamic
VM creation and management and (ii) the incapacity to deliver per‐VM TEE services. Moreover, specific
use cases necessitate a full‐fledged hypervisor, prompting the need for simultaneous support of two
or more hypervisors. This section outlines the preliminary design and implementation of the first two
features: Dynamic VMs and per‐VM TEE services. Additionally, microarchitectural isolation features will
be implemented in the final demo and included in the final WP3 deliverables, i.e., D3.3 and D3.4.

Multiple VMs executing on one CPU. A common requirement, for both the Dynamic VM Creation and
Management and per VM TEE Support features, is the ability for vCPUS belonging to different VMs to
share a single physical CPU.

Our initial approach to enabling VMs to share CPUs is based on the observation that systems typically
feature one main OS that requests services from other system components.

VM1

VM3VM2

VM1

VM2

VM3 VM5

VM4

CROSSCON Hyp CROSSCON Hyp

A C

VM1

VM2 VM4

CROSSCON Hyp

B

VM3

Figure 6: VM parent and VM child dynamic.

Figure 6 illustrates the currently implemented model. We refer to VMs that can invoke other VMs as
``parent VMs'', and those that are invoked as ``child VMs''. The presentedmodel transparently supports
three general scenarios: (A) a parent VM with more than one child VM; (B) two statically isolated VMs
(i.e., running in different cores), each featuring its own child; and (C) child VMs featuring their own
children.

Combinations of these instantiations are supported. We have specified a CROSSCON Hypervisor's con‐
figuration file to allow for the establishment of the parent‐child dynamic between VMs, further details
are provided in D3.2.

The CROSSCON Hypervisor must provide interfaces that allow for the invocation of, and the return of
execution from, child VMs. These APIs are the push and pop hypervisor calls. The scheduling burden is
placed on the main OS to decide which VMs to invoke and when. However, this does not prevent the

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 44 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

main OS from receiving timely interrupts. Our initial design models these execution requests as a stack.
When a parent VM, VM1 in Figure 7, yields execution to a child VM, VM2 in the figure, the parent VM is
placed into the execution stack.

VM2

VM1

VM1 VM2

ExecutingUnstacked

Stacked
VM1

VM2

Model

VM Stack

1 2

Figure 7: VM execution stack for CPU sharing.

For scheduling purposes, each child VM is treated as a substack. This means that scheduling a child VM
actually schedules the last VM that the child pushed onto the stack. This scheduling approach is, in a
sense, recursive, as some logic applies to a substack of the child VM and its child VMs.

3.2.5.1 Feature 1: Dynamic VM Creation and Management

During the boot time, CROSSCON Hypervisor initiates the VMs setup by reading a configuration file.
This file defines various properties for each VM, such as the number of cores, size, and optionally, the
location of memory regions and VM devices. To leverage existing mechanisms to implement dynamic
VM creation, we allow guests to request VM creation using the existing config file infrastructure. This is
achieved by sharing a configuration file with the hypervisor that will be parsed in run time. Additionally,
it is necessary to enable multiple VMs to execute concurrently on a single CPU. For this, we leverage
the mechanisms detailed above. The implementation of dynamic VMs was explored in part in the, yet‐
unpublished, paper "AnyTEE: An Open and Interoperable Software Defined TEE Framework".

Dynamic VMs. For dynamic VM creation, VMs need access to a hypervisor interface that enables them
to send a config file to the hypervisor, specifically through the VM create hypercall. The CROSSCON
Hypervisor then parses this file to instantiate the new child VM. During the creation of a dynamic VM, all
resources are verified to originate from the parent VM, with the hypervisor ensuring that the parent VM
does not reference any resource outside its scope. After this, the hypervisor proceeds to instantiate the
child VM, while removing all resources, except for the physical CPUs, from the parent VM. This process
ensures the integrity and isolation of each VM, crucial for system security. Figure 8 illustrates the boot
time setup of one VM, VM1, and the dynamic creation of a second VM, VM2. Dynamic VMs require
that a CROSSCON Hypervisor driver on the host OS interacts with the CROSSCON Hypervisor through
the CROSSCON Hypervisor hypervisor call interface. This interface serves three main objectives: VM
Creation, VM Destruction, and VM Invocation. A communication protocol is implemented between the
application and TA to establish a connection.

Figure 8a illustrates the architecture for implementing dynamic VMs. A configuration file establishes the
GPOS VM at boot time. Additional config files are loaded by the GPOS and are used to create additional
VMs. Figure 8b illustrates the runtime VM hierarchy, where the GPOS controls the execution of the VM
created dynamically.

VM Creation. When a parent VM requires the creation of a child VM, it will issue a request to the OS
through the CROSSCON Hypervisor driver to allocate memory for the child VM. The OS will then take
some of its memory, and place in it the code and data of the child VM. The child VM image is previously

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 45 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Configuration CROSSCON Hyp

OS

App

VM1

VM2
VM1

Boot Time Run Time

VM2
Config

Create

Request
Creation

(a) Dynamic VM Architecture.

VM1

VM2

CROSSCON Hyp

(b) Dynamic VM execution hierarchy.

Figure 8: CROSSCON Hypervisor dynamic VM support.

created and stored in a file. After the OS allocates the necessary resources, an application will copy
the child VM information to the allocated memory, and issue a request to create it. This request is first
received by the CROSSCONHypervisor driver, and then a similar request is sent to CROSSCONHypervisor.
CROSSCON Hypervisor will then take the memory region that the parent VM allocated to the child VM
and remove it from the primary VMphysical address spacewhilemapping that same physicalmemory to
the child VM. After the child VM is fully created, CROSSCON Hypervisor will give back execution control
to the parent VM, which can then invoke the child VM.

VM Destruction. Destroying a child VM requires the execution of similar steps to its creation but in
reverse. When the parent VM no longer requires the TA services, it issues a child VM destruction call to
the CROSSCON Hypervisor driver. The OS will issue a call to CROSSCON Hypervisor to destroy the child
VM to regain access to the memory it donated. CROSSCON Hypervisor will destroy the VM, another
modification we introduce in CROSSCON Hypervisor. In the destruction process, CROSSCON Hypervisor
will write the child VM's memory region to zero, thus preventing the OS from learning secrets when it
regains access to the memory region. After this, CROSSCON Hypervisor will remap the memory region
unto the primary VM's address space, control is given back to the OS, and eventually the application.
The application will issue a call to the OS to free the memory allocated for the child VM and finally, the
OS will resume the application.

VM Invocation. Our current approach to child VM invocation simply resumes the execution of a VM.
This presumes that a child VM is executing in a loop that parses the request from the parent VM and
then serves it. Other more flexible approaches, such as entry point definition will be developed later on
in the project. The CROSSCON Hypervisor provides the VM Invoke hypercall, which takes arguments to
be delivered to the child VM, as well as an identifier of the child VM to be invoked.

Programming Model. Our current implementation of dynamic VMs follows an enclave programming
model. Our implementation relies on a user‐space runtime and a tailored CROSSCON Hypervisor ker‐
nel driver. The user space runtime provides three core functions to host applications: create_vm,
destroy_vm, and invoke_vm. The kernel driver manages interactions with the CROSSCON Hypervisor.
To support application execution within a VM, we developed a specialized runtime environment that is
designed to invoke pre‐registered handler functions inside the created VM and also forward requests to
pre‐registered handler functions in the host application.

3.2.5.2 Feature 2: Per VM TEE service support

To offer per‐VM TEE support, we leverage the VM stack mechanism to enable VMs to share physical
CPUs. Furthermore, we utilize the VM stacking model to bind VMs together, thereby linking a GPOS VM
with a Trusted OS VM. We implement the execution of a trusted OS within a VM, binding it to a single
GPOS VM. This concept is further explored in section 3.1.4, where we provide a solution to move from
a single trusted OS in the secure world to multiple trusted OS VMs running in the normal world.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 46 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Software Architecture: To offer per VM TEE services, we introduce the TEE and GPOS VM concepts
within the CROSSCON Hypervisor. TEE VMs serve as hosts for a trusted OS, such as OP‐TEE, and are
bound to single GPOS VMs, typically running Linux. We adopt amodular approachwithin the CROSSCON
Hypervisor, implementing dedicated modules for each VM type: GPOS and TEE. GPOS VM events are
handled by a dedicated GPOS module within the hypervisor. Similarly, Trusted OS VM events are also
handled by a dedicated module to deal with both trusted OS operations and relevant GPOS events,
including GPOS interrupts and trusted OS‐related calls. Moreover, we modify Bao's configuration file in
two ways. The first adds support for developers to establish a parent/child hierarchy between VMs. The
second adds a VM type field to identify VMs as either GPOS or TEE, allowing the CROSSCON Hypervisor
to effectively manage events specific to each VM type.

During runtime, requests for the TEE typically originate from applications. These applications interact
with the trusted OS driver, initiating SMC requests to the secure monitor. These calls are intercepted
transparently by the hypervisor, which then performs a VM context switch to the appropriate trusted
OS VM. Currently, the trusted OS VM exclusively supports OP‐TEE Trusted OS. Other trusted OS may
necessitate direct support.

Configuration

Trusted
OS2

GPOS2

CROSSCON Hyp

Trusted
OS1

OS

App

GPOS

Trusted
OS

TATATA
lib

tz-tee
driverGPOS1

TOS

Boot Time Run Time

Trusted
OS2

GPOS2

(a) Per‐VM TEE support architecture.

GPOS1

TOS1 TOS2

CROSSCON Hyp

GPOS2

(b) Per‐VM TEE VM execution hierarchy.

Figure 9: CROSSCON Hypervisor per‐VM TEE support.

Figure 9a illustrates the architecture. A configuration file distributes the resources over the GPOS and
TOS VMs and identifies the VM types for correct internal module event binding. Figure 9b illustrates
the runtime VM hierarchy, where each GPOS is assigned a TOS VM. In the illustrated scenarios the GPOS
VMs run in different cores and are thus strongly isolated.

3.3 New Trusted Applications

This section covers the development of novel trusted applications, also known as trusted services, in
which we aim to develop new applications to complement or enrich existing applications such as secure
boot, remote attestation, or cryptographic functions. The need for novel trusted applications is specified
in the requirements defined in WP1 and stems from the specifications defined in WP2.

Specifically, we aim to devise a set of novel trusted applications for deployment within our use cases to
complement or enhance the security and privacy. This set of trusted applications is associated with a
certification manifest that is used to attest the correctness of the services to compositionally verify an
entire IoT application. In the following we present our applications, namely PUF‐based authentication,
context‐based authentication, FPGA‐related secure provisioning, behavioral‐based anomaly detection,
and control flow integrity.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 47 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.3.1 PUF‐based Authentication

This trusted application aims to enhance the security of authentication protocols by leveraging proper‐
ties of the device hardware, providing alternative factors. During the manufacturing process of semi‐
conductors and integrated circuits, physical variations occur naturally and are tolerated as long as they
remain within specified tolerances and do not impede the desired functionality of the hardware.

In the case of PUF, it is a hardware‐based primitive that relies on these inherent hardware variations. It
refers to a physical objectwhose operation cannot be reproducedphysically, for example, by reproducing
the employed system. When challenged by a verifier with a given input and conditions, a PUF provides
a physically unique response, resulting in a digital fingerprint.
Thus, authentication may be based on PUFs. In PUF‐based authentication, the devices possessing the
PUF must convince another party, which possesses certain PUF‐related information, that they indeed
have the authentic PUF. These parties are referred to as provers and verifiers.

During authentication the PUF is fed with a challenge, which is essentially an input value acting as a
stimulus to which the PUF must respond. When the challenge is applied, it interacts with the unique
physical characteristics of the device. The PUF uses an internal mechanism (e.g., a specific circuit layout
designed to amplify these variations) to process the challenge. This process transforms the challenge
into an output through a complex interaction that is unpredictable and depends on the device's specific
physical properties. The result of this transformation process is a unique response, which is essentially
unique for the device for that specific challenge. The response depends both on the challenge presented
and the unique physical characteristics of the device. Therefore, even if two devices receive the same
challenge, their responses will differ due to their unique physical variations.

The use of a PUF effectively eliminates the need to store secret information on the device but rather cen‐
tres around challenging the PUF and generating the necessary information in the form of PUF responses
generated on demand.

Background on PUF‐based Authentication In PUF‐based authentication, the exceptional and unpre‐
dictable responses produced by the PUF serve as the basis for verifying the identity of a remote device.
Inmost solutions, there are two entities involved: a PUF‐enabled Prover, and a powerful server known as
the Verifier [74, 75, 76, 77]. The Verifier executes the protocol to verify the identity of the Prover.

The standard protocol is depicted in Figure 10 and comprises two steps:

1. Enrollment Phase: During the enrollment phase, the Verifier initiates a random set of challenges,
denoted as {C1,C2, ...,Cn}, and requests the corresponding responses from the Prover's PUF, de‐
noted as {R1,R2, ...,Rn}. The resulting Challenge‐Response Pairs (CRPs) {R1C1,R2C2, ...,RnCn} are
securely stored in a database DB maintained by the Verifier. This enrollment is a one time proce‐
dure and must be conducted offline in a protected environment to ensure the confidentiality and
integrity of the responses.

2. Authentication Phase: The Verifier initiates the authentication by randomly selecting a Challenge‐
Response Pair (Ci,Ri) from its database (DB). The Verifier then transmits the challenge Ci to the
Prover, who inputs it into its PUF to generate a response R̃ = PUF(Ci). The Prover sends this
response back to the Verifier who compares the received response with the one stored in its
database and accepts the authentication if they match and rejects it otherwise. Afterward, the
used CRP gets deleted from DB.

Related work on PUF‐based Authentication Research in PUF‐based authentication can be categorized
into two primary domains: (i) Device‐to‐server authentication, where a single trusted and powerful ver‐
ification server authenticates a multitude of potentially resource‐limited prover devices, and (ii) device‐
to‐device authentication, where PUF‐based authentication between two equal and potentially resource‐
limited devices is considered.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 48 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 10: Standard PUF‐based authentication protocol.

Device‐to‐server approaches are considered inworks [78, 79, 80, 81, 82, 83], which adopt the traditional
approach generating a comprehensive CRP database during the enrollment phase, using and then dis‐
carding a single challenge per authentication. Some schemes reduce storage requirements on the server
side by training aMachine Learning (ML) model that models PUF, and use it instead of the database [84,
85]. However, the common property of all device‐to‐server schemes is the necessity for the Verifier to
store a significant amount of data, either in the form of a CRP database or a ML model. Furthermore,
this design assumes a trustworthy Verifier who can keep the CRPs database or its MLmodel confidential
from other parties.

To realize PUF‐based device‐to‐device authentication, several proposed schemes such as [86, 87, 88, 89]
introduced a trusted third party that maintains confidential PUF information on behalf of the Verifier.
Further schemes opted to introduce a trusted intermediary that mediates communication between par‐
ties [77, 90, 91, 92, 74, 93, 94, 95, 96]. These schemes rely on a trusted third party to authenticate a
Prover on behalf of the Verifier or authenticate both parties and support them by establishing an au‐
thenticated channel between the devices.

By delegating the storage burden of confidential PUF information to a trusted third party, these schemes
enable PUF‐based authentication between two resource‐limited devices, even though at the cost of re‐
quiring an additional trusted third party. In large and heterogeneous IoT networks, meeting this require‐
ment can be particularly challenging. Agreeing on a centralized trusted party to maintain confidential
information on behalf of multiple mutually distrusting stakeholders can be especially difficult. Conse‐
quently, these schemes are not well‐suited for IoT networks.

Further schemes, like [97, 98, 99, 100, 101], leverage PUFs to generate asymmetric keys for signature‐
based authentication. However, these schemes provide protection only against relatively weak adver‐
sarial models, as they reuse the PUF response to generate the asymmetric key. Consequently, if an
adversary gains access to the devices during key generation, the device becomes compromised since
no new PUF‐response is utilized, in contrast to classical PUF‐based authentication schemes. Moreover,
some of these schemes employ public software‐based PUF‐simulators for response verification [102,
103]. Security in such scenarios relies on the assumption that an honest prover, possessing the genuine
PUF, can generate a PUF response significantly faster than a dishonest party equipped only with the

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 49 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

simulator. However, this impractical assumption about execution time renders these schemes unfeasi‐
ble for IoT devices.Further schemes, like [97, 98, 99, 100, 101], leverage PUFs to generate asymmetric
keys for signature‐based authentication. However, these schemes provide protection only against rela‐
tively weak adversarial models, as they reuse the PUF response to generate the asymmetric key. Conse‐
quently, if an adversary gains access to the devices during key generation, the device becomes compro‐
mised since no new PUF‐response is utilized, in contrast to classical PUF‐based authentication schemes.
Moreover, some of these schemes employ public software‐based PUF‐simulators for response verifica‐
tion [102, 103]. Security in such scenarios relies on the assumption that an honest prover, possessing
the genuine PUF, can generate a PUF response significantly faster than a dishonest party equipped only
with the simulator. However, this impractical assumption about execution time renders these schemes
unfeasible for IoT devices.

In the context of device‐to‐device authentication within IoT networks, it is crucial that devices, regard‐
less of their resource constraints, are capable of performing dual roles: Provers, i.e., authenticating
themselves to other devices, and Verifiers, i.e., verifying the authenticity of incoming connections. The
existing landscapeof PUF‐based authentication solutions does not alignwellwith these practical require‐
ments of IoT networks, highlighting a critical need for an approach that is both flexible and universally
implementable.

Objectives for PUF‐based Authentication Consequently, the primary aim of our research is to develop
a secure, efficient and scalable PUF‐based authentication scheme that empowers every IoT device to
operate as both a Prover and an untrusted Verifier. Further, the scheme must be lightweight due to the
inherent hardware limitations of IoT devices, particularly in terms of storage and computational power.
The ambition is to craft an innovative solution that offers PUF‐based device‐to‐device authentication for
resource‐constraint devices or within heterogeneous IoT networks.

This system aims to empower even low‐end devices to effectively assume a dual role: acting as a prover
while also verifying received authentication messages. The system is envisioned to be lightweight,
streamlining both the authentication and verification processes to accommodate the diverse array of
devices within the IoT ecosystem.

Approach The innovative aspect of this work lies in its approach to confidential PUF responses. Instead
of securing these responses as Challenge‐Response Pairs (CRPs) or through ML models, the scheme
utilizes confidential data to generate public information. This public information, while correlated to
the confidential PUF responses, is designed to reveal nothing about the actual responses, allowing it to
be safely stored on a public platform, such as a bulletin board or a distributed ledger.

For authentication, a device (referred to as the Prover) leverages the PUF and our authentication scheme
to produce a specific set of information. This information indicates the possession of the concealed
response without revealing it. The verifier then uses this information in conjunction with the public
data to confirm the authenticity of the Prover, thus completing the verification process.

System model The system model of the proposed system incorporates three parties: the prover, the
verifier, and the manufacturer, and it is divided into two distinct stages: the Enrollment Phase and the
Authentication Phase, as depicted in Figure 11. While the manufacturer is trusted, its involvement is
limited solely to the Enrollment Phase. During the Authentication Phase, both the prover and the verifier
are considered untrusted entities, ensuring a decentralized and secure authentication process.

Enrollment Phase The enrollment phase is a critical initial step, usually conducted in a secure envi‐
ronment during the manufacturing process. In this phase, the manufacturer begins by querying the
device's PUF with a predefined set of challenges. The device generates unique PUF responses to these
challenges, which are then relayed back to themanufacturer. These initial three steps (depicted as steps
1‐3 in Figure 11a) form the common foundation for most PUF‐based schemes.

Unlike other schemes that typically conclude the enrollment phase after this third step and require the

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 50 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

(a) Enrollment Phase

(b) Authentication Phase

Figure 11: System Design Overview

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 51 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

manufacturer to store confidential PUF‐responses for later authentication, our approach incorporates
two additional steps (steps 4 and 5 in Figure 11a. These steps are designed to transform the confidential
PUF responses into public information. This transformed public information is then stored in a publicly
accessible integrity‐protected repository, effectively preparing the devices for their subsequent deploy‐
ment.

By storing this information using a public repository, we ensure that the manufacturer's role is limited
to the initial setup.

AuthenticationPhase. In the authenticationphase shown in Figure 11b, which commences post‐deployment,
an enrolled Prover device, upon receiving an authentication request, generates a confidential PUF re‐
sponse. Utilizing the proposed scheme, the Prover formulates an authentication response, which is then
transmitted to the requesting entity, i.e., the Verifier. The Verifier employs a specialized verification al‐
gorithm that processes the received authentication response in conjunction with the public information
previously disseminated by the manufacturer.

It is essential to underscore that the IoT devices acting as Verifiers can also undergo enrollment during
the manufacturing phase, enabling them to function as Provers.

3.3.1.1 Innovation Aspects

By utilizing the described approach, two main challenges of device‐to‐device PUF‐based authentication
have been addressed:

▶ Untrusted Verifier: Previous PUF‐based authentication schemes necessitate the Verifier to store con‐
fidential PUF‐related data, usually in the form of Challenge‐Response Pairs. As this information could
potentially enable Verifiers to impersonate associated Prover devices, Verifiers are traditionally pre‐
sumed trustworthy at all times. However, this assumption is impractical and unrealistic, especially
whenVerifiersmay have limited resources. Therefore, our approach provides verificationwithout de‐
pending on confidential information, effectively eliminating the necessity for trusted Verifiers. While
some schemes attempt to mitigate this challenge by utilizing PUFs for generating asymmetric key
pairs, they come with reduced security guarantees.

▶ Authentication Proof generation and verification on resource‐limited platforms: Our approach
eliminates the need for Prover or Verifier to store any confidential information. Instead, it allows
them to outsource the storage of necessary public information to solutions like distributed ledgers
or file systems. Furthermore, the developed scheme is lightweight enough to run on resource‐limited
MCUs, effectively enabling IoT devices to function as PUF‐based Prover and Verifier.

The high‐level architecture depicted in Figure 11 was realized in three different novel and distinctive
methods that will be outlined in the following.

The first scheme called ZK‐PUF: PUF‐based authentication utilizing zero‐knowledge proofs adopts a
novel strategy by employing a single challenge for multiple authentication sessions, which diverges
from the conventional practice in PUF‐based authentication. In standard PUF authentication, the re‐
sponse to a given challenge is disclosed, rendering it unusable for future sessions. However, this new
approach introduces reusability by leveraging zero‐knowledge proofs of knowledge. By proving that the
prover possesses the response without actually revealing it, the scheme ensures the confidentiality of
the PUF response remains intact. While this scheme is PUF agnostic, it might be of particular relevance
for weak PUFs since they offer only a very limited set of CRPs and reusing them might be vital. The
cryptographic principles employed, especially zero‐knowledge proofs, entail intricate cryptographic op‐
erations. Despite our implementation being sufficiently fast, even on resource‐constrained MCUs, our
objective was to further enhance the efficiency of the authentication scheme. Additionally, although
the zero‐knowledge proof utilized does not leak any information about the underlying PUF response,

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 52 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

reusing said response could pose challenges in the presence of a strong adversary capable of gaining
runtime access to the victim prover.

The pursuit of a more efficient PUF‐based authentication scheme protecting against even stronger ad‐
versaries motivated the development of our second solution called PAVOC: PUF‐based authentication
via one‐way chains. This scheme incorporates cryptographic hash functions known for their efficiency
and focuses on optimizing the use of the PUF. Contrary to the previously presented scheme that reuses
a fixed Challenge‐Response Pair, this scheme exploits the multitude of Challenge‐Response Pairs a PUF
can produce. This method involves enrolling n distinct Challenge and Response pairs. The responses
are then converted into one‐way chains, each capable of facilitating up to m authentications, where m
denotes the length of the chain. This is done by applying a public hash function H repeatedly for m
times to the underlying PUF response Ri. The one‐way chains built from PUF responses are then used
in reverse order for authentication. The sole prerequisite for its implementation is a loose time syn‐
chronization between the prover and verifier, necessitating both parties to maintain awareness of the
current state of the one‐way chain. This is necessary to ensure that both parties prover and verifier are
aware of which chain element to be used and when the prover must reveal the used element and move
to its pre‐image for the next authentication.

We view this time‐synchronization as a promising new trusted service for CROSSCON,with potential ben‐
efits extending to various scenarios. Currently, this service is in its nascent stages of development. We
are exploring several potential approaches to implement it, including the use of a distributed heartbeat
mechanism through threshold signatures [104] or distributed hash chains [105]. We plan to integrate
the actual design of this service into a subsequent version of the deliverable.

Since PAVOC is built only utilizing cryptographic hash functions, it is significantly faster than ZK‐PUF. Also,
the impact of a runtime adversary is limited since each chain is only used a maximum of m times and
a new response is used afterwards. However, it introduces an added layer of complexity: the require‐
ment for maintaining time synchronization. While we seek to investigate potential resolutions to this
challenge throughout CROSSCON, our research has expanded to explore a solution that leverages the
effectiveness of hash functions without necessitating time synchronization. This pursuit has resulted in
the development of a third solution, dubbed PAWOS: PUF‐based Authentication with One‐time Sig‐
natures. Within PAWOS, each PUF‐response is transformed into a one‐time signature. They utilize the
strength of cryptographic hash functions to generate secure, single‐use signatures. This approach not
only retains the efficiency benefits of hash functions but also sidesteps the issues inherent in time‐based
systems. The aim is to build a system that upholds the hash function's efficacy while removing time syn‐
chronization challenges, offering a more adaptable and scalable solution that is applicable to a broader
spectrum of applications.

For the verifier, this scheme simplifies the process to simply verifying the authenticity and correctness
of the received one‐time signatures. On the other hand, the prover's responsibility is to guarantee
that each Challenge‐Response Pair and its corresponding one‐time signature pair are not reused. This
aspect is crucial because, without it, the One‐Time Signature could become vulnerable, allowing an ad‐
versary to deduce the used response and subsequently impersonate the prover. To prevent the reuse
of challenges, a minor modification to the PUF hardware is necessary, incorporating an additional hard‐
ware component—a small amount of memory directly connected to the PUF and exclusively writable
by it. This memory component is initialized with the initial challenge during the manufacturing phase
and subsequently updated after each PUF query. Given that the challenge's integrity is important but
confidentiality is not required, basic security measures, such as write protection outside of the authen‐
tication process, are considered sufficient. A feasible approach would be to integrate a compact, spe‐
cialized memory component into the PUF's architecture, specifically for storing and updating the chal‐
lenge.

The design of PAWOSenables us to eliminate the need for time synchronization, a requirement in PAVOC,
while maintaining significantly greater efficiency than ZK‐PUF. Furthermore, since each response is uti‐

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 53 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

lized precisely once, any attempt by an adversary to obtain a response provides minimal advantage, as
it becomes invalid in subsequent authentications.

3.3.2 Context‐based Authentication

Similar to PUFs, context‐based authenticationmay leverage the imperfections of the hardware, thus the
physical layer of wireless transmitting devices in its environment. This is achieved by analyzing fluctua‐
tions in the signals induced by the corresponding hardware component and itsmanufacturing variations.
This process is known as Radio Frequency Fingerprinting (RFF) and can be employed to, e.g., assign an
identity to a device or a type of device. This trusted service aims to enhance the authentication process
by developing a context‐based authentication approach, which leverages the environment of a device
regarding the wireless transmitters around it. The environment should be embedded into a digital fin‐
gerprint to enable a device to proof that it is located within a predetermined secure environment, which
is known to a verifier. One exemplary UC is the process of firmware updates by ensuring that the envi‐
ronment can be considered secure.

Background on Context‐based Authentication In an enrollment phase a device can register the loca‐
tion's fingerprint, which is being compared in terms of similarity to consecutively generated fingerprints
in the subsequent verification phase.

For the purpose of fingerprinting, we utilize RFF and target theWireless Fidelity (Wi‐Fi) protocol as it is a
well established protocol for IoT devices [106]. RFF is a technique that exploits hardware imperfections
that occur during the manufacturing process in wireless transmitting hardware, resulting in distinctive
patterns on the physical layer during transmissions or responses to incoming signals [107].

Conventional device identification methods often rely on cryptographic schemes that share a common
secret for challenge‐response protocols or utilize software‐defined device identifiers such as IP or MAC
addresses. In the context of IoT, cryptographic approaches may impose a significant overhead, result‐
ing in impracticability due to resource constraints of devices. Moreover, software‐defined identifiers
can be manipulated easily or spoofed, making them unsuitable for security‐critical operations like au‐
thentication. RFF, however, offers a promising solution to address these challenges because it relies
on the unique and inherent imperfections in hardware components that occur during the manufactur‐
ing process. These imperfections can, e.g., include power amplifier fluctuations, mixer imbalances, or
oscillator variations [108].

During transmission, the signal is being influenced by the aforementioned hardware imperfections, al‐
lowing a receiver to passively listen and analyze incoming transmissions to differentiate the origin of the
signals. Hence, these imperfections can be assigned to a unique digital fingerprint, therefore, enabling
the identification of devices or its type, which is being referred to as RFF Identification (RFFI) [108].
For instance, deployment use cases are various such as intrusion detection on the network level or
localization‐based techniques, e.g., for estimating the position of a device. A receiver such as a gateway
or router can fingerprint the properties of surrounding devices to detect rogue or unauthorized devices,
therefore are unknown devices, based on their transmission characteristics, or estimate the relative
distance of identified devices [109][110][111][112].

To achieve this, a receiver passively captures transmissions and analyzes them for the specific character‐
istics and patterns. As no overhead is induced to the transmitting devices that can simply continue with
their intended functions, this approach is well suited for IoT. Further, ML algorithms, specifically deep
learning approaches, can facilitate automation by learning to find inherent patterns in radio frequency
fingerprints. Thus, deep learning models may be well‐suitable in the analysis of subtle fluctuations,
hence eliminating the need for labor‐intensive manual feature engineering and enabling learning from
raw data [108].

As we deal with wireless transmissions, which rely on electromagnetic waves to carry information that

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 54 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

is being created by devices and modulated onto a carrier wave, which is a signal wave used to physically
convey information, we utilize the physical properties of signal waves. This modulation process involves
adjusting properties like amplitude, frequency, or phase to encode information onto the carrier wave.
Amplitude represents the strength of the signal, frequency is measured in Hertz (Hz) as the number of
cycles per second, and phase refers to the position of a wave at a specific point in time on its waveform
cycle. Subsequently, an antenna converts the electrical signal into an electromagneticwave that radiates
into the surrounding space. After the signal has propagated through the medium, a receiving device
demodulates the transmitted wave to recover the encoded data.

Since Wi‐Fi is a multi‐party communication protocol that is required to accommodate a varying number
of participants, the available frequency band is split into several channels, therefore, each channel rep‐
resents different frequencies. Additionally, Wi‐Fi utilizes a modulation technique known as Orthogonal
Frequency Division Multiplexing (OFDM), which is a method to divide the frequency band into a large
number of closely spaced subwave carriers. Each sub‐wave carrier operates at a specific frequency and
is orthogonal to others. The advantage of this approach is the enhanced resistance to noise, as trans‐
missions would be disturbed on only some of the sub‐wave carriers, affecting sub‐bandwidth instead
of the entire band [113]. Therefore, the physical properties of a channel can be analyzed, e.g., for the
improvement of the channel quality.

Channel State Information (CSI) encompasses such information about the physical state of a wireless
communication channel between a sender and receiver, offering the potential to enhance RFF tech‐
niques with detailed information to improve the quality of available information. CSI includes details
such as the phase and amplitude of the received signal across multiple sub‐wave carriers within a Wi‐
Fi channel. By analyzing these sub‐wave carriers, a comprehensive understanding of how the signal is
impacted by various environmental factors, including interference, fading, attenuation, distortion, re‐
flections, and fluctuations in transmitting power, can be concluded. This information includes changes in
the transmission channel over time by consideration of a timeline of measurements [113]. This enables
the development of applications such as localization, indoor tracking, and gesture recognition by utilizing
predictions of signal propagation in complex environments. Consequently, CSI facilitates the adaptation
of a transmission channel to the environment, enhancing the reliability of communication.

We focus on utilization of CSI for the purpose of RFF. An excerpt of characteristics contained in CSI that
may be useful for our trusted service are as follows [114]:

▶ Amplitude and Phase: CSI provides insights into changes in both amplitude and phase. Amplitude
refers to the signal's strength when it reaches the receiver, influenced by factors such as distance
from the transmitter, environmental obstacles, or interference. The phase may undergo shifts due
to reflections and delays caused by the environment.

▶ Multi‐path effects: Multi‐path effects describe the phenomenon where wireless signals travel multi‐
ple paths to reach the receiver, resulting from reflection, diffraction around obstacles, or scattering.
This results in the receiver sensing the originally same signal under varying conditions, with each path
having distinct propagation delay, phase shift, and attenuation.

▶ Channel Impulse Response (CIR): CIR refers to a short, high‐amplitude probing impulse signal that
may unveil information about the delays and strengths of multi‐path propagation. Furthermore, it
provides insights into how the channel is affected over time bymeasuring the CIR at distinct temporal
moments.

▶ Channel StateMatrix (H‐matrix): TheH‐matrix is a representationof channel conditions between the
transmitter and receiver, considering different sub‐wave carriers. It depicts the relationship of signals
across the frequency spectrum, including sub‐wave carrier variations over time due to environmental
factors mentioned in the points above. Different sub‐wave carriers may be affected differently based
on the channel conditions.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 55 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

CSI information can be obtained by analyzing the physical layer of wireless transmissions. Moreover,
so‐called pilot signals, which are also known as reference signals, can be sent by a transmitter to the
receiver. The receiver compares the anticipated reference signal to the received ones and, therefore,
is able to estimate the characteristics of the communication channel. Based on this information, the
receiver can report the current state of the channel to the transmitter. Therefore, CSI may be leveraged
for enhanced device fingerprinting.

Objectives of the Context‐based Authentication We assume our attacker to be of remote nature and,
therefore, being unable to forge the fingerprint to deceive the verifier due to the unique environment
resulting from the intrinsic characteristics of the transmitters around the benign device, which is placed
inside the predetermined location. Further, also the layout of the room in combination with the trans‐
mitters is unique. Ultimately, an attacker must resort to brute‐forcing the fingerprint and guessing a
similar fingerprint.
While existing work leveraging CSI as an RFF technique primarily focus on fingerprinting the identity
of a device or localizing a device within its environment, we adopt a different perspective, aiming to
fingerprint the environment of a device and consider the layout of a location, including other transmit‐
ters.

Given the goal of context‐based authentication service to verify whether the receiver resides in a fa‐
miliar and secure environment, we compare the digital environmental fingerprints generated during
enrollment and authentication. This comparison is conducted and verified by the external verifier. To
evaluate the similarity of fingerprints and to leverage the advantages of deep learning techniques for as‐
sessing the similarity between two samples, we plan to employ a Siamese network. A Siamese network
uses deep learning models in a twin fashion, with both networks sharing the architecture and param‐
eters to achieve a unified understanding of evaluating the similarity of two fingerprints. The similarity
or dissimilarity between two samples is measured as a distance, for instance, as Euclidean distance.
Therefore, the network aims to minimize the distance between similar pairs while maximizing the dis‐
tance between dissimilar pairs during training [115]. In our context, this means that a receiver captures
and collects CSI information from the transmitters belonging to the known environmental context to
generate a fingerprint to prove that the receiver is placed within the predetermined environment be‐
cause fingerprints from the same location should be similar.
Advantageously, Siamese networks are capable of learning the differentiating characteristics even with
a limited amount of available samples, which is beneficial for our approach as our service could be rel‐
atively quickly deployed in new locations.

OurApproach toContext‐basedAuthenticationOur approachof providing authentication tobe location‐
bound is to utilize the trusted application to verify the similarity of fingerprints being collected during
enrollment and verification phase. For this purpose, a receiver collects environmental CSI data for the
proof.
We assume the transmitters to be connected to a common access point that is part of the location,
which is a reasonable assumption as IoT devices are oftentimes connected to a common gateway. Fur‐
ther, the receiver has to enable monitor mode in order to arbitrarily capture all transmissions within a
Wi‐Fi channel. Therefore, the receiver can listen to all transmissions of the network established by the
access point. After the CSI collection process, the receiver sends the data which act as the fingerprint
embedding the transmitters characteristics and location layout resulting in signal disturbance such as de‐
flections, scattering, or obstruction, to the verifier over a secure channel. The verifier runs the Siamese
network and trains the network to assess the similarity of fingerprints between enrollment phase and
verification phase.

3.3.3 Remote Attestation

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 56 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.3.3.1 Background

Remote attestation is a basic security mechanism designed to allow a device or a system to verify the
integrity and authenticity of another remote entity. The fundamental concept behind remote attes‐
tation is to enable the verification of the software state of a remote system, ensuring that it has not
been compromised. This is particularly crucial in environments where trustworthiness and security are
paramount, such as in cloud computing, IoT ecosystems, and distributed networks. At the heart of re‐
mote attestation is the exchange of evidence between the device being attested (the prover) and the
entity seeking assurance of the device's integrity (the verifier). The prover generates and sends a sum‐
mary of its current state called evidence. This evidence is typically generated by measuring the devices
state (e.g., hashing the content of the device memory or tracing the programs execution).

3.3.3.2 Objectives of Remote Attestation

In the context of CROSSCON the adversary can inject malicious code and has full control over the system
software. Further, the attacker can tamper the Control‐Flow of a software through control‐data and
non‐control data attacks (e.g., ROP and DOP attacks) [116, 117]. Therefore, our Attestation framework
finds its application in attesting vulnerable/security‐relevant application within CROSSCON stack.

Classic Control‐Flow Attestation (CFA) schemes assume to have access to the complete Control‐Flow
Graph (CFG), however, it is not always possible to reconstruct a Complete‐CFG, as it falls under the family
of NP‐hard problems [118]. In real‐world, CCFGs can only be approximated [119, 120, 121, 122, 123,
124]. Even though a CFG canbe approximated, approaches are still far fromgenerating near‐to‐complete
CFGs. Specifically, Rimsa et al. [125] showed that static and dynamic analyses can be combined to create
more comprehensive CFGs. However, they can only approximate up to 46% of SPEC CPU20171.

We overcome the limitations of existing CFA schemes by leveraging Unsupervised Graph Neural Net‐
works (GNNs) to identify deviations from benign executions. The core intuition behind our appraoch is
to exploit the correspondence between execution trace, execution graph, and execution embeddings to
eliminate the unrealistic requirement of having access to a complete CFG.

3.3.3.3 Our Approach

Within CROSSCON, our goal is to implement a Graph‐Neural‐Network (GNN) basedML approach for the
verification of collected execution traces by the prover.

The system operates in two distinct phases:

▶ Training Phase: In this initial phase, benign traces are gathered for a particular application and its
specific version. Within the CROSSCON framework, a TEE (e.g., TrustZone) is responsible for collecting
these traces, storing and sending. The verifier gains access to this traces. The graphs of the traces
are constructed through a feature extraction and preprocessing step. Subsequently, a ML model is
trained using this dataset of benign traces.

▶ Detection Phase: The second phase is the operational stage, which commences when an untrusted
entity collects traces, digitally signs themusing the TEE, and transmits them to the verifier via a secure
channel. Upon receipt, the trusted verifier checks the signature; if it is valid, the traces are input into
the trained model. If not, the traces are discarded, and an error message is sent back. When valid
traces are processed by themodel, the resulting prediction is communicated back to the prover using
the same secure channel.

Training and Inference The objective is to discern between benign and malicious partial Control‐Flow
Graphs (CFGs) from execution traces. The appearance of malicious data can vary greatly depending on

1https://www.spec.org/cpu2017/

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 57 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

the attack type (e.g. ROP/DOP). Therefore, it is advantageous to train amodel exclusively on benign data,
enabling it to recognize the inherent patterns of such data. Consequently, the model can determine
whether a specific trace appears benign. Malicious traces, on the other hand, are utilized solely for
evaluation purposes.

As software complexity increases, learning benign behavior becomes more challenging, which in turn
makes the detection of benign traces more difficult. This issue can be mitigated by including a larger
number of benign traces in the training dataset.

The inference process necessitates receiving trusted data from an untrusted source. To address this
critical issue, a TEE can be employed. The TEE ensures the security and integrity of data: it gathers
memory traces that require verification and assigns them a unique cryptographic signature. After this
preparatory phase, the data must be sent through an encrypted channel to the verifier.

Upon receiving messages from an untrusted source (prover), the trusted party (verifier) must authen‐
ticate the signature. If deemed valid, the verifier proceeds to the preprocessing phase to extract se‐
quences from the received execution traces. Following these steps, the data is input into the trained
ML model to estimate the likelihood of the data being benign or malicious. The results are then relayed
back to the requesting party. Upon reviewing the returned analysis, the untrusted party may decide to
implement measures to thwart malicious activities.

Attestation The verifier generates an attestation report in accordance with the requirements. This
report is digitally signed using the verifier's key. The report is then disseminated, enabling other partic‐
ipants to access and validate it. The attestation report encompasses various elements, including identi‐
fiers to ensure freshness and a digital signature to safeguard against forgery (Signature), and the attes‐
tation outcome (Result).

3.3.4 FPGA Related Trusted Services

Secure FPGA provisioning supports the secure operation of FPGA‐enabled CROSSCON devices, primarily
enabling trusted execution of compute‐intensive or even general‐purpose computing tasks on the FPGA.
Given the propensity for users to incorporate sensitive information and proprietary code/circuitry, safe‐
guarding their IP is paramount. Secure FPGA provisioning service maintains the security of FPGA con‐
figuration files, a.k.a, bitstreams, throughout provisioning and configuration, thereby preventing unau‐
thorised access to the user's code or data. This assurance instils confidence in users concerning the pro‐
tection of their IPs. On the other hand, proactive measures should be taken to fortify the device against
potential threats stemming from malicious circuits uploaded by users, including workloads capable of
espionage, disruption of concurrent processes on the same FPGA, or even causing physical damage to
the FPGA hardware. Two primary services are essential to realising secure FPGA provisioning: the secure
FPGA configuration service and the secure FPGA configuration/bitstream scanning service.

3.3.4.1 Secure FPGA Configuration Service

This service aims to securely deliver and configure the user's task onto the FPGA. A physical FPGA device
comprising various configurable resources can be logically partitioned into n partially reconfigurable
regions, referred to as virtual FPGA (vFPGA), with n being determined by the system administrator, as
shown in Figure 12.

Partial reconfiguration, a fundamental concept in FPGA technology, refers to the capability of dynami‐
cally reconfiguring regions of the FPGAwhile the remainder of the logic continues to function seamlessly.
This approach involves partitioning the FPGA into a static region, the region that cannot be reconfigured
at runtime, and one or more partially reconfigurable regions that can be reconfigured at runtime.

The static region is leveraged to implement the FPGA shell, a trusted hardware circuit within the FPGA

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 58 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

FPGA

FPGA shell

vFPGA1 vFPGA2

Shell I/OShell memory

FPGA

FPGA shell

vFPGA1 vFPGA2

Shell I/OShell memory

vFPGA2 I/OvFPGA1 I/O configurationvFPGA2 I/OvFPGA1 I/O configuration

Configuration
direction

Interfaces

(a) (b)

Unconfigured
vFPGA

Trusted
component

Figure 12: vFPGAs interfacing options.

fabric that provides vFPGAs with essential clocking resources and external interfaces. Moreover, it en‐
sures the security of the user's IP by preventing unauthorised access to the FPGA's configurationmemory
through external ports. Additionally, the shell can be designed to configure vFPGAs internally by utilis‐
ing the internal configuration port of the FPGA configuration engine. A partial bitstream is sent to the
FPGA shell by loading it to a pre‐definedmemory region dedicated to the FPGA shell; see Figure 12. The
partial bitstream is then read by the FPGA shell and forwarded to the internal configuration port of the
FPGA configuration engine.

Note that access to the FPGA shell and its memory region is restricted to CROSSCON Hypervisor or
to a dedicated TA /VM reserved for managing FPGA resources, which we refer to as T AFPGA, see Fig‐
ure 13. T AFPGA can take over the decryption and verification of partial bitstreams before their con‐
figuration. Otherwise, the FPGA shell shall perform this process. Both T AFPGA and FPGA shell can be
attested.

VM2VM1VM0

App

Trusted
App

Trusted
App App App

Trusted
App

Trusted
AppTAFPGA

Trusted OS OS

CROSSCON Hypervisor

Firmware

TEE Hypervisor

1st Stage 1st Stage

Processor

Interconnect

4th Stage

Bus Master 1MemoryFPGA Bus Master 2

2nd Stage 2nd Stage

3rd Stage

Trusted
App

Trusted
App

Trusted OS

1st Stage

REE TEE

Isolation
component

TEE technology
protection

2nd stage
protection

1st stage
protection

Privilege-level
separation

RE
E

pr
iv

ile
ge

le
ve

ls

TE
E

pr
iv

ile
ge

le
ve

ls

Figure 13: Refined CROSSCON Stack with T AFPGA.

Each vFPGA can bemanaged and configured separately. Furthermore, each vFPGA has a pre‐defined I/O
interface with a distinct memory address range for communication. Depending on the architecture of
the FPGA device, vFPGAs can be accessed through shared or dedicated I/O interfaces. For example, the

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 59 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

vFPGAs share the shell I/O interface, where the shell and vFPGAs have non‐overlapping address ranges
and are connected to the same bus master through an FPGA‐internal bus interconnect (see Figure 12a),
or each vFPGA can be mapped to a different bus master (see Figure 12b).

Users intending to deploy their IP designs must meet the defined physical constraints to place their
designs within the boundaries of vFPGAs. However, users also have the flexibility to provide multiple
instances of a task, each targeting a different vFPGA. This flexibility enhances the likelihood of successful
deployment on the FPGA. Assuming a trusted application or VM is requesting to run a task on the FPGA,
the following steps will be taken:

1. vFPGA allocation: The process is initiated with a request from TA/VM to execute a task on the
FPGA, specifying the location, count and sizes2 of the task's partial bitstreams (i.e., FPGA configu‐
ration files) stored on disk. Given that T AFPGA is available, vFPGA allocation requests are directed
to T AFPGA. Subsequently, the CROSSCON Hypervisor/T AFPGA verifies the availability of a vFPGA
and its corresponding partial bitstream. If both are available, CROSSCON Hypervisor/T AFPGA as‐
signs the vFPGA and provides the requesting TA with the FPGA shell/T AFPGA public key.

2. Secret key passing: Following vFPGA allocation, the TA uses the public key to encrypt the secret
key used for encrypting and signing the task's partial bitstream. The encrypted secret key is then
sent to CROSSCON Hypervisor/T AFPGA. If decryption and verification occur in the T AFPGA, the
T AFPGA loads the partial bitstream in the shared memory with the FPGA shell and instructs it to
start the configuration process. Otherwise, the encrypted secret key and the encrypted partial
bitstream are loaded on the shared memory region for the FPGA shell to decrypt and configure.

3. vFPGA configuration: The FPGA shell configures the partial bitstream on the allocated vFPGA.
Upon successful configuration, the FPGA shell confirms the completion of the process.

4. vFPGA access control: Access control rules for the accelerator can be set using the requesting
TA/VM ID. Consequently, the task is ready for execution. Note that access control to accelera‐
tors on vFPGAs can be achieved through (i) T AFPGA when communication between the allocated
vFPGA and the requested TA/VM occurs through T AFPGA or (ii) isolation components. In the fu‐
ture, we will investigate how to support vFPGA access control through the perimeter guard (PG)
in CROSSCON SoC.

5. vFPGA deallocation: Since FPGAs do not support pre‐emption, it is left to the system administrator
to decide whether a vFPGA is allocated for a specific task until the task finishes or for a time slot
(fixed or variable). Consequently, the TA must be able to terminate a task by sending a request
to CROSSCON Hypervisor/T AFPGA. CROSSCON Hypervisor/T AFPGA can also send a termination
request to the TA to allow it to copy or delete sensitive data before terminating the task on the
vFPGA. This ensures efficient resource utilisation and effective management of FPGA resources
based on task priorities and system requirements. Note that upon vFPGA deallocation, a special
partial bitstream is configured to erase the previous configuration.

3.3.4.2 Secure FPGA Bitstream Scanning Service

This service aims to ensure that hardware designs to be configured on the FPGA are free frommalicious
circuits before being deployed on the FPGA device while upholding the privacy of the bitstream. FPGA
designs can be complex andmay involvemultiple contributors, making them susceptible tomalicious in‐
sertions. CROSSCON leverages existing scanning and vetting techniques to examine the FPGA bitstream
and detect potential anomalies or malicious components that could compromise the system's security.
During the scanning process, the service validates that the bitstream adheres to the intended design
specifications, i.e., ensuring that it does not configure or overwrite neighbouring vFPGA resources and
that no malicious circuits are included. Any discrepancies or unauthorised alterations are flagged. Once

2Partial bitstream size depends on the size of the targeted vFPGA; therefore, one or more sizes can be passed in the request

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 60 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

the scanning process is complete, a detailed report is provided to the system administrator, outlining
the analysis results. The report includes information about the integrity of the IP design and any de‐
tected anomalies. To ensure the user's IP protection, a dedicated TA performs the inspection to protect
the bitstream against unauthorised access. Similarly, the encrypted secret key and the task's encrypted
partial bitstream(s) are passed to the inspecting TA.

3.3.5 Behavioral‐Based Trusted Service

Behaviour‐based security is a method in which all device's relevant activities are monitored to identify
any deviations from normal behavioural patterns [126]. Given the scope of the project on the security
of connected devices, so the scope of this service is defined on the behaviour of the device in terms
of its network traffic generated as a result of its operation and communications with other devices or
entities.

In the last few years, ML and its sub‐field of TinyMachine Learning (TinyML) [127] have shown significant
advances and improvements in terms of algorithms and scalability to constrained environments [128].
As such, TinyML is expected to play an important role in security of computing environments at the edge
of IoT networks [129].

We defined the behavioural‐based trusted service as a network anomaly detection service that:

▶ Runs in an isolated environment from the rest of the applications and services on the device that are
to be monitored for anomalies, and

▶ Can access (has a visibility of) all network packets from any of the device's applications and services.

We note that traditional intrusion detection systems are in majority signature‐oriented where the soft‐
ware monitors network traffic and compares the traffic (i.e., the packet data) to known signatures of
known threats [130]. The anomaly detection service operates differently ‐ it also monitors network traf‐
fic streams, but it compares the network streams (also known as network flows) to a baseline of normal
behaviour and looks for anomalies [130].

The service adopts TinyML, specifically, a deep leaning (DL) algorithm called Autoencoder, to achieve
efficient learning process of the baseline behaviour and to flag events that are statistically significant
from the baseline. The aim of the Autoencoder is to learn a good representation of IoT network traffic
data by applying unsupervised training [131].

3.3.5.1 Innovation Aspects

There are two main innovation aspects to be addressed:

▶ Network telemetry suitable for IoT protocol behavioural analysis. Ensure necessary visibility of lower
IoT network protocols and access to network traffic of a device. Furthermore, the service will offer
an efficient handling of network traffic features (statistics) of numerical and categorical type data
suitable for ML anomaly detection.

▶ Lightweight deep learning model suitable for IoT devices. Adoption of TensorFlow lite library3, and
study different optimization and reduction techniques for DL models such as quantization and prun‐
ing4 to scale to resource‐constrained environments. The aim is to reduce the DL model size under
some controlled performance reduction (e.g., accuracy, precision, etc.) but gain much more effi‐
ciency on computing in terms of inference on anomaly detection. Define suitability and limits of
online on premise vs offline back‐end training. The preferred choice for the service is the on premise
training where the DL model stays on the trusted service's dedicated and isolated environment.

3https://www.tensorflow.org/lite
4https://www.tensorflow.org/lite/performance/model_optimization

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 61 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.3.5.2 Main Functionalities

The network anomaly detection service will allow to monitor the network traffic of a device and detect
any deviations from the baseline. This is a complementary view to other security services or trusted ap‐
plications deployed on the device. For instance, in addition to the remote attestation or secure firmware
update, the anomaly detection service will report if the traffic fingerprint of the device during such ser‐
vices, prior or after, results to any anomalous behaviour such as suspicious port numbers exposed by
the device, or suspicious IP addresses and/or port numbers or protocols used for communications with
other devices or servers.

Given that anomaly detection reports any significant deviations from the baseline, it is important not
only to flag if any network traffic portion is anomalous, but also to explain why such anomaly, i.e. what
aspects of the network traffic are suspicious and significant for the decision of anomaly. The explainabil‐
ity aspect is important to make the anomaly useful for further decision making by higher level solutions
such as Security Information and Event Management (SIEM) or any risk‐mitigation modules.

There are two main modalities that form part of the behavioural‐based trusted service:

▶ Training modality that trains the Autoencoder algorithm to learn the legitimate patterns of network
traffic. It is necessary to specify the amount of time needed to capture legitimate traffic that the
algorithm will be trained on. The duration of training is a key factor to ensure enough variety of
system behaviour. It can last from few hours to days. Once the training modality is completed, the
service automatically switches to the monitoring modality, also called inference or prediction.

▶ Prediction modality that monitors all incoming traffic in soft real‐time for anomalies. The anomalies
are stored in an event log file that can be sent to or used by any SIEM or server module for decision
making.

3.3.5.3 Workflow

Figure 14: Behavioral‐based trusted service workflow.

Figure 14 shows the high‐level view of the service's workflow. The initial phase involves training deep
learning models using legitimate network traffic (packets). This process can be conducted either online
or offline. Once the model is trained, the tool switches to monitoring or inference mode.

The firstmodule is IoT‐FlowMeter (IFM), which feeds the Brainmodulewith a set of network behavioural
features extracted from themonitored network traffic. The IFM is based on thewell‐known open‐source
community CICFlowMeter5 tool but customised to extract more network traffic features necessary to
detect anomalies.

There is a Brain module that contains a deep learning model. It processes traffic collected by the IFM for
5https://github.com/ahlashkari/CICFlowMeter

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 62 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

training the Autoencoder algorithm. The Brain detects possible deviation from the pattern learned dur‐
ing the training phase. Through the utilization of error reconstruction, coupled with a predetermined
threshold, it classifies incoming traffic into legitimate or anomalous, and provides additional explain‐
ability information to understand the nature of the anomaly. For instance, what features have been the
most critical for detection, and gives evidence showing the deviation of the anomaly from the normal
training data.

3.3.6 Control Flow Integrity Trusted Service

Not enabled Flashadow Enabled

CALL

function

CALL

Return

function

Return

function

CALLFunction A

CALL

JUMP
Function B

JUMP
Function C

JUMP

TA call-hook

JUMP

TA call-hook

RETURN

TA return-hook

RETURN

TA return-hook

Figure 15: Difference between an unsecure application and an application using Flashadow.

In computer security, one of the strongest security guarantees for an application is control flow integrity.
This property can defend the application from various run‐time attacks aimed at diverting its control
flow, i.e. the sequence of instructions that is executed by it. For instance, an attacker could exploit
some memory vulnerabilities of the application to mount a Return Oriented Programming (ROP) attack.
This attack can lead to arbitrary code execution by allowing the controlled execution of disjoint pieces
of existing code. As a result, an application can be exploited to execute unintended operations.

Control flow integrity is a fundamental security property for the correct functioning of an application,
reason for which several chipmanufacturer are working to create hardware solutions that can offer such
a guarantee. Unfortunately, relying on hardware is not always on option, especially in the context of IoT
that counts a plethora of different devices lacking such a specific hardware. With CROSSCONwe propose
to address this security gap by leveraging the TEE rather than specific hardware. TEEs often enable
trusted services: distinct security‐oriented applications that offer some security service to untrusted
clients. However, these TAs are independent, self contained, and passive. A passive service cannot
properly enforce control flow integrity for it requires a more active interaction with the CA. We hereby
propose two novel designs for active control flow integrity for the bare‐metal TEE. Our contribution is
two‐folds: we propose Flashadow for the non‐MPU bare‐metal TEE (for Class 0 devices), and uIPS for
the MPU bare‐metal TEE (for Class 1 devices).

Flashadow is focused on protecting the backward edges of the control flow, i.e. it ensures that each
function returns to the point in the code where it was called. To accomplish this, Flashadow performs
two main operations: (i) upon each function call from the application, it keeps track of the call instruc‐
tion (our return site) on a separate shadow stack, and (ii) upon each return statement, it makes sure that
the return site is indeed the one registered on the shadow stack. Combined, these two operations guar‐
antee that the backward edges of the control flow are protected from attacks. Notably, our approach is
software based, for it does not require any hardware capability on the device. To achieve so, contrarily
to common TAs, Flashadowmust be enabled at compile time by using a dedicated toolchain that creates
compatible code.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 63 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Call instrumentation The first requirement for our Flashadow, is the instrumentation of the call in‐
structions to keep track of the legitimate return sites. To do so, Flashadow replaces each call instruction
in the application code with a new hook that transfers control to the TA. These new instructions allow
the TA to read the program counter (PC) to infer the return site and save it in a secure storage (enabled
by the TEE).

Return instrumentation Instead of trusting the stack, which could have been compromised by an at‐
tacker, the application needs to transfer control to the TA. Having kept track of all of the calls, Flashadow
can check whether the application is trying to return to a legitimate point in the code or if an attacker
tried to hijack the control flow. Similarly to the call instrumentation, each return instruction is replaced
with a jump to our TA. Once Flashadow has gained control, it can fetch the last return site from the
secure storage (saved in the call hook) and check whether it matches the one on the application stack.
If the two match, then the application can perform the return statement. Otherwise, the application is
interrupted to prevent the attacker from completing the exploit.

TEE
Secure Storage

SaveTA call-hook
Return Site A

Return Site B

TA return-hook

Application Stack

Return Site A

Return Site B
Compare

Figure 16: The operations performed in the two Flashadow hooks.

We propose a second design, uIPS, for our MPU‐enabled bare‐metal TEE. Contrarily to Flashadow, uIPS
protects both forward‐ and backward‐edges of the application control flow. The backward edge pro‐
tection is achieved similarly to Flashadow: each call and each return instructions are instrumented to
populate and check a shadow stack, respectively. Once again, the shadow stack is protected through
the secure storage of the underlying TEE. As for the forward‐edges protection, uIPS provides and index
based check on each indirect branch. Specifically, every time the application needs to jump to an un‐
known location in the code (dynamic jump/branch), our uIPS TA is invoked. This will then check if the
destination address is legit by comparing it with a set of allowed destinations. This set, which stems from
a previously obtained control flow graph of the application, is stored in the secure storage as well.

3.4 CROSSCON TEE Toolchain

3.4.1 Existing IoT Update Mechanisms and Standards

There is no consensus on a standard for firmware updates in the IoT world [132]. Many solutions have
been proposed, with various use cases and scenarios in mind. In industry practice, different manufac‐
turers follow different approaches depending on their tools, infrastructures, and strategies [133].

Broadly speaking, the possible firmware update mechanisms fall in two categories: (1) wired updates
(e.g., via a USB port), or (2)wireless/Over‐the‐Air (OTA) updates. Moreover, the update can be either full
or partial (e.g., only a piece of the firmware or the OS), it may include signature and integrity verification
and it may require an attestation of delivery and installation.

In the following we shall focus on the Firmware OTA (FOTA) update process, which is the most relevant
for the CROSSCON project. We first briefly describe the main proposals available in the literature, and
then consider in detail the Software Updates for Internet of Things (SUIT) draft standard proposed by

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 64 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

the IETF.

3.4.1.1 Previous Work on FOTA Update

Perito and Tsudik [134] propose a Secure Code Update By Attestation (SCUBA) framework for sensor
networks which can be used to identify and repair a compromised sensor through firmware updates.
However, the (software‐based) attestation technique heavily relies on the timing characteristics of the
measurement process and the use of an optimal checksum function; due to these assumptions, SCUBA
is not a suitable approach for IoT settings.

The Update Framework (TUF) introduced in [135] provides a generic specification for FOTA updates that
developers can adopt in any software update system. However, this approach does not seem adequate
for resource‐constrained IoT devices.

In [136] the authors propose a secure FOTA update scheme for automotive Electronic Control Units.
Their solution employs separation of entities (e.g., OEM, Apps provider) and verification of the system’s
integrity and authenticity, together with firmware versioning and entitlements for each vehicle and its
corresponding electronic control units.

In [137] the authors present a FOTA update system providing a low‐power mesh protocol, route dis‐
covery, and establishment. The solution is based on the Lightweight Mesh network protocol (LWMesh)
over a peer‐to‐peer mesh architecture (P2PMesh). However, in addition to the proprietary aspect of
LWMesh, the proposal misses the security aspects.

Doddapaneni et al. [138] propose a FOTA update scheme for IoT devices by defining a new secure object
called Firmware Object Signing and Encryption (FOSE). The object is encoded using a secure format such
as JSONObject Signing and Encryption (JOSE). Themain goal is to solve the problems of integrity (in case
of network loss or break) and security (by encrypting the payload). The paper also proposes a procedure
for over‐the‐air updates. However, it addresses only the case where there is an intermediary application
between the end‐device and the device manager.

In [139] the authors design an architecture (ASSURED) for a secure update framework of realistic embed‐
ded devices. To demonstrate its feasibility, ASSURED is instantiated and evaluated on two commodity
hardware platforms, HYDRA and Arm TrustZone‐M. The proposal is an enhancement of the TUF archi‐
tecture, and adopts the same terminology proposed by the SUIT Working Group. However, the authors
did not take into account the scalability issues when dealing with hundreds of IoT devices (for instance
to guarantee the attestation of update installation) and the case of very constrained devices.

The UpKit proposal [140] is a portable and lightweight software update framework for constrained IoT
devices that aims to encompass all phases of the update process, from generation to installation.

Among industry solutions, Cloud IoT Core [141] is a Cloud‐based product provided by Google which
allows a secure device connection and management from a few to millions of IoT devices. Upon a con‐
figuration update from Cloud IoT Core, an update from another external source such as a FOTA update
from the manufacturer, the device state update in the platform is triggered.

AWS IoT device management [142] is a solution provided by Amazon to register, organize, monitor and
remotely manage IoT devices. Among the multiple functionalities it has, the solution provides means
to query the states of the managed IoT devices and to send FOTA update, mainly for FreeRTOS de‐
vices.

OTA Download (OAD) [143] is an ecosystem provided by Texas Instruments that allows the update of the
firmware image running on BLE devices wirelessly.

Mbed OS is an open‐source OS for platforms using Arm microcontrollers designed specifically for IoT
devices. In the newest version ofMbed OS (currently at v5.15), Pelion DeviceManagement [144] is used
to interact andmanage the connected devices that implementMbed OS, in a simple, flexible and secure

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 65 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

way. Among its services, it enables the provisioning and connection of IoT end nodes with cost‐effective,
and provides secure and reliable software updates from remote locations OTA, ensuring, hence, a long
product lifetime.

3.4.1.2 The SUIT Proposed Standard

The IETF SUIT working group is developing an internet standard, described in RFC 9019 [145], proposing
a newfirmware update architecture that uses state‐of‐the‐art security and can be deployed even on very
constrained IoT devices (Class 1, as defined in RFC 7228 [146]). The architecture is based on a metadata
structure, known as themanifest, which is sent to the affected devices when a new update is available.
The information contained in the manifest is used for authentication and authorization purposes, to
retrieve and validate the new firmware image, and to fulfill any other requirement that the process
might have. The architecture can be flexible enough to be applied in many situations, but at the same
time can be made robust with regard to functionality and security.

The following informal requirements for the update process have been considered by the SUIT working
group:

Authentication: new firmware images must be accepted only from the authenticated sources; this is
usually achieved by public key encryption.

Version Control: only the newest and freshly generated updates must be accepted, and only if they are
intended for the particular device.

Integrity: the devicemust check that the firmwarewas not tamperedwith or changedduring the update
process.

Reduced users interaction: user involvement should be minimized, as the user is a possible source of
errors and may not be expert enough to perform complex operations. However, their consent must be
taken into account.

Platform and OS independent: the update processmust be generic enough towork inmost of thewell‐
known hardware and OSs.

Scalability: the process must be able to handle the ever‐increasing number of IoT devices efficiently.

An information model for the SUIT manifest has been described in RFC 9124 [147], and a proposal for a
concrete encoding scheme is currently in the draft stage [148]; it is based on the CBOR binary serializa‐
tion format (described in RFC 8949) and the associated COSE packaging mechanism with cryptography
support (described in RFC 8152). Moreover, the standard allows for possible extensions to the mani‐
fest in order to implement optional capabilities, including firmware encryption, trust domains, update
management, inclusion of a file in the MUD format (RFC 8520), and secure methods for an IoT device to
report on the firmware update status.

Let us briefly describe the main architectural points of the SUIT standard. We first define the various
entities participating in the firmware update process.

▶ The Author is responsible for creating a new firmware, uploading it to the distribution server and
notifying the device management platform.

▶ The Device Operator is responsible for the day‐to‐day operation of the IoT devices and can approve
a new firmware, triggering the update using the status tracker.

▶ The Network Operator is responsible for the operation of the network to which the IoT devices are
connected, and can also interact with the status tracker.

▶ The Trust Provisioning Authority (TPA) is responsible for the distribution of trust anchors and autho‐
rization policies. Usually the original equipment manufacturer (OEM) will perform the duty of the

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 66 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

TPA, but this can change in more complex scenarios.

▶ The User is the end user of the device.

Figure 17: The SUIT secure update architecture.

The architecture of the SUIT update process is schematically depicted in Figure 17 and involves fourmain
components:

▶ an IoT device, or more specifically, a component inside the device that needs to receive the firmware
update, called the Firmware Consumer;

▶ a Firmware Server that can store manifests and firmware images and make them available upon
request;

▶ a Status Tracker Server that keeps track of software and hardware information about each device on
the network and the availability of updates;

▶ a Status Tracker Client running on the IoT device and communicating with the Status Tracker Server.

The update process can be triggered by the Status Tracker Server (pushmode) as soon as a newfirmware
image is available, or by the Status Tracker Client (pull mode) by periodically querying the server. Hybrid
approaches are also possible, and the Status Tracker Client can implement a more complex logic to
decide on a time that does not disrupt the workflow of the device.

Once the update is initiated, the Firmware Consumer receives the manifest and must validate the sig‐
nature to assert its authenticity. The standard does not cover how the signature is performed and
checked, and it assumes a trust anchor is already present in the device. Once the signature is veri‐
fied, the Firmware Consumer must parse the manifest to check the validity of the update, identify if it
applies to the device, and perform the required integrity checks. The manifest can also specify how to
perform the update, where to store the firmware, and so on.

Finally, the firmware image is fetched depending on the capabilities of the device; it can be downloaded
using an URI in the manifest, it can be embedded in the manifest itself, or it can be delivered through
physicalmeans. The obtained image is then verified and installed according to the instructions contained
in the manifest.

3.4.1.3 Software Bill Of Materials

In the manufacturing industry the Bill of Materials (BOM) is a complete inventory detailing all the items
that are used in the manufacturing process of a product. In the automotive industry, for example, man‐
ufacturers maintain a detailed BOM for each vehicle, listing both the components built by them and
those provided by third‐party suppliers. When a defective part is discovered, the manufacturer knows
precisely which vehicles are affected and can notify vehicle owners of the need for repair or replace‐
ment.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 67 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

The same idea can be transposed to the digital world and applied to software, as proposed for instance
in the US government Executive Order 14028 on improving cybersecurity standards [149], which has
been issued in May 2021 as a fallout of the SolarWinds attack.

A Software BOM (SBOM) is defined as a list of all the open source and third‐party components present in
a codebase. An SBOM also lists the licenses that govern those components, the versions of the compo‐
nents used in the codebase, and their patch status, which allows security teams to quickly identify any
associated security or license risks. The value of the SBOM is twofold: it increases the traceability of the
software components (and thus its security), and it provides information for a more accurate estimation
of the cyber risk.

There are threemain standards currently in use for specifying a SBOM: Software Package Data eXchange
(SPDX) (ISO/IEC standard), Software Identification (SWID) (older ISO/IEC standard) andCycloneDX (OWASP
standard).

▶ SPDX is an open standard promoted by ISO and the Linux Foundation. Its specification defines a
standard data format for communicating the component and metadata information associated with
software packages. There is also a more lightweight profile called SPDX Lite. It only uses a subset of
the full specification, making it more suitable for use in IoT.

▶ A SWID tag document is composed of a structured set of data elements that identify the software
product, characterize the product's version, the organizations and individuals that had a role in the
production and distribution of the product, information about the artifacts that comprise a software
product, relationships between software products, and other descriptive metadata.

▶ CycloneDX is a modern standard for BOM, not restricted to software, used both in IT and OT. It is
supported by LockheedMartin, ServiceNow, IBM, Contrast Security, Sonatype, andmany others. The
Hardware BOM (HBOM), supports documentation of components, devices, firmware, configurations,
and many other fields. It is ideal for IoT devices.

3.4.2 Requirements for Integration with DevSecOps Platforms

3.4.2.1 Introduction

DevSecOps, short for Development, Security, and Operations, represents a contemporary framework
that seamlessly integrates security practices into every phase of the software development lifecycle6.
This method aims to significantly reduce the risks of deploying software with security vulnerabilities by
prioritizing collaboration, automation, and well‐defined processes. Unlike traditional models where se‐
curity was often an afterthought, DevSecOps ensures that security responsibilities are evenly distributed
across the team.

This approach is an evolution of the DevOps model, which was developed to overcome the challenges
of the traditional linear and segmented software development process. These older methods often
resulted in delays and late‐stage security issues due to their separate phases for planning, design, de‐
velopment, integration, and testing. DevOps improved this by advocating for rapid delivery of smaller,
high‐quality code updates through constant collaboration between development and operations teams.
However, DevOps frequently relegated security to a final step, not integrating it throughout the pro‐
cess.

DevSecOps enhances the DevOps model by embedding security practices into every aspect of the de‐
velopment process. It is guided by the 'shift left' security principle, which involves incorporating security
considerations from the onset of a project. This ensures that security is a continuous, shared responsi‐
bility throughout the development cycle, leading to safer and more secure software solutions.

6https://aws.amazon.com/what‐is/devsecops/

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 68 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.4.2.2 Key Components of DevSecOps

▶ Continuous Integration: Integrating regular code contributions into a central repository to identify is‐
sues early, complemented by tools for tracking, managing, and reporting on software or requirement
changes.

▶ Continuous Delivery: Automating the progression of code from the build stage to staging environ‐
ments, ensuring that the software remains in a ready‐to‐deploy state.

▶ Continuous Security: Embedding security throughout the entire development lifecycle from the plan‐
ning stage, incorporating automated security checks at the code commit phase, and continuous test‐
ing, including security assessments during build and test phases, penetration testing, and continuous
monitoring.

▶ Communication and Collaboration: Promoting effective teamwork and ongoing communication to
address code conflicts and align objectives, while integrating security practices early in the planning
and development stages.

▶ Security Training for Developers: Educating software developers in security best practices to elevate
their security awareness and skills, reinforcing the team's overall security posture.

3.4.2.3 Common DevSecOps Tools

Here we introduce the most common classes of DevSecOps tools 7,8.

▶ Static Application Security Testing (SAST): These tools analyze proprietary source code to identify
vulnerabilities.

▶ Software Composition Analysis (SCA): SCA automates the visibility into open‐source software use for
risk management, security, and license compliance.

▶ Interactive Application Security Testing (IAST): IAST tools assess potential vulnerabilities in production
environments, using special security monitors that run within the application.

▶ Dynamic Application Security Testing (DAST): DAST tools simulate hacker attacks by testing the appli‐
cation's security from outside the network.

3.4.2.4 Requirements

In developing a toolchain for embedded systems, which includes tasks like creating firmware updates
and secure cross‐compilation, it's important to integrate DevSecOps practices. CROSSCON toolchain is
designed to meet the specific needs of embedded systems, including managing firmware updates and
ensuring the security of the compilation process. It's capable of handling the challenges of embedded
systems, such as limited resources, the need for high security, and cross‐compiling for different hardware
architectures. The CROSSCON toolchain also supports managing a testbed of devices like Raspberry Pi
and FPGAs, with features like remote power control.

The following requirements for the DevSecOps platforms have been established to ensure they align
well with the unique aspects of the CROSSCON toolchain:

▶ Source Code Management and Version Control: Support for robust version control systems (like Git)
to manage firmware and toolchain code.

▶ Continuous Integration / Continuous Development (CI/CD): Ability to automate the build, testing, and
deployment processes of firmware and toolchain updates.

7https://aws.amazon.com/what‐is/devsecops/
8https://www.microsoft.com/en‐us/security/business/security‐101/what‐is‐devsecops

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 69 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

▶ Automated Testing Integration: Integration with automated testing frameworks and the ability to
trigger tests on remote devices.

▶ Remote Device Access and Control: Capability to remotely update firmware, power on/off devices,
and control testbed hardware.

▶ Monitoring and Logging: Tools for monitoring the health and performance of the testbed devices
and logging activities.

▶ Scalability and Flexibility: Ability to scale with the addition of more devices and adapt to different
types of embedded hardware.

▶ Integration with External Tools: Ability to integrate with additional tools or services as needed (e.g.,
for specialized FPGA programming).

So, the CROSSCON toolchain needs a DevSecOps platform, which is robust, flexible, and capable of han‐
dling the specific demands of embedded systems development and testing. It should integrate seam‐
lessly with hardware‐specific tools and provide secure, automated, and efficient workflows to manage
the entire lifecycle of firmware development, from coding to deployment and testing on actual hard‐
ware.

Comparison of existing platforms

In this section, wewill conduct a comprehensive comparison of existingDevSecOps platforms, evaluating
their features, capabilities, and overall effectiveness. The aim is to provide a clear understanding of how
these platforms differ and which might best suit the need of CROSSCON toolchain.

Jenkins910

Jenkins is an open‐source automation server noted for its extensive plugin ecosystem, which aids in
automating complex CI/CD pipelines in various environments. Its open‐source status allows for a high
level of customization, enabling integration with many tools and technologies. However, Jenkins can be
challenging in terms of setup and maintenance, being resource‐intensive and having an interface that
might be less intuitive than newer CI/CD tools. It often requires considerable effort in configuration and
ongoing management, presenting a learning curve for teams new to the platform.

GitHub Actions11

GitHub Actions, a CI/CD service, is integrated within the GitHub ecosystem, designed for projects hosted
on GitHub. It offers a user‐friendly setup and deep integration with GitHub's repository and workflow
features, enabling easy automation of build, test, and deployment workflows. This service is especially
convenient for teams familiar with GitHub. However, its utility is primarily limited to GitHub‐hosted
repositories, which may not suit teams using multiple version control platforms. While GitHub Actions
is user‐friendly, it might lack some advanced CI/CD features and customizations that are available in
more specialized tools.

GitLab CI/CD12

GitLab CI/CD, integral to the GitLab ecosystem, offers an all‐in‐one solution for software development,
combining repository management with CI/CD functionalities. Its unified structure streamlines the de‐
velopment process, aiding teams in adopting and maintaining CI/CD practices more efficiently. This tool
is particularly effective for projects seeking a streamlined pipeline within a single service. However, its
integrated environment may reduce flexibility, and being resource‐intensive, it might pose challenges
for smaller projects or teams.

9https://hackr.io/blog/what‐is‐jenkins
10https://phoenixnap.com/kb/what‐is‐jenkins
11https://docs.github.com/en/actions
12https://docs.gitlab.com/ee/ci

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 70 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

CircleCI 13

CircleCI, a cloud‐based CI/CD tool, is known for its efficiency and speed, enabled by advanced caching
and parallel execution features. It supports various programming languages and integrates well with
multiple version control systems. CircleCI is particularly effective in delivering fast build times and offers
significant customizability, suitable for projects with complex workflows. However, setting up CircleCI
can be intricate for detailed pipelines, and its pricing, particularly for large‐scale use, may be a factor for
budget‐conscious teams.

Travis CI14

Travis CI is a cloud‐based CI/CD service recognized for its simplicity and seamless integrationwithGitHub.
It provides automated testing and deployment, making it popular among open‐source projects. Its
straightforward configuration is ideal for smaller projects or teams seeking an uncomplicated CI/CD so‐
lution. However, Travis CI may lack the customization and advanced features found in more robust
platforms like Jenkins or GitLab CI/CD. Critiques of Travis CI often focus on its build times and resource
allocation, especially when compared to other CI/CD services.

In the following we analyze the above platforms against the specific requirements for developing an em‐
bedded system toolchain with a testbed of Raspberry Pi devices and FPGAs. The analysis focuses on how
well each platform aligns with the requirements such as CI/CD, security, remote device management,
and support for embedded systems.

Jenkins

Source Code Management integrates well with version control systems like Git, enabling efficient track‐
ing and coordination of changes in the code base. This support dovetails nicely into the system's CI/CD
capabilities. Primarily, the highly customizable CI/CD pipelines are excellent for complex workflows,
offering a robust mechanism for integrating changes into the project.

Additionally, the platform provides secure cross‐compilation. It can integrate with cross‐compilation
tools through plugins, creating a seamless interfacing between different systems. Notably, it also sup‐
ports various testing frameworks enhancing its capability for automated testing.

When it comes to remote device control, the flexibility to extend with plugins for remote control is
available, although this might require custom development. Similarly, monitoring and logging capabil‐
ities are extensive. The monitoring setup can be achieved via plugins, ensuring the system health and
activity are always visible and manageable.

The platform's scalability and flexibility are alsomention‐worthy. It is highly scalable and flexible, making
it suitable for complex and evolving environments. Moreover, it showcases a high degree of integrability
with external tools, allowing teams to use their preferred tools in conjunction with this one. In sum,
these features combine to create a system that is comprehensive, adaptable, and effective in managing
varying software development needs.

GitLab

With built‐in robust version control, the Source Code Management tool has a strong integration with
Git. This lends itself effectively to its integrated CI/CD pipelines, which are notable for being easier to
set up than Jenkins. Coupled with this is the good support for automated testing within these CI/CD
pipelines, streamlining the testing process.

Despite its extensive features, the Remote Device Control has limited native support, meaning it likely
requires third‐party tools or custom solutions for full functionality. However, the Security and Compli‐

13https://circleci.com/docs/about‐circleci/
14https://docs.travis‐ci.com/user/for‐beginners/

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 71 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

ance elements are comprehensive, featuring various security features and offering more out‐of‐the‐box
security integration than Jenkins.

While it provides reliable monitoring and logging, enhancements might be needed for specialized hard‐
ware monitoring. Despite being scalable, it's slightly less flexible than Jenkins in terms of the plugin
ecosystem, potentially affecting customizability.

Finally, the Integration with External Tools supports various integrations, but the connectivity isn't as
extensive as Jenkins. This could potentially limit which external tools you can seamlessly integrate with.
Despite some limitations, the tool's strengths in source codemanagement, CI/CD, and securitymeasures
prove it to be a reliable option for many development needs.

GitHub Actions

The Source Code Management system enjoys seamless integration with GitHub repositories, streamlin‐
ing access and control over code versions within this popular platform. This seamless integration ex‐
tends into the realm of CI/CD, where automated workflows are easily configured and controlled within
the GitHub environment.

When it comes to secure cross‐compilation, it's conveniently configurable; however, it highly depends
on the available GitHub Actions. Automated Testing is another area where the platform shines, bene‐
fiting from an integrated approach with GitHub’s ecosystem to support and streamline testing proce‐
dures.

However, it has limited native capabilities in the area of Remote Device Control and would require cus‐
tom setup or third‐party actions for optimal functionality. For monitoring and logging, while there are
basic capabilities present, in‐depth analysis might require the use of external tools.

In terms of scalability and flexibility, the system is scalable within the GitHub framework butmay present
less flexibility outside it. Similarly, when it comes to the integration with external tools, the platform
integrates well within the GitHub marketplace but is less open than Jenkins. This could potentially limit
some functionality if you rely on a variety of external tools. Despite these minor limitations, the system
excels at effectively leveraging the GitHub environment and could be a great choice if your teammostly
operates within GitHub.

CircleCI

The Source Code Management feature of this system comfortably integrates with Version Control Sys‐
tems (VCS) likeGitHub andBitbucket. Its CI/CD feature stands out by providing efficient and fast pipelines.
While they may be less customizable than Jenkins', they fare better in terms of ease of setup.

The platform supports secure cross‐compilation through configurable jobs. This enhances the diversity
of tasks that can be performed within the system. Coupled with good support for automated testing,
this makes the platform conducive for rigorous code validation and deployment pipelines.

On the flip side, Remote Device Control is not a native feature and would require custom scripts or
integration. This could add a layer of complexity in setting up remote access capabilities. When it comes
to Monitoring and Logging, the platform provides adequate features, although additional tools may be
needed for specific hardware.

In terms of scalability and flexibility, the system delivers satisfactory performance. It is scalable and
fairly flexible, but not to the extent of Jenkins. Finally, it has good integration capabilities with third‐
party tools, broadening the range of external resources that can be utilized alongside it. Despite a few
missing features, the platform provides a fast, efficient, and user‐friendly environment that caters to a
variety of software development needs.

Travis CI

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 72 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

The Source CodeManagement system has good integrationwith GitHub, which facilitates effective code
version control. The CI/CD pipelines are simple and easy to use, which can expedite the development
process. Secure cross‐compilation can be set up, but it might not be as straightforward as you'd expect,
potentially requiring extra configuration steps.

Automated testing is supported by the system, but with less customization than available with Jenkins
or GitLab. This means you might have less control over the nuances of test setup and execution. With
regards to remote device control, the platform has limited native support and would require additional
scripting or tool integration for fully‐fledged operability.

Monitoring and logging capabilities are basic, and might require enhancement or additional tools for
specialized use, suggesting it might not provide sufficient insights for some specific use cases. The plat‐
form is scalable within its own framework, but its flexibility is somewhat limited, making it less customiz‐
able than some alternatives.

Finally, while the platform supports integrations, its range is less extensive than Jenkins. This might
limit the scope for using external tools alongside the platform. Despite a few limitations, however, the
platform offers a user‐friendly environment with good scalability and source codemanagement features
that can be an efficient choice for many development teams.

The next table represents the above result of the comparison of popular DevSecOps platforms based on
our requirements:

Requirements Jenkins GitLab GitHub Actions CircleCI Travis CI
Source Code
Management Excellent Excellent Excellent Good Good

CI/CD
Highly
Customizable

Integrated,
Easy Setup

Integrated,
Easy for GitHub Efficient, Fast

Simple,
Easy

Cross‐
Compilation

Good with
Plugins Configurable Configurable Good

Possible
but Limited

Automated
Testing Extensive Good Good Good Good
Remote Device
Control

Possible with
Plugins Limited Limited

Possible but
Limited Limited

Monitoring and
Logging Extensive Adequate Basic Adequate Basic
Scalability and
Flexibility

Highly Scalable,
Flexible

Scalable, Less
Flexible

Scalable within
GitHub

Scalable,
Fairly Flexible Scalable

Integration with
External Tools Excellent Good Good Good Good

For the CROSSCON toolchain, focused on firmware updates and secure cross‐compilation with a Rasp‐
berry Pi and FPGA testbed, the chosen DevSecOps platform is Jenkins. This decision is primarily influ‐
enced by Jenkins' feature of high customizability and its extensive plugin ecosystem. These attributes
make Jenkins particularlywell‐suited for complex and specializedworkflows, which are typical in embed‐
ded systems development involving hardware like Raspberry Pis and FPGAs. The ability to tailor the tool
to our specific needs, from firmware development to testing and deployment, offers a significant ad‐
vantage. However, it's important to acknowledge that this choice comes with the trade‐off of requiring
more setup and maintenance effort. Jenkins' open‐source nature and the need for manual configura‐
tion and management mean that we'll need to invest more resources in its initial setup and ongoing
upkeep. Nonetheless, the flexibility and adaptability it provides align well with the unique demands of
the CROSSCON project.

https://about.gitlab.com/solutions/open‐source/

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 73 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.4.3 Literature Review on Secure Compilation and TA Cross‐Compiler

A secure compiler is a compiler that performs source‐to‐target translation by preserving a given secu‐
rity policy. This goal is complementary to more traditional properties of compilation like correctness
(preservation of behaviour from source code to target code), and has started to attract the researchers’
interest only in recent times; see [150] for a survey of formal work in this field up to 2019.

Two main approaches to secure compilation exist in the literature, depending on whether the target
language is typed or not.

In the first case, one may try to recast the security preservation property in terms of the type systems
of the two languages considered (which are required to be sufficiently expressive). In a typical scenario,
the source language is a high‐level language in which security properties are either enforced implicitly
(for instance by automatic memory management, scoping rules, etc.) or easily guaranteed by the well‐
typedness of a program, whereas the target language is either a typed intermediate language which of‐
fers some (different) form of security guarantees, or an untyped assembly language with no safeguards
at all. In this second case the target language needs to be supplemented by an ad‐hoc type system guar‐
anteeing the low‐level security properties of interest (e.g. non‐interference between memory regions).
In both cases, the ultimate goal is to prove that the compiler transformswell‐typed source programs into
well‐typed target programs (subject reduction), thereby ensuring the preservation of the security prop‐
erties under consideration. See [151, 152] for some seminal examples of this kind of approach.

In the second approach one tries to ensure security preservation by modifying the translation process
in a suitable manner, for instance by inserting runtime checks in the generated code or by leveraging
some existing protection mechanisms in the target architecture.

For the first case, the main approaches considered in the literature are control‐flow integrity [153],
which involves a rewriting of target code to enforce that no jumps can be made outside of the locations
specified in the target control‐flow graph, and dynamic check insertion (see e.g. [154], where defensive
wrappers provide dynamic type checks for the untyped target‐level code).

As regards target‐level protection mechanisms, these can be provided either by the hardware or by an
underlying OS. In the first class we can mention capability machines, whose most important example
is the CHERI model [155], and Trusted Platform Module (TPM)s [156, 157] like for instance the Intel
SGX platform or Arm TrustZone extensions; both these platforms have found some degree of support in
currently‐available processors. In the second class of protectionmechanisms, a well‐explored technique
is Address Space Layout Randomization (ASLR) [158, 159], as provided for instance by OpenBSD, Linux
and Android.

It is important to note that the two techniques outlined above address different attack modes. In type‐
oriented (static) approaches, all the software up to the linker is trusted; at linking time the attacker code
is typechecked and rejected when ill‐typed (i.e. insecure). In contrast, protection‐oriented (dynamic)
approaches generally consider a setting in which the TCB is much smaller, and the attacker potentially
controls all the software stack except for the compiler and the linker. Insecure behaviour is then avoided
by relying on the additional runtime checks.

3.4.4 Design of CROSSCON Secure Update

We base our design on the SUIT standard (Software Updates for IoT), as described in subsection 3.4.1.2,
with two fundamental additions to increase the security of the overall process:

▶ the integration of a SBOM, in order to improve the transparency of the process and ease the tracking
of dependencies and vulnerabilities;

▶ an extension of the SUIT manifest format, in order to accommodate new fields whose intended pur‐

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 74 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 18: The SUIT secure update architecture, with CROSSCON additions.

pose is to host formal proofs of selected firmware security properties (certification manifest).

We supplement the high‐level architecture of the SUIT mechanism described in Figure 17 with an addi‐
tional (trusted) server whose job is to perform the verification of computationally‐intensive proof steps
when needed. The overall scheme is depicted in Figure 18.

We now describe in detail the proposed workflow for update generation and delivery.

3.4.4.1 Update Generation

Figure 19: Workflow for update generation.

The workflow for the construction of the update package is summarized in Figure 19. The agent re‐
sponsible for producing the firmware update (i.e. the Author, in the terminology of 3.4.1.2) starts by
compiling the source code using the CROSSCON secure compiler; the outputs of this step are the com‐
piled binary and a formal proof of the security properties guaranteed by the secure compilation process
(see subsection 3.4.6 below).

At this stage the Author can run additional tools on the binary, extracting further security proofs that
can be used by the secure update process to guarantee the preservation of some selected property of
the updated component.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 75 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

For instance, the security policy may require the new component to have the same control flow graph
of the replaced component. In order to implement such a requirement, the Author must provide with
each update a suitable representation Γ of the control flow graph (CFG) of the supplied code. At update
installation time, the firmware consumer can then compare the graph Γ which represents the CFG of
the current version of the component with the graph Γ representing the CFG of the updated version,
and has a chance to reject the update if (for instance) the two graphs are not isomorphic.

Finally, the Author sends the resulting binary and the manifest (which includes all the formal proofs that
have been generated in the previous steps) to the Firmware Server, in order to enable distribution of
the update, and notifies the Status Tracker Server of the availability of the update.

3.4.4.2 Update Installation

Figure 20: Workflow for update installation.

The corresponding workflow for the installation of an update package is depicted in Figure 20.

At update reception time, the proofs contained in the manifest are extracted and checked one by one.
If all the proofs are successfully verified, the update is installed; otherwise it is rejected as invalid, and
an appropriate notification is sent.

To generate and verify these formal proofs we can adopt the framework proposed in [160], where the
security properties are expressed using the well‐known Linear Temporal Logic (LTL) formal language.
The verification of such a property involves, in general, two different tasks:

▶ as a first step, a set of proof obligationsmust be discharged by proving that they are valid;

▶ as a second step, a formal proof (typically obtained by resolution) must be checked for (syntactic)
validity.

The first step requires a trusted SAT solver and is, in general, more computationally expensive than the
second (which may be performed on device). This step can be offloaded to a trusted server, which
represents the only addition to the regular SUIT setup that is necessary in this scheme.

It is worth noting that the proof obligations that appear in the first step are generated only when the

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 76 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

property to be verified is expressed by a genuinely temporal formulas; simpler properties (e.g. invari‐
ants) can be checked much more efficiently.

As an example of a security property to be checked at this stage we can mention the verification of the
correctness of the new configuration of the CROSSCON Hypervisor to be deployed in the update. This
verification must involve the assumptions detailed in the Deliverable D2.2, as for instance the disjoint‐
ness of the memory regions managed by the separation kernel.

3.4.5 Implementation and Integration with DevSecOp

In the realm of firmware development and embedded systems, implementing a DevSecOps workflow
is essential for maintaining security and quality standards throughout the development lifecycle. This
workflow is particularly tailored to accommodate both software and firmware development processes,
including specialized steps for hypervisor configuration verification and physical testing on a hardware
testbed.

The planned DevSecOps workflow is the following:

▶ Triggering Analysis with New Commits/Releases:

− The workflow is initiated automatically with each new commit or release, integrating continuous
integration and deployment practices.

▶ Static Analysis on Source Code:

− SAST Tools: Tools such as Spotbugs, Semgrep, etc., are employed for SAST to detect vulnerabilities
and coding issues in the source code.

− BAO Config Checker: As BAO is a hypervisor used in the system, the BAO config checker specifically
verifies its configuration for any security problems. This step is crucial for ensuring the hypervisor
layer's integrity and security, which is foundational in embedded systems.

▶ Firmware Image Analysis (Optional for Unavailable Source Code):

− When the source code for certain parts of the firmware isn't available, tools like BugProve are
utilized for firmware image analysis, identifying potential vulnerabilities at the firmware level.

▶ Change Analysis with DeltAICert:

− Requirement Validation Tests: DeltAICert is utilized to run requirement validation tests. These
tests ensure that changes or new additionsmeet the specified requirements and do not introduce
any regressions or new vulnerabilities.

− Physical Testing on Testbed: Beyond virtual testing, tests are conducted physically on the testbed,
which includes Raspberry Pi devices and FPGAs, to verify real‐world performance and stability.

▶ Firmware Manifest Inclusions:

− SBOM: The firmwaremanifest comprises an SBOM to provide transparency about all components,
libraries, and dependencies.

− Formal Proof of Functionality: A formal proof of the firmware's functionality is included to certify
its performance and security.

− Certification: Successful test completion leads to certification, denoting compliance with quality
and security benchmarks.

▶ Firmware Signing and Deployment:

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 77 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

− The firmware undergoes digital signing post‐verification and certification, safeguarding its authen‐
ticity and integrity.

▶ This signed firmware is then uploaded to the update server for deployment.

3.4.6 Secure Cross‐Compilation for TA

The main goal of the CROSSCON secure compilation effort is to guarantee memory safety for Trusted
Applications (TAs).

Memory safety is usually defined as the absence of a certain kind of errors, i.e. invalid memory accesses.
These errors can be further categorized in two classes:

▶ spatial memory errors, where an unauthorised memory location is accessed; typical examples are
out‐of‐bound array accesses, buffer overflows, and null pointer dereferences;

▶ temporalmemory errors, where a valid memory area is referenced at an erroneous point in time, for
instance when it is not yet, or no longer, valid; typical examples are uninitialized memory reads, use
after free, and double free.

The absence of spatial memory errors is called spatial memory safety, and analogously the absence of
temporal memory errors is called temporal memory safety. To ensure complete memory safety, both
spatial and temporal errors must be prevented without false negatives.

Memory‐safe languages enforce both spatial and temporal memory safety by forbidding direct pointer
manipulations, checking object bounds at array accesses and using automatic garbage collection to re‐
claim heap‐allocated objects when it is safe to do so. Unfortunately, TAs are typically written inmemory‐
unsafe languages (e.g. C) and are thus prone to all the pitfalls of manual memory management.

Moreover, TEEs typically do not provide isolation guarantees inside the address space of single TAs, but
only between different TAs. This means that memory corruption between different TAs are prevented,
but invalidmemory accesses inside the address space of a single TA are not avoided, potentially allowing
an attacker to exploit it.

In order to mitigate this risk, we propose a secure compiler for the C programming language, leveraging
the well‐known LLVM compiler infrastructure [161]. The LLVM infrastructure is rich in tools and fea‐
tures, among which there is an expressive Intermediate Language (IR) that can be used for analysis and
instrumentation of the software. Specifically, the IR allows multiple programming language to share a
single semantic, which can then be optimised and converted for the desired target binary.

Our secure compilation is based on an enhanced pointer colouring schema, leveraging the Memory
Tagging Extension (MTE) and any future RISC‐V tagging proposal. MTE is an Armv9 feature that is likely
to be widely adopted in the future years. This technique introduces tags, a.k.a. colours, to memory with
a key‐lock mechanism: each memory location is associated with a tag which is also embedded in every
pointer to that location. In principles, this ensures that a pointer can only access the memory location it
originally points to, therefore becoming resilient to corruption. In practice, the limited number of tags
makes this approach suitable for a weaker probabilistic form of spatial memory safety. To build on top
of MTE, we enhance the state‐of‐the‐art stack colouring techniques with a novel partial tag integrity
technique that boosts its security guarantees.

The secure compilation comprises three different stages, depicted in Figure 21, enabled by LLVM. The
first stage takes as input the source code of a TA, it analyses it and then produces the corresponding IR
representation.

During the second stage the IR is instrumented with new instructions that apply our secure pointer
colouring schema.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 78 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 21: Secure cross‐compilation workflow.

In the third and final stage we rely on the LLVM code generator to lower the IR to machine code for the
selected platform.

3.5 CROSSCON Bare‐Metal TEE

In computer science, bare‐metal is often used to refer to systems where the application run without
underlying OS, i.e. directly on the hardware. If, on the one hand, this allows a boost in the performance
of higher‐end systems, on the other hand it might be the only viable options on very low‐end devices,
e.g., microcontroller units (MCUs). The IoT is teemed with such devices whose constrained hardware
cannot support fully fledged OSs. Therefore, we can refer to bare‐metal devices as a restricted class of
devices that are designed to run applications on the “bare‐metal” hardware, i.e. without the presence
of an underlying kernel/OS. Typically, these applications are in charge of configuring the hardware of the
device as well as performing their intended operations.

Bare‐metal devices arewidely employed in both industry and research, because of their cost‐effectiveness
and power‐efficiency. However, the features offered by such devices are very limited, often forsaking
memory virtualisation and caching. Notably, the absence of common features also impacts the security
capabilities of these devices. Bare‐metal systems often lack the advanced security features present on
higher‐end devices, e.g. TPM, MMU and hardware TEEs. These features often play a crucial role for
the establishment of a secure environment, but incur sensible cost and increase the complexity of the
system. For this reason, the security of bare‐metal devices is entrusted primarily to the applications
deployed on them.

One of the goal of the CROSSCON project is the security of a wide spectrum of devices, comprising both
high‐ and low‐end systems. While the CROSSCON Hypervisor can be deployed on high‐end devices to
instantiate common trusted OSes, being an hypervisor prevents it from being compatible with the bare‐
metal devices. Therefore, CROSSCON propose a bare‐metal TEE to allow bare‐metal systems to interact
securely with the rest of the CROSSCON stack.

3.5.1 Review of Bare‐Metal Requirements and Platforms

Although these devices are not particularly security‐capable, they still require adequate security guar‐
antees when employed in critical environments. For this reason, CROSSCON aims at securing a wide
range of devices, including the bare‐metal ones. If, on the one hand, these devices can be secured even
without the presence of dedicated security hardware, on the other hand, this entails a considerable
effort and leads to slightly weaker security guarantees. Specifically, the constrained resources of these
devices make the security operation costly and not always feasible. Nevertheless, there is a limited yet
comprehensive set of security features that CROSSCON can introduce.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 79 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.5.1.1 Requirements

In order to offer adequate security guarantees and functionalities, there are some key features that
must be supported by any TEE. Some of these features can be mapped to security primitives that must
be enabled by the hardware or the software itself. Given the constrained hardware on the bare‐metal
devices, we propose a software‐based solutions. Nevertheless, the TEE must satisfy a set of require‐
ments in order to be considered secure. The first one ismemory isolation, a property that ensures that
the entire untrusted portion of the software cannot compromise nor leak the memory of the trusted
part. This requirement is crucial since its absence would allow a compromised CA to corrupt the soft‐
ware TEE, thus breaking its security. The second main requirements is inter‐domain communication:
the TEE and the untrusted software must be able to communicate. In practice, this requires that the
TEE exposes a set of APIs that can be called by the untrusted software. On the contrary, the TEE has
usually complete freedom over the untrusted software, and it can call it however it sees fit. The third
key security property is privilege isolation, which ensures that the untrusted software cannot execute
arbitrary operations with the privileges of the TEE. Without such a guarantee, the untrusted software
could re‐configure the TEE and void the security it provides.

3.5.1.2 Platforms

Bare‐metal devices can span across a wide variety of architectures, each with different hardware fea‐
tures and capabilities. To demonstrate the flexibility of the CROSSCON bare‐metal TEE, we propose a
prototype for two different architectures: MSP430 and Armv7‐M. Notably, these two architectures are
of different classes, with a distinct set of security features available. Specifically, Armv7‐M offers: (i)
two privilege levels, (ii) an MPU, (iii) memory in the order of MB. On the other hand, the MSP430 offers
no MPU, no privilege levels and only hundreds of KB of memory.

3.5.2 State of the Art

Security on lower‐end devices is a topic discussed both in the industry and in the literature, with solu‐
tions that vary in the threat model they assume, in the security guarantees they provide and in the class
of devices they target. We will analyse the available security solutions, separating the industrial ones
from the literature ones. Although the line that separates them can be blurred, we define as industrial
solutions the ones that have been fully implemented and are available to the public in an easy and acces‐
sible way. On the contrary, we define literature solutions as those that either lack a full implementation
or that are not easily deployable on the devices.

Industry solutions: The industry is rich in solutions that boast the security guarantees of bare‐metal
devices. These solutions are often offered by the manufacturers of the devices, as a mean to extend
the security of their own product without incurring additional hardware costs. However, there are also
solutions offered by third parties to offer a more general approach compatible with devices of multiple
vendors and manufacturers. The common denominator of these approaches is their software nature:
they don’t require modifying or extending the MCU hardware, but rather rely on software. One of
the most common tools to add security to applications in real‐world contexts are the RTOS. These are
lightweight OSs that focus on a limited number of features in order to be compatible with constrained
devices. These features ‐ among which we usually find thread management, semaphores, mutexes and
other resources useful in managing the execution of small applications ‐ are usually exposed with APIs
via a Hardware Abstraction Layer (HAL). These APIs allow the application developers to explicitly config‐
ure the hardware of the device. Some RTOS also take security into account, providing implicit or explicit
security services to the application developers. One popular example is Mbed OS, an open source RTOS
distributed by Arm that supports both complex and bare‐metal contexts. Security wise, Mbed OS of‐
fers a few security services such as secure communication, cryptographic libraries and a secure partition
manager. A similar approach is taken by Nuttx and FreeRTOS, distributed by Apache and Amazon respec‐

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 80 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

tively. Both are RTOS whose main focus is providing a feature‐rich HAL to the application developers,
comprising cryptographic libraries that can be used to establish some degree of security. Contrarily to
Mbed OS, Nuttx and FreeRTOS are not provided by anMCUmanufacturer and are therefore compatible
with a wider gamma of architectures. Other open‐source and cross‐compatible RTOSes are offered by
Segger and the Zephyr project, both of which are security‐oriented OSes that offer more comprehensive
APIs that can be used by the application developers to granularly configure the security of theMCU, e.g.
by specifying security regions with the MPU. If, on the one hand, all of these approaches offer security
services and primitives to instil trust in the system, they must be explicitly configured by the developers
(an error prone process) and can be limited in the security isolation they provide. Furthermore, they
cannot be easily extended to add security features or services, focusing onmore canonical RTOS features
rather than security. A slightly different approach was taken by HEX‐Five security with their Multizone
solution. Rather than offering an entire RTOS, Multizone is a trusted firmware highly focused on secu‐
rity. It defines a rich set of security primitives, including a dedicated TEE and secure boot, that can be
integrated with bare‐metal applications and FreeRTOS.

Literature solutions: Contrarily to the commercial solutions, the literature solutions can be of differ‐
ent types: software‐based or hardware‐based. Both types usually offer stronger security guarantees,
usually trying to meet those of the higher‐end devices, while adding costs in terms of performance or
hardware extensions. Software‐based solutions are similar to commercial solutions, for they leverage
the existing hardware on the device. However, these solutions try to broaden the attacker model and
extend the security guarantees to the detriment of performance. On the contrary, hardware solutions
strive to maintain the original performance of the MCU by adding HW or extending the existing one.
If, on the one hand, the extra HW makes this solution unsuitable for most real‐world scenarios, on
the other hand, it helps in guiding the development of new technologies. A prominent example of a
hardware‐based solution was proposed by Sancus, which implements memory isolation, remote attes‐
tation and secure communication on constrained devices. To do so, Sancus extends the instruction set of
the hardware CPU with additional instructions that take some security actions based on the value of the
PC (program counter), i.e. on which program is being executed. A different approach was proposed by
TrustLite and TyTAN, which extend the MPU and the exception engine to make them execution‐aware,
i.e. to allow multiple applications to be executed at the same time. Contrarily to Sancus, TrustLite and
TyTAN support extensions in the form of security services that can enhance the security guarantees of
the board. While these techniques try to create a security infrastructure, there are others that instead
focus on a single security service. Two examples are SMART and VRASED, both of which focus on imple‐
menting a Remote Attestation schema on a slightly modified hardware. SMART enhances the hardware
with a Key Access Control and Rom Execution Control capabilities, while VRASED only introduces the
Key Access Control and some ROM. All of these solutions are efficient yet quite impractical: extending
the hardware is not feasible in many scenarios, among which in the industry where off‐the‐shelves de‐
vices are employed. To fix this gap, several researchers have proposed software‐based solutions that,
leveraging the existing hardware, implement some security primitives with code only. An example is
Harbor that enhances the security of a dedicated IoT OS with a software MMU, that the OS can use to
manage the running applications. Leveraging both a run‐time environment and a modified toolchain,
Harbor achieves good security guarantees and a feature rich environment. Targeting more constrained
devices there are solutions such as SuV, which instrument the code of applications running on Harvard‐
basedMCUs. SuV focusing on isolating thememory of a single application, offering rather weak security
guarantees and a limited feature‐set.

3.5.3 Baremetal TEE

In order to meet the security requirements of CROSSCON, we propose two different bare‐metal TEEs:
the BareTEE‐noMPU and the BareTEE‐MPU. From a high perspective, both TEEs are a bridge between
the CROSSCON Hypervisor and the bare‐metal devices. Given the constrained resources of the latter,

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 81 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

MSP430

ARMv7-M

App

BareTEE-MPU

TA TA

App

BareTEE-noMPU TA TA

MPU-isolation

SW-isolation

Figure 22: High‐level comparison between the memory isolation provided by the two different bare‐
metal TEEs.

running the full CROSSCON stack is infeasible, reason for which the BareTEE strives to supply a reduced
yet comprehensive set of security features to satisfy the bare‐metal requirements: memory isolation,
privilege separation and cross‐domain intercommunication. Depending on the available resources on
the target device, we can either deploy the BareTEE‐MPU or the BareTEE‐noMPU. Specifically, in the
presence of an MPU we can use the former, in the absence of it the latter. As part of the CROSSCON
project we provide two prototypes: we implement the MPU version for the Armv7‐M architecture and
nonMPU version for the MSP430 architecture. Although both solutions provide a similar set of security
guarantees to the Applications, they do so using a slightly different isolationmodel. Figure 22 shows the
difference between the two versions, which will be highlighted in the following paragraphs.

3.5.3.1 BareTEE‐MPU

TheMPU is a hardware component that allows basic security features: memory protection. If, on the one
hand, such a component is not as flexible as the MMU, on the other hand it still allows enables a good
degree of security on the memory. In particular, the MPU defines a limited number of memory regions
onto which some memory access privileges (R/W/X) can be enforced. Regions can overlap, and the
same memory address can have different access rights depending on the execution privilege. Notably,
contrarily to the MMU that assigns memory areas to specific processes/applications, the MPU does not
enforce the concept of memory owner. Consequently, defining different access privileges for different
entities sharing the same system, e.g. the application and the TEE, is more challenging. Nevertheless,
we propose a fully fledged TEE for bare‐metal devices with an MPU, providing an implementation for
the Armv7‐m architecture.

Memory isolation: We define three different entities: CA, Trusted Application (TA) and trusted OS.
The trusted OS comprises the software that manages both the TAs and the CA, as well as the core that
handles the memory isolation between the three entities (as can be seen in Figure 22). Notably, the
memory isolation goes only one direction, with the TA that can access the memory of the CA, and the
OS that can access the memory of the entire system, but not vice versa. Furthermore, on top of the
vertical isolation, the OS enforces an horizontal separation between the different TAs, preventing them
from accessing each others' memory. The memory isolation is enabled by the MPU, which need to be
configured dynamically on each domain switch. Specifically, upon execution of any of the three entities,
the trusted OS configures the MPU accordingly to enforce our isolation. In details:

▶ CA Execution: whenever the user application is being executed, the MPU is configured to only allow
access to the application memory. Accesses to the memory of the TAs and of the OS is prevented.

▶ TA execution: whenever a security service from a TA is invoked, theMPU is configured to allow access
to the specific TA memory and to all of the Application memory. Memory accesses to the other TAs'
memory and to the OS's memory are disabled.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 82 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

EL
1

EL
0

App TA TA

BareTEE-MPU

Figure 23: Memory isolation enforced between the three entities on a BareTEE‐MPU system: Applica‐
tion, Trusted Applications and trusted OS. Each arrow symbolises the access capabilities of an
entity over the memory of the pointed entity.

▶ OS execution: whenever the trusted OS is run, the MPU is configured to allow access to the entire
memory.

Figure 23 summarises the memory access rights of each component.

Privilege separation: Armv7‐m supports two privilege levels: EL0 and EL1, also known as unprivileged
and privileged, respectively. On an high‐end system equipped with more than 2 privilege levels, each
software entity would run at a different level. In this case, we must reserve the EL1 level for our trusted
OS and share the EL0 between TAs and CA. This ensures that no entity other than the trusted OS can
perform privileged operations without its consent. By managing the MPU appropriately and by offering
a proper set of APIs, following the TEE Abstraction level proposed in Section 3.1.5, the TAs and CA can
coexist in EL0. trusted OS also carefully manages the interrupts and software exceptions to prevent any
privilege escalation from TAs and CA.

Inter‐domain communication: Communication between the three domains is modeled with our TEE
Abstraction model presented Section 3.1.5. This set of APIs, which facilitate the interaction between
the three software entities, is managed by the trusted OS. While our OS can freely call and jump to the
TA and CA, lowering the execution privilege, both TA and CA need to trigger an exception with each
API request. This is handled transparently by the trusted OS, that parses the exception and routes the
request to the desired functionality.

3.5.3.2 BareTEE‐noMPU

In the absence of the basic security hardware, e.g. the MPU, we must resort to an extremely compact
and stripped down TEE with only the most basic security services. The goal is to have a solution that is
both compatible with the use cases of such constrained devices, while allowing some degree of protec‐
tion in line with CROSSCON requirements.

Memory isolation: The fundamental security primitive that is required by a TEE is memory isolation,
i.e. the separation of the memory used by the TEE itself from the memory used by the untrusted ap‐
plication. This ensures that the security services running in the TEE can be protected from attackers
compromising the unstrusted application, whose malicious behaviour is confined in the unsecure mem‐
ory. Without an MPU, memory isolation must be implemented purely in software through software
instrumentation and instruction virtualization. The instrumentation consists in adding, modifying and
removing instructions from the original application in order tomake it adhere to a certain security policy.
Notably, the instrumentation alters the semantics of the code but not its functionalities, unless these
are explicitly and deterministically malicious (in which case they are simply blocked). However, there
are cases in which the outcome of an instruction cannot be known at compile time, but only at run‐time
where it could turn out malicious. In order to prevent the exploitation of these dynamic instructions we

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 83 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

EL
0

AppTA TABareTEE-noMPU

Figure 24: Isolation enforced between the three entities on a BareTEE‐noMPU system: Application,
Trusted Applications and trusted OS. Each arrow symbolises the access capabilities of the
entity over the memory of the pointed entity.

resort to virtualisation. In particular, we replace them with calls to specific TEE functions that emulate
their functions. As part of this emulation, these functions also make sure that the outcome does not
violate the security policy. Notably, since the application is considered untrusted once deployed, these
functions are located and executed in the TEE (exposed via APIs) so that the security checks cannot be
circumvented. Figure 25 shows the instrumentation/virtualisation technique.

As a result, we can deploy a secure binary, i.e. properly instrumented, alongside the TEE without al‐
lowing attackers to compromise the security services deployed within it. Interestingly, there are several
challenges in maintaining this isolation in real‐world scenarios. One among them is the handling of in‐
terrupts, a common feature that preempts the execution of the currently executing function to execute
a priority task. Interrupts are widely used in embedded systems and can be leveraged to disrupt the
functionalities of the TEE when triggered during its execution. To prevent that, we must supervise the
handling of interrupts by making sure that the TEE is ready to give up control to the application.

Privilege separation: The MSP430 architecture does not provide different privilege levels, thus mak‐
ing the separation of privileges a challenging task. To supply the lack of privileges, we leverage a code
verification technique. Specifically, the trusted OS inspect the binary of the deployed CA to detect any
attempt of executing privileged operations. This check is only performed at boot and prevents the ap‐
plication from starting if any such instruction is found.

Inter‐domain communication: Similarly to the MPU version, the nonMPU BareTEE employes a set of
APIs to allow communication between the trusted OS/TAs and the CA. However, due to the much more
constrained resources of the MSP430 devices, we reduced the set of available APIs to a bare‐minimum
and simplify them. This allow us to offer strong security guarantees without increasing the complexity
of the code. The TEE Abstraction Model can still be mapped the APIs of this implementation, although
with some limitations.

instrument

OLD Application Application

TEE OS

Static instruction

Dynamic instruction

Static instruction

Static instruction

call TEE

Static instruction

BareTEE virtual
function

YES NO

Is dynamic instruction
safe?

STOP execution

Figure 25: Representation of the instrumentation/virtualisation technique of BareTEE‐noMPU.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 84 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

4 Conclusions

This document has provided insights into the research and development efforts within the CROSS‐
CON project, contributing significantly to the advancement of secure and trusted execution environ‐
ments.

We've performed a platform analysis and selection, followed by an extensive investigation into various
aspects of TEEs, section 2. After, we've document progress in each of the CROSSCON WP3 tasks. In
TEE Isolation and Abstraction, section 3.1 we've delved into critical areas such as TEE technologies, vul‐
nerabilities, isolation features, and abstraction proposals. Next, in section 3.2 we've selected Bao as
hypervisor to be used as a basis for CROSSCON Hypervisor, and provided design details regarding the
developed hypervisor features: dynamic VM creation and per VM TEE service support.

Then, we've discussed the development of new trusted services, section 3.3, including PUF‐based au‐
thentication, remote attestation, FPGA‐related services, behavioral‐based services, and control flow in‐
tegrity services. Regarding the CROSSCON TEE Toolchain, section 3.4, we've examined covering existing
IoT update mechanisms, integration requirements with DevSecOps platforms, and design aspects of
secure update mechanisms.

Finally, we've detailed CROSSCON Bare‐Metal TEE, section 3.5, reviewing requirements, platforms, and
implementation details. We've discussed the state‐of‐the‐art approaches and variations of Bare‐Metal
TEE, including both MPU and non‐MPU variants.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 85 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

References

[1] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. ``Sok: Understanding the pre‐
vailing security vulnerabilities in trustzone‐assisted tee systems''. In: Proc. of S&P. 2020.

[2] David Cerdeira, José Martins, Nuno Santos, and Sandro Pinto. ``ReZone: Disarming TrustZone
with TEE Privilege Reduction''. In: Proc. of USENIX Security. 2022.

[3] W. Li, Y. Xia, L. Lu, H. Chen, and B. Zang. ``TEEv: Virtualizing Trusted Execution Environments on
Mobile Platforms''. In: Proc. of VEE. 2019.

[4] Arm. GlobalPlatform API Archives. URL: https://globalplatform.org/specs‐library/.
[5] CC Consortium et al. ``Confidential Computing: Hardware‐Based Trusted Execution for Applica‐

tions and Data''. In: A Publication of The Confidential Computing Consortium (2021).
[6] Moritz Schneider, Ramya JayaramMasti, Shweta Shinde, Srdjan Capkun, and Ronald Perez. SoK:

Hardware‐supported Trusted Execution Environments. 2022. arXiv: 2205.12742 [cs.CR].
[7] Priyadarshini Patil, Prashant Narayankar, DG Narayan, and SMdMeena. ``A comprehensive eval‐

uation of cryptographic algorithms: DES, 3DES, AES, RSA and Blowfish''. In: Procedia Computer
Science 78 (2016), pp. 617–624.

[8] S. Pinto and N. Santos. ``Demystifying Arm TrustZone: A Comprehensive Survey''. In: ACM Com‐
put. Surv. (2019).

[9] Arm. Arm Architecture Reference Manual for A‐profile architecture. URL: https://developer.arm.
com/documentation/ddi0487/ja/.

[10] Arm. Arm Firmware Framework for Arm A‐profile. URL: www . developer . arm . com /
documentation/den0077/latest.

[11] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait, and Gareth Stockwell.
``Design and Verification of the Arm Confidential Compute Architecture''. In: Proc. of USENIX
OSDI. 2022.

[12] Arm. TrustZone for Cortex‐M.URL: https://www.arm.com/technologies/trustzone‐for‐cortex‐m.
[13] V. Costan and S. Devadas. ``Intel SGX Explained''. In: IACR Cryptology ePrint Archive (2016).
[14] Intel. Intel Trust Domain Extensions (Intel TDX). www.www.intel.com/content/www/us/en/

developer/articles/technical/intel‐trust‐domain‐extensions.html. 2021.
[15] AMD. AMD Secure Encrypted Virtualization. www.developer.amd.com/sev/. 2019.
[16] RISC‐V Foundation. Privileged Architecture v1.12, Ratified. www.github.com/riscv/riscv‐ isa‐

manual/releases/tag/Priv‐v1.12. 2021.
[17] Ravi Sahita, Vedvyas Shanbhogue, AndrewBresticker, Atul Khare, Atish Patra, Samuel Ortiz, Dylan

Reid, and Rajnesh Kanwal. ``CoVE: Towards Confidential Computing on RISC‐V Platforms''. In:
Proc. of ACM International Conference on Computing Frontiers. 2023.

[18] Qualcomm.War of the Worlds ‐ Hijacking the Linux Kernel from QSEE. URL: https://bits‐please.
blogspot.com/2016/05/war‐of‐worlds‐hijacking‐linux‐kernel.html.

[19] Taras A Drozdovskyi and Oleksandr S Moliavko. ``mTower: Trusted Execution Environment for
MCU‐based devices''. In: Journal of Open Source Software 4.40 (2019), p. 1494.

[20] Samsung. SAMSUNG TEEGRIS. URL: https://developer.samsung.com/teegris/overview.html.
[21] CVE database. URL: https://cve.mitre.org.
[22] Qualcomm. Security Bulletin. URL: https : / / docs . qualcomm. com/product / publicresources /

securitybulletin/.
[23] AMD. AMD Product Security. URL: https://www.amd.com/en/resources/product‐security.html.
[24] Samsung. Security Updates. URL: https://security.samsungmobile.com/securityUpdate.smsb.
[25] NVIDIA. Product Security. URL: https://www.nvidia.com/en‐us/security/.
[26] Common Vulnerability Scoring System v3.0: Specification Document. URL: https://www.first.org/

cvss/specification‐document.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 86 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

https://arxiv.org/abs/2205.12742

[27] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan. ``vTZ: Virtualizing ARM TrustZone''. In: Proc.
of USENIX Security. 2017.

[28] D. Kwon, J. Seo, Y. Cho, B. Lee, and Y. Paek. ``PrOS: Light‐weight Privatized Secure OSes in ARM
TrustZone''. In: TMC (2019).

[29] Seung‐Kyun Han and Jinsoo Jang. ``MyTEE: Own the Trusted Execution Environment on Embed‐
ded Devices.'' In: Proc. of NDSS. 2023.

[30] Borna Blazevic, Michael Peter, Mohammad Hamad, and Sebastian Steinhorst. ``TEEVseL4:
Trusted Execution Environment for Virtualized seL4‐based Systems''. In: Proc. of RTCSA. 2023.

[31] Daniel Oliveira, Tiago Gomes, and Sandro Pinto. ``uTango: an open‐source TEE for IoT devices''.
In: IEEE Access 10 (2022), pp. 23913–23930.

[32] Arm Ltd. Arm SystemMemory Management Unit Architecture Specification SMMU architecture
version 2. 2016.

[33] Arm Ltd. Arm SystemMemory Management Unit Architecture Specification SMMU architecture
version 3. 2023.

[34] RISC‐V Foundation. RISC‐V. https://www.riscv.org/.
[35] AndrewWaterman1, Krste Asanovi, John Hauser. The RISC‐V Instruction Set Manual ‐ Volume II:

Privileged Architecture. 2021.
[36] RISC‐V Task Group. RISC‐V Platform‐Level Interrupt Controller Specification. 2023.
[37] John Hauser. The RISC‐V Advanced Interrupt Architecture. 2023.
[38] IOMMU Task Group. RISC‐V IOMMU Architecture Specification. 2023.
[39] Dong Du, RISC‐V SPMP Task Group. RISC‐V S‐mode Physical Memory Protection (SPMP). 2023.
[40] Francesco Paci, Davide Brunelli, and Luca Benini. ``Lightweight IO virtualization onMPU enabled

microcontrollers''. In: ACM SIGBED Review 15.1 (2018), pp. 50–56.
[41] Felix Bruns, Dirk Kuschnerus, and Attila Bilgic. ``Virtualization for safety‐critical, deeply‐

embedded devices''. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing.
2013, pp. 1485–1492.

[42] Sanndro Pinto, Hugo Araujo, Daniel Oliveira, Jose Martins, and Adriano Tavares. ``Virtualization
on trustzone‐enabled microcontrollers? voilà!'' In: 2019 IEEE Real‐Time and Embedded Technol‐
ogy and Applications Symposium (RTAS). IEEE. 2019, pp. 293–304.

[43] Runyu Pan, Gregor Peach, Yuxin Ren, and Gabriel Parmer. ``Predictable virtualization onmemory
protection unit‐basedmicrocontrollers''. In: 2018 IEEE Real‐Time and Embedded Technology and
Applications Symposium (RTAS). IEEE. 2018, pp. 62–74.

[44] Daniel Gruss. ``Software‐based microarchitectural attacks''. In: it‐Information Technology 60.5‐6
(2018), pp. 335–341.

[45] Jakub Szefer. ``Survey of microarchitectural side and covert channels, attacks, and defenses''. In:
Journal of Hardware and Systems Security 3.3 (2019), pp. 219–234.

[46] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. ``A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware''. In: Journal of Cryptographic Engi‐
neering 8 (2018), pp. 1–27.

[47] Chao Su and Qingkai Zeng. ``Survey of CPU cache‐based side‐channel attacks: systematic anal‐
ysis, security models, and countermeasures''. In: Security and Communication Networks 2021
(2021), pp. 1–15.

[48] Cristiano Rodrigues, Daniel Oliveira, and Sandro Pinto. ``BUSted!!! Microarchitectural side‐
channel attacks on the MCU bus interconnect''. In: (2023).

[49] Abel Gordon et al. ``ELI: Bare‐Metal Performance for I/O Virtualization''. In: SIGPLAN Notices
(2012).

[50] Giovani Gracioli et al. ``A Survey on Cache Management Mechanisms for Real‐Time Embedded
Systems''. In: ACM Computing Surveys (2015).

[51] R. Ramsauer et al. ``Look Mum, no VM Exits!(Almost)''. In: Proc. of Workshop on Operating Sys‐
tems Platforms for Embedded Real‐Time Applications (OSPERT). 2017.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 87 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

[52] Ralf Ramsauer et al. ``A Novel Software Architecture for Mixed Criticality Systems''. In: Digital
Transformation in Semiconductor Manufacturing. 2020.

[53] Ralf Ramsauer et al. ``Static Hardware Partitioning on RISC‐V ‐‐ Shortcomings, Limitations, and
Prospects''. In: Proc. of IEEE World Forum on Internet of Things. 2022.

[54] T. Kloda et al. ``Deterministic Memory Hierarchy and Virtualization for Modern Multi‐Core Em‐
bedded Systems''. In: Proc. of Real‐Time and Embedded Technology and Applications Symposium
(RTAS). 2019.

[55] Parul Sohal et al. ``E‐WarP: A System‐wide Framework forMemory Bandwidth Profiling andMan‐
agement''. In: Proc. of Real‐Time Systems Symposium (RTSS). 2020.

[56] jailhouse‐RT: Bu‐maintained version of the jailhouse partitioning hypervisor with real‐time fea‐
tures. URL: https://github.com/rntmancuso/jailhouse‐rt.

[57] Alessandro Biondi et al. ``SPHERE: A Multi‐SoC Architecture for Next‐Generation Cyber‐Physical
Systems Based on Heterogeneous Platforms''. In: IEEE Access (2021).

[58] J. Hwang et al. ``Xen on ARM: System Virtualization Using Xen Hypervisor for ARM‐Based Secure
Mobile Phones''. In: Proc. of Consumer Communications and Networking Conference. 2008.

[59] Giulio Corradi. ``Xen on Arm: Real‐Time Virtualization with Cache Coloring''. In: Proc. of Embed‐
ded World Conference. 2020.

[60] Zephyr project. Feb. 2023. URL: https://www.zephyrproject.org/.
[61] Jose Martins et al. ``Bao: A Lightweight Static Partitioning Hypervisor for Modern Multi‐Core

Embedded Systems''. In: Proc. of Workshop on Next Generation Real‐Time Embedded Systems
(NG‐RES). 2020.

[62] Bruno Sa et al. ``A First Look at RISC‐V Virtualization from an Embedded Systems Perspective''.
In: IEEE Transactions on Computers (2021).

[63] Gerwin Klein et al. ``SeL4: Formal Verification of an OS Kernel''. In: Proc. of ACM Symposium on
Operating Systems Principles (SOSP). 2009.

[64] Gernot Heiser. The seL4 Microkernel: An Introduction. The seL4 Foundation. 2020.
[65] Gerwin Klein et al. ``Formally Verified Software in the Real World''. In: Communications of the

ACM (2018).
[66] Jesse Millwood et al. ``Performance Impacts from the seL4 Hypervisor''. In: Proc. of the Ground

Vehicle Systems Engineering and Technology Symposium. 2020.
[67] Anna Lyons et al. ``Scheduling‐Context Capabilities: A Principled, Light‐Weight Operating‐System

Mechanism for Managing Time''. In: Proc. of European Conference on Computer Systems (Eu‐
roSys). 2018.

[68] Qian Ge et al. ``Time Protection: The Missing OS Abstraction''. In: Proc. of European Conference
on Computer Systems (EuroSys). 2019.

[69] Toby Murray et al. ``seL4: From General Purpose to a Proof of Information Flow Enforcement''.
In: Proc. of IEEE Symposium on Security and Privacy (S&P). 2013.

[70] Gerwin Klein et al. ``Comprehensive Formal Verification of an OS Microkernel''. In: ACM Trans‐
actions on Computer Systems (2014).

[71] Gernot Heiser et al. ``Towards Provable Timing‐Channel Prevention''. In: ACM SIGOPS Operating
Systems Review (2020).

[72] Gernot Heiser et al. ``Can We Put the "S" Into IoT?'' In: Proc. of IEEE World Forum on Internet of
Things. 2022.

[73] JoséMartins and Sandro Pinto. ``Shedding Light on Static Partitioning Hypervisors for Arm‐based
Mixed‐Criticality Systems''. In: Proc. of RTAS. IEEE. 2023.

[74] An Braeken. ``PUF based authentication protocol for IoT''. In: Symmetry 10.8 (2018), p. 352.
[75] Wenjie Che, Fareena Saqib, and Jim Plusquellic. ``PUF‐based authentication''. In: 2015 IEEE/ACM

International Conference on Computer‐Aided Design (ICCAD). IEEE. 2015, pp. 337–344.
[76] Ünal Kocabaş, Andreas Peter, Stefan Katzenbeisser, and Ahmad‐Reza Sadeghi. ``Converse PUF‐

based authentication''. In: Trust and Trustworthy Computing: 5th International Conference,
TRUST 2012, Vienna, Austria, June 13‐15, 2012. Proceedings 5. Springer. 2012, pp. 142–158.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 88 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

[77] Seungyong Yoon, Byoungkoo Kim, Yousung Kang, and Dooho Choi. ``Puf‐based authentication
scheme for iot devices''. In: 2020 international conference on information and communication
technology convergence (ICTC). IEEE. 2020, pp. 1792–1794.

[78] G Edward Suh and Srinivas Devadas. ``Physical unclonable functions for device authentication
and secret key generation''. In: Proceedings of the 44th annual design automation conference.
2007, pp. 9–14.

[79] Anthony Van Herrewege, Stefan Katzenbeisser, Roel Maes, Roel Peeters, Ahmad‐Reza Sadeghi,
Ingrid Verbauwhede, and ChristianWachsmann. ``Reverse fuzzy extractors: Enabling lightweight
mutual authentication for PUF‐enabled RFIDs''. In: Financial Cryptography and Data Security:
16th International Conference, FC 2012, Kralendijk, Bonaire, Februray 27‐March 2, 2012, Revised
Selected Papers 16. Springer. 2012, pp. 374–389.

[80] Donglan Liu, Xin Liu, Hao Zhang, Hao Yu, Wenting Wang, Lei Ma, Jianfei Chen, and Dong Li. ``Re‐
search on end‐to‐end security authentication protocol of NB‐IoT for smart grid based on physical
unclonable function''. In: 2019 IEEE 11th International Conference on Communication Software
and Networks (ICCSN). IEEE. 2019, pp. 239–244.

[81] Urbi Chatterjee, Rajat Sadhukhan, Vidya Govindan, Debdeep Mukhopadhyay, Rajat Subhra
Chakraborty, Sweta Pati, Debashis Mahata, and Mukesh M Prabhu. ``PUFSSL: an OpenSSL ex‐
tension for PUF based authentication''. In: 2018 IEEE 23rd International Conference on Digital
Signal Processing (DSP). IEEE. 2018, pp. 1–5.

[82] JinWook Byun. ``An efficientmulti‐factor authenticated key exchangewith physically unclonable
function''. In: 2019 International Conference on Electronics, Information, and Communication
(ICEIC). IEEE. 2019, pp. 1–4.

[83] SD Suganthi, RVSS Anitha, Venkatasamy Sureshkumar, S Harish, and S Agalya. ``End to end light
weight mutual authentication scheme in IoT‐based healthcare environment''. In: Journal of Re‐
liable Intelligent Environments 6 (2020), pp. 3–13.

[84] Raffaele Pugliese, Stefano Regondi, and Riccardo Marini. ``Machine learning‐based approach:
Global trends, research directions, and regulatory standpoints''. In: Data Science and Manage‐
ment 4 (2021), pp. 19–29.

[85] Wei Liang, Songyou Xie, Dafang Zhang, Xiong Li, and Kuan‐ching Li. ``A mutual security authen‐
tication method for RFID‐PUF circuit based on deep learning''. In: ACM Transactions on Internet
Technology (TOIT) 22.2 (2021), pp. 1–20.

[86] Vlastimil Clupek and Vaclav Zeman. ``Robust mutual authentication and secure transmission of
information on low‐cost devices using physical unclonable functions and hash functions''. In:
2016 39th International Conference on Telecommunications and Signal Processing (TSP). IEEE.
2016, pp. 100–103.

[87] Yun‐Hsin Chuang and Chin‐Laung Lei. ``PUF based authenticated key exchange protocol for IoT
without verifiers and explicit CRPs''. In: IEEE Access 9 (2021), pp. 112733–112743.

[88] Mario Barbareschi, Alessandra De Benedictis, Erasmo La Montagna, Antonino Mazzeo, and
Nicola Mazzocca. ``PUF‐enabled authentication‐as‐a‐service in fog‐IoT systems''. In: 2019 IEEE
28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enter‐
prises (WETICE). IEEE. 2019, pp. 58–63.

[89] Zhao Huang and Quan Wang. ``A PUF‐based unified identity verification framework for secure
IoT hardware via device authentication''. In:World Wide Web 23.2 (2020), pp. 1057–1088.

[90] Karim Lounis and Mohammad Zulkernine. ``T2T‐MAP: A PUF‐based thing‐to‐thing mutual au‐
thentication protocol for IoT''. In: IEEE Access 9 (2021), pp. 137384–137405.

[91] Urbi Chatterjee, Rajat Subhra Chakraborty, and Debdeep Mukhopadhyay. ``A PUF‐based secure
communication protocol for IoT''. In: ACM Transactions on Embedded Computing Systems (TECS)
16.3 (2017), pp. 1–25.

[92] Gurjot Singh Gaba, Mustapha Hedabou, Pardeep Kumar, An Braeken, Madhusanka Liyanage,
and Mamoun Alazab. ``Zero knowledge proofs based authenticated key agreement protocol for
sustainable healthcare''. In: Sustainable Cities and Society 80 (2022), p. 103766.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 89 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

[93] Muhammad Arif Muhal, Xiong Luo, Zahid Mahmood, and Ata Ullah. ``Physical unclonable func‐
tion based authentication scheme for smart devices in Internet of Things''. In: 2018 IEEE Inter‐
national Conference on Smart Internet of Things (SmartIoT). IEEE. 2018, pp. 160–165.

[94] JoonYoung Lee, JiHyeon Oh, DeokKyu Kwon, MyeongHyun Kim, SungJin Yu, Nam‐Su Jho, and
Youngho Park. ``PUFTAP‐IoT: PUF‐Based Three‐Factor Authentication Protocol in IoT Environ‐
ment Focused on Sensing Devices''. In: Sensors 22.18 (2022), p. 7075.

[95] Qi Jiang, Xin Zhang, Ning Zhang, Youliang Tian, XindiMa, and JianfengMa. ``Two‐factor authenti‐
cation protocol using physical unclonable function for IoV''. In: 2019 IEEE/CIC International Con‐
ference on Communications in China (ICCC). IEEE. 2019, pp. 195–200.

[96] Muhammad Naveed Aman, Kee Chaing Chua, and Biplab Sikdar. ``Physically secure mutual au‐
thentication for IoT''. In: 2017 IEEE Conference onDependable and Secure Computing. IEEE. 2017,
pp. 310–317.

[97] Carmelo Felicetti,Marco Lanuzza, Antonino Rullo, Domenico Saccà, and Felice Crupi. ``Exploiting
Silicon Fingerprint for Device Authentication Using CMOS‐PUF and ECC''. In: 2021 IEEE Interna‐
tional Conference on Smart Internet of Things (SmartIoT). 2021, pp. 229–236. DOI: 10 . 1109/
SmartIoT52359.2021.00043.

[98] Pim Tuyls and Lejla Batina. ``RFID‐tags for anti‐counterfeiting''. In: Cryptographers’ track at the
RSA conference. Springer. 2006, pp. 115–131.

[99] Carmelo Felicetti, Antonella Guzzo, Giuseppe Manco, Francesco Pasqua, Ettore Ritacco, An‐
tonino Rullo, and Domenico Saccà. ``Deep Learning/PUF‐based Item Identification for Supply
Chain Management in a Distributed Ledger Framework''. In: 2023 Fifth International Conference
on Blockchain Computing and Applications (BCCA). IEEE. 2023, pp. 28–35.

[100] Mohd Shariq, Karan Singh, Mohd Yazid Bajuri, Athanasios A Pantelous, Ali Ahmadian, andMehdi
Salimi. ``A secure and reliable RFID authentication protocol using digital schnorr cryptosystem
for IoT‐enabled healthcare in COVID‐19 scenario''. In: Sustainable Cities and Society 75 (2021),
p. 103354.

[101] Mahshid Delavar, Sattar Mirzakuchaki, Mohammad Hassan Ameri, and Javad Mohajeri. ``PUF‐
based solutions for secure communications in Advanced Metering Infrastructure (AMI)''. In: In‐
ternational Journal of Communication Systems 30.9 (2017), e3195.

[102] Nathan Beckmann and Miodrag Potkonjak. ``Hardware‐based public‐key cryptography with
public physically unclonable functions''. In: Information Hiding: 11th International Workshop,
IH 2009, Darmstadt, Germany, June 8‐10, 2009, Revised Selected Papers 11. Springer. 2009,
pp. 206–220.

[103] Hala Hamadeh and Akhilesh Tyagi. ``Privacy preserving data provenancemodel based on PUF for
secure Internet of Things''. In: 2019 IEEE International Symposium on Smart Electronic Systems
(iSES)(Formerly iNiS). IEEE. 2019, pp. 189–194.

[104] Victor Shoup. ``Practical threshold signatures''. In: Advances in Cryptology—EUROCRYPT 2000:
International Conference on the Theory and Application of Cryptographic Techniques Bruges,
Belgium, May 14‐‐18, 2000 Proceedings 19. Springer. 2000, pp. 207–220.

[105] Ahto Buldas, Andres Kroonmaa, and Risto Laanoja. ``Keyless signatures’ infrastructure: How to
build global distributed hash‐trees''. In: Nordic Conference on Secure IT Systems. Springer. 2013,
pp. 313–320.

[106] Jie Ding,Mahyar Nemati, Chathurika Ranaweera, and Jinho Choi. ``IoT Connectivity Technologies
and Applications: A Survey''. In: IEEE Access 8 (2020), pp. 67646–67673. DOI: 10.1109/ACCESS.
2020.2985932.

[107] Jeyanthi Hall, Michel Barbeau, and Evangelos Kranakis. ``Detection Of Transient In Radio Fre‐
quency Fingerprinting Using Signal Phase''. In: (June 2003).

[108] Junqing Zhang, Guanxiong Shen,Walid Saad, and Kaushik Chowdhury. ``Radio Frequency Finger‐
print Identification for Device Authentication in the Internet of Things''. In: IEEE Communications
Magazine 61.10 (2023), pp. 110–115. DOI: 10.1109/MCOM.003.2200974.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 90 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

https://doi.org/10.1109/SmartIoT52359.2021.00043
https://doi.org/10.1109/SmartIoT52359.2021.00043
https://doi.org/10.1109/ACCESS.2020.2985932
https://doi.org/10.1109/ACCESS.2020.2985932
https://doi.org/10.1109/MCOM.003.2200974

[109] Anu Jagannath, Jithin Jagannath, and Prem Sagar Pattanshetty Vasanth Kumar. ``A comprehen‐
sive survey on radio frequency (RF) fingerprinting: Traditional approaches, deep learning, and
open challenges''. In: Computer Networks 219 (2022), p. 109455. ISSN: 1389‐1286. DOI: https:
//doi.org/10.1016/j.comnet.2022.109455. URL: https://www.sciencedirect.com/science/
article/pii/S1389128622004893.

[110] Benjamin W. Ramsey, Barry E. Mullins, Michael A. Temple, and Michael R. Grimaila. ``Wireless
Intrusion Detection and Device Fingerprinting through Preamble Manipulation''. In: IEEE Trans‐
actions on Dependable and Secure Computing 12.5 (2015), pp. 585–596. DOI: 10.1109/TDSC.
2014.2366455.

[111] Jingyu Hua, Hongyi Sun, Zhenyu Shen, Zhiyun Qian, and Sheng Zhong. ``Accurate and Efficient
Wireless Device Fingerprinting Using Channel State Information''. In: IEEE INFOCOM 2018 ‐ IEEE
Conference on Computer Communications. 2018, pp. 1700–1708. DOI: 10.1109/INFOCOM.2018.
8485917.

[112] Shabir Abdul Samadh, Qianyu Liu, Xue Liu, Negar Ghourchian, and Michel Allegue. ``Indoor Lo‐
calization Based on Channel State Information''. In: 2019 IEEE Topical Conference on Wireless
Sensors and Sensor Networks (WiSNet). 2019, pp. 1–4. DOI: 10.1109/WISNET.2019.8711803.

[113] ``IEEE Standard for Information Technology‐‐Telecommunications and Information Exchange be‐
tween Systems ‐ Local and Metropolitan Area Networks‐‐Specific Requirements ‐ Part 11: Wire‐
less LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications''. In: IEEE Std
802.11‐2020 (Revision of IEEE Std 802.11‐2016) (2021), pp. 1–4379. DOI: 10 . 1109 / IEEESTD .
2021.9363693.

[114] YongsenMa, Gang Zhou, and ShuangquanWang. ``WiFi Sensing with Channel State Information:
A Survey''. In:ACMComput. Surv. 52.3 (June 2019). ISSN: 0360‐0300. DOI: 10.1145/3310194. URL:
https://doi.org/10.1145/3310194.

[115] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. ``Signature Ver‐
ification Using a "Siamese" Time Delay Neural Network''. In: Proceedings of the 6th International
Conference on Neural Information Processing Systems. NIPS'93. Denver, Colorado: Morgan Kauf‐
mann Publishers Inc., 1993, pp. 737–744.

[116] Hovav Shacham. ``The geometry of innocent flesh on the bone: Return‐into‐libcwithout function
calls (on the x86)''. In: Proceedings of the 14th ACM conference on Computer and communica‐
tions security. 2007, pp. 552–561.

[117] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. ``Jump‐oriented programming:
a new class of code‐reuse attack''. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security. 2011, pp. 30–40.

[118] Donatella Granata, Raffaele Cerulli, Maria Grazia Scutella, Andrea Raiconi, et al. ``Maximum flow
problems and an NP‐complete variant on edge‐labeled graphs''. In: Handbook of combinatorial
optimization (2013), pp. 1913–1948.

[119] Giovanna Kobus Conrado, Amir Goharshady, and Chun Kit Lam. ``The Bounded Pathwidth of
Control‐flow Graphs''. In: ACM Conference on Object‐Oriented Programming, Systems, Lan‐
guages, and Applications, OOPSLA 2023. 2023.

[120] Tommaso Frassetto, Patrick Jauernig, David Koisser, and Ahmad‐Reza Sadeghi. ``Cfinsight: A com‐
prehensivemetric for cfi policies''. In: 29th Annual Network andDistributed System Security Sym‐
posium. NDSS. 2022.

[121] Henrik Theiling. ``Control flow graphs for real‐time systems analysis: reconstruction from binary
executables and usage in ILP‐based path analysis''. PhD thesis. Saarland University, 2002.

[122] David Van Horn and Harry G Mairson. ``Relating complexity and precision in control flow analy‐
sis''. In: ACM SIGPLAN Notices 42.9 (2007), pp. 85–96.

[123] Liang Xu, Fangqi Sun, and Zhendong Su. ``Constructing precise control flow graphs from bina‐
ries''. In: University of California, Davis, Tech. Rep (2009), pp. 14–23.

[124] Kailong Zhu, Yuliang Lu, Hui Huang, Lu Yu, and Jiazhen Zhao. ``Constructing more complete con‐
trol flow graphs utilizing directed gray‐box fuzzing''. In: Applied Sciences 11.3 (2021), p. 1351.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 91 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

https://doi.org/https://doi.org/10.1016/j.comnet.2022.109455
https://doi.org/https://doi.org/10.1016/j.comnet.2022.109455
https://doi.org/10.1109/TDSC.2014.2366455
https://doi.org/10.1109/TDSC.2014.2366455
https://doi.org/10.1109/INFOCOM.2018.8485917
https://doi.org/10.1109/INFOCOM.2018.8485917
https://doi.org/10.1109/WISNET.2019.8711803
https://doi.org/10.1109/IEEESTD.2021.9363693
https://doi.org/10.1109/IEEESTD.2021.9363693
https://doi.org/10.1145/3310194

[125] Andrei Rimsa, José Nelson Amaral, and FernandoMQPereira. ``Practical dynamic reconstruction
of control flow graphs''. In: Software: Practice and Experience 51.2 (2021), pp. 353–384.

[126] Yawei Yue, Shancang Li, Phil Legg, and Fuzhong Li. ``Deep Learning‐Based Security Behaviour
Analysis in IoT Environments: A Survey''. In: Security and Communication Networks 2021 (2021),
p. 13. DOI: 10.1155/2021/8873195.

[127] PeteWarden and Daniel Situnayake. TinyML: Machine Learning with TensorFlow Lite on Arduino
and Ultra‐Low‐Power Microcontrollers. O'Reilly Media, 2020. ISBN: 978‐1492052043.

[128] Taiwo Samuel Ajani, Agbotiname Lucky Imoize, and Aderemi A. Atayero. ``An Overview of Ma‐
chine Learning within Embedded and Mobile Devices–Optimizations and Applications''. In: Sen‐
sors 21.13 (2021). ISSN: 1424‐8220. DOI: 10.3390/s21134412.

[129] Georgios Kornaros. ``Hardware‐AssistedMachine Learning in Resource‐Constrained IoT Environ‐
ments for Security: Review and Future Prospective''. In: IEEE Access 10 (2022), pp. 58603–58622.
DOI: 10.1109/ACCESS.2022.3179047.

[130] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. ``Survey of intrusion
detection systems: techniques, datasets and challenges''. In: Cybersecurity 2 (2019), p. 20. DOI:
10.1186/s42400‐019‐0038‐7.

[131] Khaled A. Alaghbari, Heng‐Siong Lim, Mohamad Hanif Md Saad, and Yik Seng Yong. ``Deep
Autoencoder‐Based Integrated Model for Anomaly Detection and Efficient Feature Extraction
in IoT Networks''. In: IoT 4 (3 2023), pp. 345–365. DOI: 10.3390/iot4030016.

[132] Conner Bradley and David Barrera. ``Towards Characterizing IoT Software Update Practices''. en.
In: Foundations and Practice of Security. Ed. by Guy‐Vincent Jourdan, Laurent Mounier, Carlisle
Adams, Florence Sèdes, and Joaquin Garcia‐Alfaro. Lecture Notes in Computer Science. Cham:
Springer Nature Switzerland, 2023, pp. 406–422. ISBN: 978‐3‐031‐30122‐3. DOI: 10.1007/978‐3‐
031‐30122‐3_25.

[133] Saad El Jaouhari and Eric Bouvet. ``Secure firmware Over‐The‐Air updates for IoT: Survey, chal‐
lenges, and discussions''. In: Internet of Things 18 (May 2022), p. 100508. ISSN: 2542‐6605. DOI:
10 . 1016 / j . iot . 2022 . 100508. URL: https : / /www . sciencedirect . com / science / article / pii /
S2542660522000142 (visited on 03/05/2024).

[134] Daniele Perito and Gene Tsudik. ``Secure Code Update for Embedded Devices via Proofs of Se‐
cure Erasure''. en. In: Computer Security – ESORICS 2010. Ed. by Dimitris Gritzalis, Bart Preneel,
and Marianthi Theoharidou. Vol. 6345. Series Title: Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 643–662. ISBN: 978‐3‐642‐15496‐6 978‐3‐642‐
15497‐3. DOI: 10.1007/978‐3‐642‐15497‐3_39. URL: http://link.springer.com/10.1007/978‐3‐
642‐15497‐3_39 (visited on 03/05/2024).

[135] Justin Samuel, Nick Mathewson, Justin Cappos, and Roger Dingledine. ``Survivable key compro‐
mise in software update systems''. In: Proceedings of the 17th ACM conference on Computer
and communications security. CCS '10. New York, NY, USA: Association for Computing Machin‐
ery, Oct. 2010, pp. 61–72. ISBN: 978‐1‐4503‐0245‐6. DOI: 10.1145/1866307.1866315. URL: https:
//dl.acm.org/doi/10.1145/1866307.1866315 (visited on 03/05/2024).

[136] Dimitris Mbakoyiannis, Othon Tomoutzoglou, and George Kornaros. ``Secure over‐the‐air
firmware updating for automotive electronic control units''. en. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. Limassol Cyprus: ACM, Apr. 2019, pp. 174–181.
ISBN: 978‐1‐4503‐5933‐7. DOI: 10.1145/3297280.3297299. URL: https://dl.acm.org/doi/10.
1145/3297280.3297299 (visited on 03/05/2024).

[137] Hans Chandra, Erwin Anggadjaja, Pranata Setya Wijaya, and Edy Gunawan. ``Internet of Things:
Over‐the‐Air (OTA) firmware update in Lightweight mesh network protocol for smart urban
development''. In: 2016 22nd Asia‐Pacific Conference on Communications (APCC). Aug. 2016,
pp. 115–118. DOI: 10.1109/APCC.2016.7581459. URL: https://ieeexplore.ieee.org/abstract/
document/7581459 (visited on 03/05/2024).

[138] Krishna Doddapaneni, Ravi Lakkundi, Suhas Rao, Sujay Gururaj Kulkarni, and Bhargav Bhat. ``Se‐
cure FoTA Object for IoT''. In: 2017 IEEE 42nd Conference on Local Computer Networks Work‐

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 92 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

https://doi.org/10.1155/2021/8873195
https://doi.org/10.3390/s21134412
https://doi.org/10.1109/ACCESS.2022.3179047
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.3390/iot4030016
https://doi.org/10.1007/978-3-031-30122-3_25
https://doi.org/10.1007/978-3-031-30122-3_25
https://doi.org/10.1016/j.iot.2022.100508
https://doi.org/10.1007/978-3-642-15497-3_39
https://doi.org/10.1145/1866307.1866315
https://doi.org/10.1145/3297280.3297299
https://doi.org/10.1109/APCC.2016.7581459

shops (LCN Workshops). Oct. 2017, pp. 154–159. DOI: 10.1109/LCN.Workshops.2017.78. URL:
https://ieeexplore.ieee.org/abstract/document/8110218 (visited on 03/05/2024).

[139] N. Asokan, Thomas Nyman, Norrathep Rattanavipanon, Ahmad‐Reza Sadeghi, and Gene Tsudik.
``ASSURED: Architecture for Secure SoftwareUpdate of Realistic EmbeddedDevices''. en. In: IEEE
Transactions on Computer‐Aided Design of Integrated Circuits and Systems 37.11 (Nov. 2018),
pp. 2290–2300. ISSN: 0278‐0070, 1937‐4151. DOI: 10.1109/TCAD.2018.2858422. URL: https:
//ieeexplore.ieee.org/document/8493602/ (visited on 03/05/2024).

[140] Antonio Langiu, Carlo Alberto Boano, Markus Schuß, and Kay Römer. ``UpKit: An Open‐Source,
Portable, and Lightweight Update Framework for Constrained IoT Devices''. In: 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS). ISSN: 2575‐8411. July 2019,
pp. 2101–2112. DOI: 10.1109/ICDCS.2019.00207. URL: https://ieeexplore.ieee.org/abstract/
document/8884933 (visited on 03/05/2024).

[141] Google. Cloud IoT Core. URL: https://cloud.google.com/iot‐core.
[142] Amazon. AWS IoT Device Management. URL: https : / / aws . amazon . com / iot ‐ device ‐

management/.
[143] Texas Instrument Semiconductor. Over the Air Download (OAD). URL: https ://software‐ dl . ti .

com/lprf/simplelink_cc2640r2_sdk/1.00.00.22/exports/docs/blestack/html/oad/oad.html.
[144] ARM. The full IoT stack. URL: https://www.pelion.com/.
[145] Brendan Moran, Hannes Tschofenig, David Brown, and Milosch Meriac. A Firmware Update Ar‐

chitecture for Internet of Things. RFC 9019. Apr. 2021. DOI: 10 . 17487 / RFC9019. URL: https :
//www.rfc‐editor.org/info/rfc9019.

[146] Carsten Bormann,Mehmet Ersue, andAri Keränen. Terminology for Constrained‐NodeNetworks.
RFC 7228. May 2014. DOI: 10.17487/RFC7228. URL: https://www.rfc‐editor.org/info/rfc7228.

[147] Brendan Moran, Hannes Tschofenig, and Henk Birkholz. A Manifest Information Model for
Firmware Updates in Internet of Things (IoT) Devices. RFC 9124. Jan. 2022. DOI: 10 . 17487 /
RFC9124. URL: https://www.rfc‐editor.org/info/rfc9124.

[148] Brendan Moran, Hannes Tschofenig, Henk Birkholz, Koen Zandberg, and Øyvind Rønningstad. A
Concise Binary Object Representation (CBOR)‐based Serialization Format for the Software Up‐
dates for Internet of Things (SUIT) Manifest. Internet‐Draft draft‐ietf‐suit‐manifest‐25. Work in
Progress. Internet Engineering Task Force, Feb. 2024. 101 pp. URL: https://datatracker.ietf.org/
doc/draft‐ietf‐suit‐manifest/25/.

[149] U.S. Federal Government. Improving the Nation’s Cybersecurity. May 2021. URL: https://www.
federalregister . gov / documents / 2021 / 05 / 17 / 2021 ‐ 10460 / improving ‐ the ‐ nations ‐
cybersecurity.

[150] Marco Patrignani, Amal Ahmed, and Dave Clarke. ``Formal Approaches to Secure Compilation:
A Survey of Fully Abstract Compilation and Related Work''. In: ACM Comput. Surv. 51.6 (2019),
125:1–125:36. DOI: 10.1145/3280984.

[151] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. ``From system F to typed assembly
language''. In: ACM Transactions on Programming Languages and Systems 21.3 (May 1999),
pp. 527–568. ISSN: 0164‐0925. DOI: 10.1145/319301.319345. URL: https://dl .acm.org/doi/
10.1145/319301.319345 (visited on 02/14/2024).

[152] Gilles Barthe, Tamara Rezk, and Amitabh Basu. ``Security types preserving compilation''. In:
Computer Languages, Systems & Structures 33.2 (July 2007), pp. 35–59. ISSN: 1477‐8424. DOI:
10 . 1016 / j . cl . 2005 . 05 . 002. URL: https : / / www . sciencedirect . com / science / article / pii /
S1477842405000230 (visited on 02/14/2024).

[153] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. ``Control‐flow integrity principles,
implementations, and applications''. In: ACM Trans. Inf. Syst. Secur. 13.1 (2009), 4:1–4:40. DOI:
10.1145/1609956.1609960.

[154] Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre‐Evariste Dagand, Pierre‐Yves Strub, and Ben‐
jamin Livshits. ``Fully abstract compilation to JavaScript''. In: Proceedings of the 40th annual
ACM SIGPLAN‐SIGACT symposium on Principles of programming languages. POPL '13. New York,

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 93 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

https://doi.org/10.1109/LCN.Workshops.2017.78
https://doi.org/10.1109/TCAD.2018.2858422
https://doi.org/10.1109/ICDCS.2019.00207
https://doi.org/10.17487/RFC9019
https://doi.org/10.17487/RFC7228
https://doi.org/10.17487/RFC9124
https://doi.org/10.17487/RFC9124
https://doi.org/10.1145/3280984
https://doi.org/10.1145/319301.319345
https://doi.org/10.1016/j.cl.2005.05.002
https://doi.org/10.1145/1609956.1609960

NY, USA: Association for ComputingMachinery, Jan. 2013, pp. 371–384. ISBN: 978‐1‐4503‐1832‐
7. DOI: 10.1145/2429069.2429114. URL: https://dl.acm.org/doi/10.1145/2429069.2429114
(visited on 02/14/2024).

[155] JonathanWoodruff, Robert N. M. Watson, David Chisnall, SimonW. Moore, Jonathan Anderson,
Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton, andMichael Roe. ``The CHERI capa‐
bility model: Revisiting RISC in an age of risk''. In: 2014 ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA). ISSN: 1063‐6897. June 2014, pp. 457–468. DOI: 10.1109/ISCA.
2014.6853201. URL: https://ieeexplore.ieee.org/document/6853201 (visited on 02/14/2024).

[156] Pieter Agten, Raoul Strackx, Bart Jacobs, and Frank Piessens. ``Secure Compilation to Modern
Processors''. In: 2012 IEEE 25th Computer Security Foundations Symposium. ISSN: 2377‐5459.
June 2012, pp. 171–185. DOI: 10 . 1109 / CSF . 2012 . 12. URL: https : / / ieeexplore . ieee . org /
document/6266159 (visited on 02/14/2024).

[157] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and Frank Piessens. ``Se‐
cure Compilation to Protected Module Architectures''. In: ACM Trans. Program. Lang. Syst. 37.2
(2015), 6:1–6:50. DOI: 10.1145/2699503.

[158] Martín Abadi and Gordon D. Plotkin. ``On Protection by Layout Randomization''. In: ACM Trans.
Inf. Syst. Secur. 15.2 (2012), 8:1–8:29. DOI: 10.1145/2240276.2240279.

[159] Radha Jagadeesan, Corin Pitcher, Julian Rathke, and James Riely. ``Local Memory via Layout
Randomization''. English. In: ISSN: 1063‐6900. IEEE Computer Society, June 2011, pp. 161–174.
ISBN: 978‐1‐61284‐644‐6. DOI: 10.1109/CSF.2011.18. URL: https://www.computer.org/csdl/
proceedings‐article/csf/2011/05992161/12OmNCcKQAN (visited on 02/14/2024).

[160] Alberto Griggio, Marco Roveri, and Stefano Tonetta. ``Certifying proofs for SAT‐based model
checking''. In: Formal Methods Syst. Des. 57.2 (2021), pp. 178–210. DOI: 10.1007/S10703‐021‐
00369‐1. URL: https://doi.org/10.1007/s10703‐021‐00369‐1.

[161] The LLVM Project. LLVM Language Reference Manual. URL: https://llvm.org/docs/LangRef.html.

Document name: D3.1 CROSSCON Open Security Stack Documentation ‐ Draft Page: 94 of 94
Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

https://doi.org/10.1145/2429069.2429114
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1109/CSF.2012.12
https://doi.org/10.1145/2699503
https://doi.org/10.1145/2240276.2240279
https://doi.org/10.1109/CSF.2011.18
https://doi.org/10.1007/S10703-021-00369-1
https://doi.org/10.1007/S10703-021-00369-1

	Document Information
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Executive Summary
	Introduction
	Purpose of the Document
	Relation to Other Project Work
	Structure of the Document

	Platform Selection
	Platform Analysis and Selection

	Research Results
	TEE Isolation and Abstraction
	TEEs and TEE Technologies
	TEE Implementations
	TEE Vulnerabilities
	TEE Isolation
	TEE Abstraction

	CROSSCON Hypervisor
	Virtualization and Virtualization Technologies
	Microarchitecture Isolation Techniques
	Hypervisors Feature Analysis and Selection
	Static Partitioning Hypervisor Analysis
	CROSSCON Hypervisor Features and Design

	New Trusted Applications
	PUF-based Authentication
	Context-based Authentication
	 Remote Attestation
	 FPGA Related Trusted Services
	 Behavioral-Based Trusted Service
	 Control Flow Integrity Trusted Service

	CROSSCON TEE Toolchain
	Existing IoT Update Mechanisms and Standards
	Requirements for Integration with DevSecOps Platforms
	Literature Review on Secure Compilation and TA Cross-Compiler
	Design of CROSSCON Secure Update
	Implementation and Integration with DevSecOp
	Secure Cross-Compilation for TA

	 CROSSCON Bare-Metal TEE
	 Review of Bare-Metal Requirements and Platforms
	 State of the Art
	 Baremetal TEE

	Conclusions
	Bibliography

