
Cross-platform Open Security Stack for Connected Device

D2.2 CROSSCON Formal Framework - Draft

Document Identification

Status Final Due Date 29/02/2024

Version 1.0 Submission Date 20/02/2024

Related WP WP2 Document Reference D2.2

Related D2.4 Dissemination Level(*) PU

Deliverable(s)

Lead Participant UNITN Lead Author Marco Roveri

Contributors BEYOND Reviewers Ziga Putrle (BEYOND)

Keywords

CROSSCON Trusted Execution Environment, CROSSCON Hypervisor, CROSSCON System on Chip, CROSS-

CON Formal Specification

This document is issued within the frame and for the purpose of the CROSSCON project. This project has received funding from the European

Union’s Horizon Europe Programme under Grant Agreement No.101070537. The opinions expressed and arguments employed herein do not

necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may be

made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the CROSSCON Consortium. The content of all or parts of this document can be used and

distributed provided that the CROSSCON project and the document are properly referenced.

Each CROSSCON Partner may use this document in conformity with the CROSSCON Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g. web (Deliverables flagged as public will be automatically published in CORDIS project’s

page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission Deci-

sion No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU SECRET under the

Commission Decision No2015/444.

Ref. Ares(2024)1289913 - 20/02/2024

Document Information

List of contributors

Name Partner

M. Roveri UNITN

J. Mihelič BEYOND

A. Tacchella UNITN

Document history

Ver. Date Change editors Changes

0.1 28/11/2023 M. Roveri (UNITN) Initial draft structure.

0.2 09/01/2024 M. Roveri (UNITN) Initial draft of chapters 1 and 2.

0.3 10/01/2024
M. Roveri (UNITN), J. Mihelič

(BEYOND)

Initial draft of CROSSCON separation ker-

nel formalization.

0.4 16/01/2024 J. Mihelič (BEYOND) Revised chapter 3.

0.5 16/01/2024 M. Roveri (UNITN) First version chapter 1.

0.6 21/01/2024 J. Mihelič (BEYOND) Further revision of chapter 3.

0.7 22/01/2024 M. Roveri (UNITN) Finalized first draft of chapter 4.

0.8 22/01/2024 M. Roveri (UNITN) Finalized first draft of chapter 5.

0.9 23/01/2024 M. Roveri (UNITN) Overall pass to fix many typos.

0.10 24/01/2024 M. Roveri (UNITN)
Wrote the executive summary, document

structure, introduction to section 3.4.

0.11 29/01/2024 J. Mihelič (BEYOND) Revised chapter 2 and 3.

0.11 29/01/2024 M. Roveri (UNITN) Revised chapters 2, 3, and 5.

0.12 29/01/2024 A. Tacchella (UNITN) Revised chapter 3.

0.13 30/01/2024 M. Roveri (UNITN) Fixed some descriptions in chapter 3.

0.14 31/01/2024 J. Mihelič (BEYOND) Revised chapter 3.

0.15 05/02/2024 M. Roveri (UNITN)

Revised chapters 1, 2, executive sum-

mary to address comments from the in-

ternal review.

0.16 06/02/2024
J. Mihelič (BEYOND), M. Roveri

(UNITN)

Revised chapters 3 and 4 to address com-

ments from the internal review.

0.17 15/02/2024 M. Roveri (UNITN)
Final version and approved, ready for

quality control.

0.18 20/02/2024 Juan Andrés Alonso (ATOS) Final version based on quality control.

1.0 20/02/2024 H. Koshutanski (ATOS) Final version submitted.

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Marco Roveri 15/02/2024

Quality Manager Juan Andrés Alonso (ATOS) 20/02/2024

Project Coordinator H. Koshutanski (ATOS) 20/02/2024

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 2 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information.. 2

Table of Contents .. 3

List of Tables ... 5

List of Figures.. 6

List of Abbreviations.. 7

Executive Summary ... 8

1 Introduction .. 9

1.1 Relation to Other Project Work... 9

1.2 The CROSSCON high-level architecture... 9

1.3 Structure of the Document ... 10

2 CROSSCON Security properties .. 11

2.1 Related works.. 11

2.1.1 Security properties of seL4.. 11

2.1.2 CHERIoT security properties.. 12

2.1.3 GWV security properties ... 12

2.1.4 Noninterference security property.. 13

2.2 The CROSSCON proposal... 13

3 The CROSSCON separation kernel formalization ... 15

3.1 Separation kernel .. 15

3.2 Machine state ... 15

3.2.1 Single-core state .. 15

3.2.2 Multi-core state ... 16

3.2.3 Core assignment .. 17

3.3 Memory protection... 17

3.3.1 Memory partitioning ... 17

3.3.2 Memory mapped I/O sub-region... 18

3.3.3 Effective domain .. 18

3.4 Instruction semantics.. 19

3.4.1 Memory access obligations ... 20

3.4.2 Ordinary (unprivileged) instructions.. 20

3.5 Memory security ... 21

3.5.1 Validity of access ... 21

3.5.1.1 Invalid access ... 21

3.5.1.2 Valid access .. 21

3.5.2 Access type.. 22

3.5.2.1 Read access .. 22

3.5.2.2 Write access ... 22

3.5.2.3 Fetch access ... 23

3.5.3 Security properties .. 23

3.5.3.1 Integrity.. 23

3.5.3.2 Confidentiality.. 24

3.5.3.3 Isolation ... 25

3.5.3.4 Availability.. 25

3.6 Context switching.. 25

3.6.1 Safe domain execution context storage... 26

3.6.2 Interrupt handling ... 26

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 3 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

3.6.3 User-mode software interrupts ... 27

3.6.4 Separation kernel calls... 27

3.6.5 Domain switch ... 27

4 Formalization for a TEE and Hypervisor less hardware .. 28

4.1 Formal Proofs of Theorems 11 and 12 .. 31

5 Conclusions ... 36

Bibliography.. 37

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 4 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1: Valid memory accesses. ... 22

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 5 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1. The CROSSCON high-level architecture. ... 9

Figure 2. An example of a memory map. ... 18

Figure 3. The protection provided by separation kernel. ... 19

Figure 4. Trusted Execution Environment (TEE) and virtualization less architecture. 28

Figure 5. An example of a refined memory map for the Trusted Execution Environment (TEE) and

virtualization less case.. 28

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 6 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

List of Abbreviations

Abbreviation /

acronym

Description

CHERIoT Capability Hardware Extension to RISC-V for Internet of Things

GWV Greve, Wilding and Vanfleet

HW Hardware

IoT Internet of Things

ISA Instruction Set Architecture

ISR Interrupt Service Routine

MCU Micro Controller Units

REE Rich Execution Environment

RTOS Real-Time Operating System

SMT Satisfiability Modulo Theory

TCM Trusted Computing Module

TEE Trusted Execution Environment

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 7 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

The purpose of this document is to provide the basis for the definition of a formal specification frame-

work for the design and deployment of trusted Internet of Things (IoT) applications considering all differ-

ent aspects. We will also investigate (as a future work for the rest of the project activities) the structure

of a ”certification manifest” to accompany any application. In particular, here, we will perform a pre-

liminary definition of the concepts of safety and assurance for IoT applications. We will take advantage

of temporal logic specifications complemented with security concepts to prove security properties. We

will rely on existing frameworks and verification tools (possibly adapted) to address the identified ver-

ification problems. In this document, we present the initial draft of the CROSSCON security properties

and the initial formalization of the CROSSCON separation kernel together with manual proofs of some

of the properties. Furthermore, we provide formalization and automatic proofs for the case where we

use TEE and virtualization-less architecture together.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 8 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

The purpose of this document is to provide preliminary results related to the formalization of the CROSS-

CON stack considering the results of task 2.1 which aims to provide the initial picture of the CROSSCON

architecture. The role of this document is to provide an initial draft towards the formalization of the

CROSSCON stack, discussing in detail the security properties we aim for, and their initial formalization in

the scope of the CROSSCON separation kernel.

This document will be used as a basis for the formal technical work of the project and will be subse-

quently refined to a final formal specification later in the project.

1.1 Relation to Other Project Work

The document is closely related to the initial version of the CROSSCON Open Specification preliminary

discussed in D2.1 [1], the result of the first working period of Task 2.1. In turn, it is related to the defini-

tions of use cases in the deliverable D1.1 [2] and the technical specification of the corresponding general

requirements as documented in the deliverable D1.2 [3].

The work packages on the CROSSCON security stack (WP3) and extensions for accommodating domain-

specific hardware in CROSSCON (WP4) will benefit from the formal specification laid out in this docu-

ment.

Thedraftof the formal specificationwill be updatedduring theproject to accommodate possible changes

and insights gained during the project work and documented as a final version of the CROSSCON formal

specification in the deliverable D2.4.

1.2 The CROSSCON high-level architecture

As thoroughly discussed in Deliverable D2.1 [1], the current CROSSCON high-level abstract architecture

can be graphically represented as shown in Figure 1.

Figure 1: The CROSSCON high-level architecture.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 9 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

As discussed inD2.1 [1], wedistinguish twohigh-level cases: i) deployment in the case of a Rich Execution

Environment (REE) with different REE privilege levels or ii) deployment in the case of the presence of a

Trusted Execution Environment (TEE) also with different TEE privilege levels. In both cases, at the lower

levels of the CROSSCON stack, we have the ISA that varies depending on the CPU architecture families

(E.g., RISC-V, Arm with all their variants) considered, each equipped with possibly different capabilities

(E.g., the presence of a TEE, privilege levels). On top of the Instruction Set Architecture (ISA), we consider

the possible presence of firmware (which may exist or not, depending on the CPU architecture and the

needs of the above layers of the stack).

1.3 Structure of the Document

This document is structured as follows. In Chapter 2 we discuss related works and present the initial

draft of the security properties. In Chapter 3 we discuss the first draft of the formalization of the CROSS-

CON separation kernel together with the proof of some security properties. In Chapter 4 we discuss a

detailed formalization of the CROSSCON design for the TEE and virtualization-less case together with an

automated proof of correctness. Finally, in Chapter 5 we draw conclusions for this period and outline

future work.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 10 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

2 CROSSCON Security properties

As the first step towards the formalization of the CROSSCON stack, we analyzed different specifications

available in the literature to assess both the definition of isolation and the security properties they con-

sidered. In Section 2.1 we briefly summarize each of them, while in Section 2.2 we summarize what we

are currently envisaging to adopt (we may revise them in the remaining time of the project).

2.1 Related works

The most related approaches to formalize isolation and to define security properties are:

I seL4 – The world’s most highly assured operating system kernel,

I CHERIot – Capability Hardware Extension to RISC-V for Internet of Things (CHERIoT),

I GWV – Security model formalization by Greve, Wilding, Vanfleet,

I Noninterference security guarantee.

In the remainder of this section, we summarize their main characteristics and their definition of security

properties.

2.1.1 Security properties of seL4

The seL4 is a general purpose operating system micro-kernel whose specification has been subject to

machine-checked formal verification [4], and its implementation has proven to be functionally correct

according to the specification. Among other things, it guarantees the three classical security properties:

confidentiality, integrity, and availability which are roughly defined as follows:

Confidentiality: The seL4 will not allow an entity to read data without having been explicitly given read

access to the data.

Integrity: The seL4 will not allow an entity to modify data without having been explicitly given write

access to the data.

Availability: The seL4 will not allow an entity to prevent the authorized use of resources by another

entity.

We notice that from a thorough reading of the documentation, the proofs for guaranteeing the above

security properties do not consider temporal aspects. Thus, the above security properties are static and

not associated with time. Moreover, all the proofs are based on the following assumptions [5]:

I The hardware operates as intended, meaning we assume it functions correctly by adhering to its

specifications. In practical terms, this assumption implies that the hardware has not been tampered

with or is operating within its designated conditions.

I The theorem prover is correct, i.e., we can trust the solver used to prove the properties, which is

bug-free, and the proof rules used to prove the properties are correct.

There are also other assumptions, and we refer the reader to [5] for additional details.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 11 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

2.1.2 CHERIoT security properties

Capability Hardware Extension to RISC-V for Internet of Things (CHERIoT) [6] is an Instruction Set Ar-

chitecture and software model built on top of CHERI [7]1 and RISC-V to provide spatial memory safety,

deterministic use-after-free protection, and lightweight compartmentalization exposed directly to the

C/C++ language model.

CHERIoT can run existing embedded software components on a clean-slate Real-Time Operating System

that scales up to large numbers of isolated (yet securely communicating) compartments. Thus, CHERIoT

considers notions of memory safety. In its settings, a system is said to be memory safe if its references

to memory are:

Unforgeable: A reference tomemory (in particular, the authority to accessmemory) can be constructed

only from other references.

Monotonic: A constructed reference will have no more authority than its progenitor reference (and

may have less).

Spatially Safe: References to memory authorize access to a set of memory locations determined when

the reference is constructed.

Temporally Safe: References to a region of memory will not remain usable across memory reuse for a

different allocation.

CHERIoT leverages the notion of compartment: a collection of code, data and capabilities that serves as

a callable security context. Given these concepts, it defines two global security properties:

I No compartment should be able to access another compartment’s data, except where explicitly

shared.

I No thread should be able to access the data of another thread, except where explicitly shared.

We remark that, although CHERI was also applied to other architectures, for example, MIPS and Arm,

CHERIoT is tight to RISC-V architectures only, and extension to other families is not trivial. We remark

that being CHERIoT based on RISC-V, the proposed approach is limited to RISC-V processors only, and

extension to other families is not trivial. We remark that CHERIoT targets embedded devices that do

not support virtualization of the memory in the classical sense; thus, CHERIoT devices do not support

classical operating systems (e.g., Linux), while CHERI, differently from CHERIoT, considers virtualization

of the memory. In the case of the CROSSCON stack, we aim to cover both cases (with classical memory

virtualization and without).

2.1.3 GWV security properties

Greve, Wilding and Vanfleet (GWV) [8] proposed a security policy that defines a model of a separation

kernel, which enforces partitioning between applications running on a single processor system. To this

extent, GWV defines notions of partitions and segments and proposes three basic separation proper-

ties:

Non-exfiltration: This property indicates that an executing partition will not influence memory seg-

ments outside of its permitted set of segments.

Non-infiltration This property indicates that the execution partition can only use information from its

permitted set of segments to affect its execution behavior.

Non-mediation: This property indicates that when a partition executes, the effect on a segment does

not depend on anything other than the segment’s original value and the values of the current partition.

1The RISC-V open source project https://riscv.org/.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 12 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

GWV security properties are very general and different from the other two previously considered cases;

they encompass time (execution).

2.1.4 Noninterference security property

Non-interference (sometimes also called non-inference) is a model of multiple levels of security pro-

posed by Goguen and Meseguer [9]. It models a system composed of a number of users, inputs and

outputs, and actions with a state-transition machine. The main motivation is a security policy repre-

sented by a relation between users specifying which information flows are permissible (usually from

low-marked inputs to high-marked outputs) and which are not (from high-marked inputs to low-marked

outputs). Therefore, non-interference is a property that restricts the information flow through the sys-

tem. In this setting, the main verification effort is to show that high-marked inputs cannot interfere with

low-marked outputs.

Non-interference: X is non-interfering with Y in a system M if X’s input to M does not affect M’s output

to Y .

Confidentiality: An immediate consequence of non-interference is that the observations of Y are en-

tirely independent of the actions of X. Therefore, the non-interference property also expresses the

confidentiality guarantee of X’: X cannot reveal any secrets to Y through M.

Integrity: Similarly, the consequence is that no information flows from X to Y through M. Therefore, it

also expresses the guarantee of integrity of Y ’: Y cannot be corrupted by X through M.

It seems natural that the information flow relation must be transitive; that is, if the flow from A is al-

lowed and the flow from B to C is allowed, then the flow from A to C must also be allowed. However,

this transitivity property then prohibits the expression of special high-integrity users who are trusted to

downgrade the information, for example, by declassifying it from the high to low mark. Therefore, the

so-called intransitive noninterference (non-interference under an intransitive security policy has been

studied in the literature [10].

2.2 The CROSSCON proposal

For the CROSSCON approach, we will adopt a slight variant of the seL4 classical security properties:

confidentiality, integrity, and availability. This choice is motivated by the fact that these properties are

not as generic as those of the GWV model and are not as specific to RISC-V as in the CHERIoT case. In

addition, confidentiality and integrity are both captured in the CIA triad, which is an established model

designed to guide policies for information security. Thus, this allows us to properly capture the spirit of

the CROSSCON stack to be independent of the low-level hardware architecture. Thus, similarly to the

seL4 case, we will consider the following security properties.

Confidentiality: The CROSSCON stackwill not allow an entity to read datawithout having been explicitly

given the entity read access to the data.

Integrity: The CROSSCON stack will not allow an entity to modify (write) data without explicitly having

been given the entity write access to the data.

Availability: The CROSSCON stack will not allow an entity to prevent the authorized use of resources by

another entity. This is similar to the case of seL4, meaning that the different CROSSCON elements will

eventually get the resources needed if they are authorized to get them.

Furthermore, we also adopt the non-interference property since it is suitable for establishing the se-

curity property of memory isolation and separation of domains. Informally, we state this property as

follows.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 13 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

Noninterference: The CROSSCON stack will provide domain separation in the sense that changes in the

state of one domain do not affect the state of any other domain.

In the formalization (next sections), we will provide formal counterparts of the above natural language

security properties. We remark that this is an initial draft and that we may revise this initial proposal

throughout the remaining time of the project.

In the formalization, similarly to the other considered approaches, we will assume the following:

I Unless strictly necessary we keep temporal aspects out of the formal specification, thus considering

static properties.

I We assume that Hardware (HW) behaves correctly.

I To start with, we assume that there are no side-channel attacks. We may then reconsider this in

future revisions of the formalization.

I Weassume that the verification engine is correct (i.e., it does not allow one to conclude false results).

For the formalization, wewill follow the architecture decomposition of the CROSSCON stack. For the ver-

ification of some of the security properties, we envisage leveraging on adaptation of existing verification

techniques, for example, model checking [11], theorem proving, for example, Satisfiability Modulo The-

ory (SMT) [12] and compositional reasoning [13], along the lines followed in the preliminary work on

limited HW architectures [14].

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 14 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

3 The CROSSCON separation kernel formalization

In this chapter, we present our approach towards a formalization of a CROSSSCON separation kernel,

which serves as a model for the CROSSCON hypervisor. We define fundamental notions and specify nec-

essary assumptions about the separation kernel model. Within our formal setting, we also characterize

and prove several security properties that are often found in the related literature.

3.1 Separation kernel

Conceptually, a separation kernel is the core component of a system that divides the system’s resources

into distinct domains, often also called partitions or worlds. Its main goal is to enforce separation be-

tween these domains, akin to the level of separation found in physically distributed systems.

In practice, a separation kernel comprises various hardware and/or software modules that are inte-

grated into a hypervisor (i.e., virtual machine monitor) or a supervisor operating system implemented

for a compatible computer architecture. Assuming that the architecture provides appropriate protec-

tion mechanisms, such as support for at least two processor privilege levels and a memory protection

unit or memory management unit, the implementation of the separation kernel is usually based on the

hardware and software co-designed approach. However, software-based approaches based on code in-

strumentation and instruction emulation are also possible. We conceptualize the separation kernel as a

cohesive entity that delivers specific security guarantees.

The environment provided by the separation kernels consists of one or more domains isolated via pro-

tection mechanisms. We offer (and later in this document also formalize) the following two views on

the separation provided by the separation kernel model:

I separation of the separation kernel from the domains, and

I separation of the domains from each other.

3.2 Machine state

We start our formalization with a definition of the state of a computer system, simply called a machine,

comprising at least amainmemory and amicroprocessor. Modernmicroprocessors in a single integrated

circuit often provide several separate processing units, called cores. Hence, we first define a single-core

state representing microprocessors having one processing unit. Afterwards, we expand this representa-

tion tomultiple-core state to include processors with two or more processing units that share the main

memory. Finally, we consider variousmodes and assumptions regarding how cores can be shared within

security domains.

3.2.1 Single-core state

Consider a computing system consisting of a main memory and a single processing unit containing a

set of general-purpose registers and several special-purpose ones. We use σ to denote the state of the

machine and represent it with a quintuple

σ = (M,R, PC, PL,D)

where the components of the state σ are as follows:

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 15 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

I Amapping M : AM → VM representing amemory, for example, a full physical memory address space

that a processor can address. Here, AM is a set of all memory addresses and VM is a set of values

that a memory location can contain.

I A mapping R : AR → VR representing a set of registers. Here, AR is a set of register labels and VR is

a set of values that a register can hold.

I A variable PC : AM which represents the program counter register usually incorporated within a

processor.

I A variable PL : {S,U} that identifies the current privilege level where S indicates the privileged level

(i.e., separation kernel) and U indicates the unprivileged level (i.e., user).

I A variable D : {1, . . . ,N} that identifies the currently active domain from the set of domains. We

consider that there are N domains.

Practical computer architectures may be very complex in organizing their memory and registers. With-

out delving into the details of these practicalities, we consider a simplified and unified view of memory

and registers. In particular, we assume that the model uses W-bit memory addresses that may hold W-

bit values, as well as processor registers containing W-bit words. For simplicity, we also assume that the

sets AM,VM, AR,VR ⊆ N contain consecutive numbers starting from 0. For example, if we set W = 32
and L = 16, we obtain AM = VM = VR = {0, . . . , 232 − 1} and AR = {0, . . . , 15}.

We formalize these conditions in the following assumptions.

Assumption 1. The main memory consists of 2W cells, where each cell contains a W-bit value, i.e.,

AM = VM = {0, . . . , 2W − 1}.

Assumption 2. The processor supports L general purpose registers, where each register contains aW-bit

value, i.e.,

AR = {0, . . . , L} and VR = {0, . . . , 2W − 1}.

The idea of the following assumption is to simplify the semantics of machine instructions; e.g., incre-

menting the program counter register changes it to the next instruction.

Assumption 3. Uniform encoding and representations: machine instructions and operands, etc., use W
bits to represent.

3.2.2 Multi-core state

Practicalmulti-core systems share themainmemory between instruction processing units, but they have

their own set of registers. It is straightforward to expand the single-core state to model the multi-core

processors by duplicating certain parts of the state.

Consider a processor with P ∈ N, where P ≥ 1, cores, then the multi-core state σ is defined as

σ = (M, σ′1, . . . , σ
′
P) where σ′i = (Ri, PCi, PLi,Di).

Here, σi is a sub-state of the i-th core.

Observe that any code is always executed in the context of a particular core. Hence, besides the shared

main memory, the executed instruction can only alter the core-dependent sub-state. For this purpose,

we define the i-th projection of a multi-core state into a single-core state, i.e.,

σi ≡ σ(M, σ′i).

Thus, the projected state includes only the components that are relevant to execute the instruction.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 16 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

3.2.3 Core assignment

The componentD of the single-core state σ specifies the active domain. Depending on this setting, the

separation kernel configures the corresponding protection mechanisms. If, for a particular application,

multiple domains are required, then domain switching must also be implemented. To put it differently,

for a single-core machine running an application that requires multiple domains, only dynamic core

assignment makes sense.

Now, consider amulti-coremachine where the componentD of the i-th sub-stateσi specifies the active

domain for the i-th core. The inverse of getting the domain for the i-th core is to obtain all the cores

assigned to a given domain d ∈ {1, . . . ,N}. For this purpose, we define a function

cores : {1, . . . ,N} → 2{1,...,P} as cores(d) = {i | σi.D = d}.

In our model, we do not allow sharing of the cores between different domains. We state this in the

following assumption.

Assumption 4. No two domains share a core, that is,

cores(i) ∩ cores(j) = ∅ for all 1 ≤ i, j ≤ N, i , j.

Core assignment can be static, that is, fixed throughout execution, as well as dynamic, that is, variable

during execution. In the latter case, every change ofDmust still obey Assumption 4.

Assumption 5. Static core assignment disallows changing the active domain, that is, the componentD

of a state (or a sub-state). The dynamic core assignment allows one to change the active domain if the

Assumption 4 is satisfied.

The consequence of static core assignment is that DOMSWITCH machine instruction cannot be used

(see later in Section 3.6.5). We leave as future work the extension to support dynamic core assign-

ment.

3.3 Memory protection

In this section, we discuss the assumptions and constraints we envisage for the CROSSCON separation

kernel by defining the memory layout partitioning, the memory-mapped I/O sub-regions and the con-

cept of effective domain.

3.3.1 Memory partitioning

Each domain, as well as the separation kernel, must have its own memory region to function properly.

Let Ad represent the addresses occupied by the memory region assigned to the domain d, where 1 ≤
d ≤ N, and let AS represent the addresses occupied by the memory region assigned to the separation

kernel. We often denote A0 = AS to simplify notation in formulas.

Each address region Ad, where 0 ≤ d ≤ N, consists of the following two sub-regions:

I Code sub-region represented by a set Cd ⊆ Ad of addresses and containing the instructions that can

be executed.

I Data sub-region represented by a set Dd ⊆ Ad of addresses and containing data that can be read or

written to.

Assumption 6. Separation of memory regions:

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 17 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

I Ad ⊆ AM for all 0 ≤ d ≤ N (the main regions).

I Cd ⊆ Ad and Dd ⊆ Ad for all 0 ≤ d ≤ N (code and data regions are sub-regions).

I Ad = Cd ∪ Dd for all 0 ≤ d ≤ N (the code and data sub-regions fully cover the domain sub-region).

I Cd ∩ Dd = ∅ for all 0 ≤ d ≤ N (code and data sub-regions are disjoint).

I Ai ∩ A j = ∅ for all 0 ≤ i < j ≤ N (the main regions are disjoint).

An example memory map that satisfies the above assumptions is depicted in Figure 2.

Figure 2: An example of a memory map.

From these assumptions follow someobservations regarding thedisjointness of the specific sub-regions.

Lemma 1. For all 0 ≤ i , j ≤ N, we have

I Ci ∩C j = ∅

I Di ∩ D j = ∅

I Ci ∩ D j = ∅

Proof. For example, to seeCi∩C j = ∅, observe thatCi ⊆ Ai and D j ⊆ A j. Then the disjointness follows

from Ai ∩ A j = ∅.

3.3.2 Memory mapped I/O sub-region

When a domain requires access to an I/O device, we employ a memory-mapped I/O approach, where

device registers are mapped to specific locations of the main memory. In our model, these locations

are represented by a sub-region Ed ⊆ Ad. In particular, we also assume that it is part of the data sub-

region, i.e. Ed ⊆ Dd. The rationale for this is that the hypervisor under consideration only supports

pass-through access to I/O devices with static assignment of the I/O regions.

Assumption 7. Statically assigned memory-mapped I/O, that is,

Ed ⊆ Dd for all domain 1 ≤ d ≤ N.

3.3.3 Effective domain

The separation kernel provides domain separation by isolating memory regions. In particular, exactly

one domain is active at a time, which means that in addition to the memory region A0 of the separation

kernel, the memory region AD of the domain identified by the registerD is also accessible. Of course,

the access rules for these two regions, i.e., A0 and AD, depend on the current privilege level.

When there is a violation of memory protection, that is, when a location outside these two regions is

accessed, the computation halts. In practice, an exception in the processor may be triggered. However,

other conditions may also cause the computation to halt.

Tomodel instructions that ourmodel is able to executeweassume three kinds ofmemory accesses:

I R – read access: an instruction reads data from the memory,

I W – write access: an instruction writes data to the memory, and

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 18 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

I X – fetch access: an instruction itself is read from the memory.

Whether a particular memory access is successful depends, in addition to the kind of access, also on the

current privilege level. At anymoment, only thememory regions of the separation kernel and the active

domainD are accessible according to the following access rules (see also Figure 3):

Unprivileged level: PL = U

I R – read: Data may be loaded from regions CD or DD.

I W – write: Data may be stored in the region DD.

I X – execute: Instructions may be fetched from the region CD.

Privileged level: PL = S

I R – read: Data may be loaded from regions CS or DS .

I W – write: Data may be stored in the region DS .

I X – execute: Instructions may be fetched from the region CS .

Figure 3: The protection provided by separation kernel.

However, notice that in some systems, the privileged level, that is, PL = S, may also allow access to the

corresponding regions of the active domain. However, we assume that CROSSCON Hypervisor never

allows or performs such access.

Assumption 8. When PL = S, the memory access outside of the AS region is never performed or halts

the computation.

To formalize the above access rules we first introduce three auxiliary functions: canr(a), canw(a), and

canx(a) for read, write, and fetch access, respectively, to an address a, i.e.,

I canr(a) ≡ PL = U ∧ a ∈ AD ∨ PL = S ∧ a ∈ AS ,

I canw(a) ≡ PL = U ∧ a ∈ DD ∨ PL = S ∧ a ∈ DS ,

I canx(a) ≡ PL = U ∧ a ∈ CD ∨ PL = S ∧ a ∈ CS .

Assumption 9. Protection mechanism guarantees. An instruction

I can read the data stored at the address a ∈ AM , if and only if canr(a) is true,

I can write the data to the address a ∈ AM , if and only if canw(a) is true,

I can be fetched/executed from the address a ∈ AM , if and only if canx(a) is true.

When a violation of these rules is detected, an exception (i.e., protection interrupt) is thrown.

3.4 Instruction semantics

In the following, without loss of generality, we will consider three main instructions, namely: LOAD r, a
(that load on the register r the content of the memory at address a), STORE r, a (that writes in the

memory at address a the content of the register r), and JUMP a (that modifies the program counter

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 19 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

to continue the execution at the value specified at address a1). These instructions, together with in-

structions to perform arithmetic operations (e.g., addition, subtraction, shift) on registers, are sufficient

to model any possible complex instruction. Thus, in the following, we will consider only these three

types of instruction and will use I(a) to indicate an instruction that requires access to the address a (for

reading, writing, or executing).

3.4.1 Memory access obligations

Here, we present a framework for defining the semantics of machine instructions. To do this, we specify

a function [[·]] : σ → σ, which maps a state to a state (that is, it specifies how the instruction modifies

the state to which it is applied). In the definitions, we usually omit σ and we also assume r ∈ AR and

a ∈ AM. However, we do not explicitly give all the details for all the instructions, but we propose only

guidelines and obligations for the definitions.

For the semantics to be aligned with the separation kernel protection mechanism discussed above, sev-

eral obligations must be respected in the definition of the instructions. In this sense, the following

assumption is a consequence of Assumption 9.

Assumption 10. The semantics of each instruction I(a) must satisfy the following obligations when the

memory address a ∈ AM is accessed:

I Read obligation: Any read from the address a, i.e., use of the value M[a], is bound to the canr(a)
predicate, i.e.,

¬canr(a)⇒ [[I(a)]] = ⊥.

I Write obligation: Any write to the address a, i.e., writing to the value M[a], is bound to the canw(a)
predicate, i.e.,

¬canw(a)⇒ [[I(a)]] = ⊥.

I Fetch obligation: A fetch of the instruction I(a) from the address a, i.e., fetching from the M[a], is
bound to the canx(a) predicate, i.e.,

¬canx(a)⇒ [[I(a)]] = ⊥.

We remark that this assumption is a direct trivial refinement of Assumption 9, and this statement is a

trivial consequence of the two assumption’s formulations.

3.4.2 Ordinary (unprivileged) instructions

The definitions of the selected instructions are as follows.

[[LOAD r, a]] ≡

R[r]← M[a] canx(PC) ∧ canr(a)
⊥ otherwise

[[STORE r, a]] ≡

M[a]← R[r] canx(PC) ∧ canw(a)
⊥ otherwise

[[JUMP a]] ≡

PC ← a canx(PC) ∧ canx(a)
⊥ otherwise

Consider instruction LOAD. It is easy to check that it satisfies all three obligations:

1Without loss of generality, a can be either a static address, and in this case we use the value directly, or a register, and in this case we use

the value stored in the register.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 20 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

I It is fetched from the program counter address. Therefore, canx(PC) appears in the condition. If

canx(PC) is false, the semantics evaluates to ⊥.

I It reads from the memory address a. Therefore, canr(a) protects read access, and if canr(a) is false,
the semantics evaluates to ⊥.

I In does not write to the memory. Therefore, canw(a) is not used.

Other more complex instructions can be modeled in terms of the three simple instructions considered,

or their semantics can be defined to satisfy the Assumption 10. For example, consider an instruction

LOAD.REL rd, rs, a that loads in the register rd the content of the memory at the location specified by

R[rs] + a, where rs is a register and a is a memory address.

[[LOAD.REL rd, rs, a]] ≡

R[rd]← M[a + R[rs]] canx(PC) ∧ canr(a + R[rs])
⊥ otherwise

3.5 Memory security

In this section, we analyze the proposed separation kernel model in relation to various security proper-

ties of accessing the memory.

3.5.1 Validity of access

Consider an instruction I(a) that accesses the memory at an address a ∈ AM. The type of access can be

any of read/write/fetch.

3.5.1.1 Invalid access

Observe that if a ∈ AM falls outside the allowed memory regions (i.e., the separation kernel or domain

memory region), then due to protection, the execution of the instruction will cause an exception. We

state this formally with the following lemma.

Lemma 2. Consider an instruction I(a) that accesses (read/write/fetch) the memory at the location a ∈
AM. If a < AS ∪ AD, then [[I(a)]] = ⊥.

Proof. For read, write, and fetch access canr(a), canw(a), and canx(a) must hold, respectively. Consider

the former. By definition of canr(a), we have that PL = U∧a ∈ AD∨PL = S∧a ∈ AS , which is definitely

not true if a < AS ∪ AD. Similarly, we can conclude the same result for write and fetch access.

3.5.1.2 Valid access

Therefore, since the addresses a < AS ∪ AD are invalid, let us focus on the addresses a ∈ AS ∪ AD and

see if they are all valid. We consider a ∈ CS ∪ DS ∪CD ∪ DD, thus having a more granular view of the

memory regions with respect to the data/code section and the separation kernel/domain region.

An overview of the results is shown in Table 1, where a particular cell shows a privilege level when

an instruction successfully accesses (read/write/execute access) the memory at address a. If the cell

contains ⊥, then the access is invalid, and [[I(a)]] = ⊥. The main two rows, denoted by SK and DOM,

contain the rules for the regions of the separation kernel and the effective domain, respectively.

For example, if an instruction makes a write access to the main memory at address a ∈ DS ⊆ AS , i.e.,

the separation kernel data region, we check the corresponding cell and see that PL = S must hold for

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 21 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

Table 1: Valid memory accesses.

read write fetch

a ∈ canr(a) canw(a) canx(a) PC ∈

SK AS
CS PL = S ⊥ PL = S

CSDS PL = S PL = S ⊥

DOM AD
CD PL = U ⊥ PL = U

CDDD PL = U PL = U ⊥

the access to be allowed, otherwise, the computation would halt. In the following sections, we explain

the details of Table 1 and prove the particular security results.

3.5.2 Access type

Consider a stateσ and an instruction I(a) that is successfully executed, that is, [[I(a)]] , ⊥, in the context
of the state σ. In what follows, we examine such instructions with regard to read, write, and fetch

memory access where the address is part of the separation kernel or active domain memory region,

that is, a ∈ AS ∪ AD.

3.5.2.1 Read access

Lemma 3. When an instruction I(a) successfully, i.e., [[I(a)]] , ⊥, reads from the memory at address

a ∈ AS ∪ AD, we have

a ∈ AS ⇐⇒ PL = S and a ∈ AD ⇐⇒ PL = U.

Proof. From [[I(a)]] , ⊥ and the read obligation, i.e., ¬canr(a)⇒ [[I(a)]] = ⊥ we get that canr(a) holds.
From a ∈ AS ∪ AD and AS ∩ AD = ∅ (disjointness), we have two cases: either a ∈ AS or a ∈ AD. By the
definition of canr(a) and disjointness, either the left or right term of

PL = U ∧ a ∈ AD ∨ PL = S ∧ a ∈ AS

holds.

Now, if a ∈ AS , then a < AD, and hence PL = S. And vice versa, if PL = S then PL , U, and hence

a ∈ AS . Similarly, if a ∈ AD then a < AS , and hence PL = U. And vice versa, if PL = U then PL , S, and

hence a ∈ AD.

3.5.2.2 Write access

Lemma 4. When an instruction I(a) successfully, i.e., [[I(a)]] , ⊥, writes to the memory at address a ∈
AS ∪ AD, we have

a ∈ DS ⇐⇒ PL = S and a ∈ DD ⇐⇒ PL = U.

Proof. From [[I(a)]] , ⊥ and the write obligation, i.e., ¬canw(a) ⇒ [[I(a)]] = ⊥ we get that canw(a)
holds. From a ∈ DS ∪DD and DS ∩DD = ∅ (disjointness), we have two cases: either a ∈ DS or a ∈ DD.
By the definition of canw(a) and disjointness, either the left or the right term of

PL = U ∧ a ∈ DD ∨ PL = S ∧ a ∈ DS

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 22 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

holds.

Now, if a ∈ DS then a < DD, and hence PL = S. And vice versa, if PL = S then PL , U, and hence

a ∈ DS . Similarly, if a ∈ DD, then a < DS , and hence PL = U. And vice versa, if PL = U then PL , S,

and hence a ∈ DD.

3.5.2.3 Fetch access

Lemma 5. When an instruction I(a) is successfully, i.e., [[I(a)]] , ⊥, fetched from the memory at address

a ∈ AS ∪ AD, we have

a ∈ CS ⇐⇒ PL = S and a ∈ CD ⇐⇒ PL = U.

Proof. From [[I(a)]] , ⊥ and the fetch obligation, i.e., ¬canx(a)⇒ [[I(a)]] = ⊥we get that canx(a) holds.
From a ∈ CS ∪CD and CS ∩CD = ∅ (disjointness), we have two cases: either a ∈ CS or a ∈ CD. By the
definition of canx(a) and disjointness, the left or right term of

PL = U ∧ a ∈ CD ∨ PL = S ∧ a ∈ CS

holds.

Now, if a ∈ CS , then a < CD, and hence PL = S. And vice versa, if PL = S then PL , U, and hence

a ∈ CS . Similarly, if a ∈ CD then a < CS , and hence PL = U. And vice versa, if PL = U then PL , S, and

hence a ∈ CD.

Corollary 6. If a = PC then we have

PC ∈ CS ⇐⇒ PL = S and PC ∈ CD ⇐⇒ PL = U.

3.5.3 Security properties

In general, an access policy specifies subjects that are authorized to perform specific operations on

particular objects. Concerning the memory access policy, our model specifies the following refine-

ments:

I The subjects are represented by instructions executed in one of the two privilege levels, i.e., PL ∈
{U, S}.

I The operations are of three types, that is, read, write, and fetch operations.

I The objects are represented by the data and code regions of the separation kernel and domains.

3.5.3.1 Integrity

Integrity often relates to a security guarantee of access to objects while also allowing them to mutate,

that is, an object cannot be altered by non-authorized subjects, or, in other words, a subject must be

authorized to alter an object.

Taking into account our model, the access that mutates the memory is monitored through the write

operation and, respectively, the canw(a) function. Therefore, the access policy related to the integrity

guarantee can be verified by observing the corresponding column in Table 1. In particular, the guaran-

tees are as follows.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 23 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

Separation kernel data integrity: Separation kernel data memory can only be written by instructions

executed at the privileged level. To see this, observe the corresponding cell in Table 1, which contains

PL = S for the address a ∈ DS .

Domain data integrity: Domain data memory can only be written by instructions executed at the un-

privileged level. Observe the corresponding cell in Table 1 that contains PL = U for a ∈ DD.

Separation kernel code integrity: Separation kernel code cannot be altered. The corresponding cell in

Table 1 contains ⊥ for a ∈ CS , which means that canw(a) cannot be satisfied.

Domain code integrity: The domain code cannot be altered. The corresponding cell in Table 1 contains

⊥ for a ∈ CD, which means that canw(a) cannot be satisfied.

Inaccessible region integrity: All other write accesses result in an exception. For all other addresses

a ∈ AM , by Lemma 2, any instruction semantics equals ⊥.

3.5.3.2 Confidentiality

Confidentiality often refers to a security guarantee of any kind of access to objects, i.e., an object cannot

be accessed by non-authorized subjects, or, in other words, a subject must be authorized to access an

object.

Taking into account our model, the access to the memory is monitored through read, write, and fetch

operations, respectively, the functions canr(a), canw(a), and canx(a). Since write is just another type

of access, the integrity is subsumed by confidentiality by including the integrity constraints. Additional

confidentiality restrictions are specified in the following access policies.

I The Separation Kernel (Data and Code) Memory Region can be read by instructions executed at the

privileged level.

I Domain (data and code) memory region can be read by instructions executed at the unprivileged

level.

I An instruction fetch from the separation kernel codememory region is allowed at the privileged level.

I An instruction fetch from the domain code memory region is allowed in the unprivileged level.

I All other read/write/fetch accesses result in an exception.

To argue for confidentiality, we can now observe the read and fetch columns of Table 1.

Separation kernel data confidentiality: Separation kernel data memory can be read from (and written

to) at the privileged level. The row a ∈ DS contains PL = S in the read (and write) column.

Domain data confidentiality: Domain data memory can be read from (and written to) at the privileged

level. The row for a ∈ DS contains PL = U in the read (and write) column.

Separation kernel code confidentiality: Separation kernel code memory can be read and fetched from

at the privileged level. The row for a ∈ CS contains PL = S in the read and fetch columns.

Domain code confidentiality: Domain code memory can be read and fetched from the unprivileged

level. The row for a ∈ CD contains PL = U in the read and fetch column.

We can define a stricter form of confidentiality by observing that, generally, a confidentiality guarantee

considers only accesses that reveal the data. However, in our case, we can easily extend this definition

to also consider data mutation by observing the write column of Table 1. Here, we observe that canw()
and also canx() represent a stricter form of access rights than canr(). In other words, if canr() can pro-

vide confidentiality, then canw() and canx() can also. We state this more formally with the following

lemma.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 24 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

Lemma 7. For all a ∈ AM we have

canw(a)⇒ canr(a) and canx(a)⇒ canr(a).

Hence, one could argue for confidentiality (but with less granularity, so only for memory regions AS and

AD) only by observing the read column of Table 1.

3.5.3.3 Isolation

First, we consider the separation kernel and show that its memory region is always accessed by a code

running at the privileged level.

Corollary 8. Consider an instruction I(a) that is fetched from the PC address and that performs read or

write access to the address a ∈ AS . We have

a ∈ AS ⇐⇒ PL = S ⇐⇒ PC ∈ CS .

Proof. Use Lemmas 3 and 4 together with Corollary 6.

Next, we consider the active domain and show the same property in a similar way.

Corollary 9. Consider an instruction I(a) that is fetched from the PC address and that performs read or

write access to the address a ∈ AD. We have

a ∈ AD ⇐⇒ PL = U ⇐⇒ PC ∈ CD.

Finally, consider the memory region, which is neither part of the separation kernel region nor the active

domain region.

Corollary 10. Consider an instruction I(a) that is fetched from the PC address and that performs read,

write, or fetch access to the address a ∈ Ai, where i , 0 and i , D, then I(a) = ⊥.

Proof. Consider a proof for read access. Since i , 0 and i , D, canr(a) does not hold. Hence, by the
read obligation, I(a) = ⊥. Similar reasoning can be used to prove the property for the write or fetch

instruction.

3.5.3.4 Availability

Availability is achieved by construction in the defined CROSSCON separation kernel. Indeed, if the con-

figuration of the memory layout is performed correctly (i.e., satisfying the considered assumptions),

each domain has access to its own resources (e.g., memory, I/O), so it turns out to be impossible for a

domain to prevent another domain to get its own resources.

3.6 Context switching

In this section, we discuss how to formalize context switching within the defined CROSSCON separation

kernel. In particular, we analyze the safe storage of domain execution contexts and how to deal with

interrupt handling.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 25 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

3.6.1 Safe domain execution context storage

First, let us introduce a concept of safe storage that is used to store and retrieve the execution context

of domains. The storage is safe in the sense that ordinary instruction cannot access it, but it can be

manipulated only with specially designated instructions. The storage may be part of the state σ, but it

is hidden and can be manipulated only through the auxiliary functions defined below. Every domain has

its own storage with the capacity to store at least one execution context.

For manipulating the execution context, we consider two auxiliary functions with functionality:

pushContext : σ→ σ and popContext : σ→ σ.

Here, the former stores the execution context of the active domain in its respective safe storage, while

the latter retrieves it.

Assumption 11. Invariance of the push/pop functions. Let X be a property of stateσ, e.g., a component

PC, PL, or D. We assume

popContext(pushContext(σ)).X = σ.X

3.6.2 Interrupt handling

In the following, we analyze the assumptions and the semantics of interrupt handling in the defined

CROSSCONseparation kernel. To formalize interrupt handling, we consider the following assumptions.

Assumption 12.

I We assume non-reentrant interrupts. When the interrupt handler is triggered, the interrupts are

disabled until the handler finishes.

I The call to the interrupt handler is performed with a virtual instruction IRQi, where i is the interrupt
number.

I The interrupt handler returns via the IRET instructions.

I Interrupts are disabled while the handler is running, that is, IRQ disables interrupts and IRET enables

them.

I We implicitly model interrupt enable/disable by ensuring that the handler code does not include IRQ

instructions.

I The IRQ instruction can be arbitrarily inserted after every instruction if interrupts are enabled, that

is, after instructions that are not part of the interrupt handler.

I We assume that the interrupt handler code is correct: its final instruction is IRET, and no virtual IRQs

are inserted.

I Assume that intentryi ∈ CS is the interrupt entry point, that is, the address of the handler for the

interrupt number i.

In real systems, an interrupt may arrive anytime, and it is handled in between two instructions. We

model this by a virtual instruction that can be inserted anywhere in the program trace. However, since

during the execution of the interrupt handler code the interrupts are usually disabled, we disallow the

insertion of this virtual instruction into its code.

We define the virtual instruction representing the call of the interrupt handler as

[[IRQi]] ≡


pushContext(σ)
PL← S

PC ← intentryi

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 26 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

N.B. We assume that IRQ is not part of the interrupt handler code, so no check is necessary to disable

the interrupts.

Interrupt handler ends (must end) with

[[IRET]] ≡

popContext(σ) PL = S ∧ canx(PC)
⊥ otherwise

3.6.3 User-mode software interrupts

In some systems, interrupt handlers may also be triggered by user programs. We model this by the

following instruction

[[INTi]] ≡

[[IRQi]] PL = U ∧ canx(PC)
⊥ otherwise

3.6.4 Separation kernel calls

Here, we consider two instructions. Namely, SCALL to call the separation kernel and SRET to return from

the separation kernel. We also introduce a new register, called SL (separation kernel link register).

Let sentry ∈ CS be the address of an entry point for the separation kernel, that is, the address of the

routine that handles calls to the separation kernel. Thus, such a handler is part of the trusted code

base.

Additionally, the handler is non-reentrant. It can only be called from the unprivileged mode and can-

not be called again from the privileged mode. Thus, we must ensure that the privileged code does not

execute SCALL (maybe by inspecting the kernel separation code or by a trap mechanism provided by a

particular architecture). We must also ensure that SRET triggers an exception if called from an unprivi-

leged code.

[[SCALL]] ≡

S L← PC, PL← S , PC ← sentry PL = U ∧ canx(PC)
⊥ otherwise

The SRET instruction returns to the caller: it changes to an unprivileged level and restores the original

PC from the SL.

[[SRET]] ≡

PL← U, PC ← S L PL = S ∧ canx(PC)
⊥ otherwise

3.6.5 Domain switch

This is the instruction that provides a safe domain switch.

[[DOMSWITCH d]] ≡

D← d PL = S ∧ canx(PC) ∧ d ∈ {1, . . . ,N}
⊥ otherwise

Observe that this instruction may only be executed at the PS = S privilege level. Therefore, the domain

may be switched only during the hypervisor call or during interrupt handling.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 27 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

4 Formalization for a TEE and Hypervisor less hardware

As highlighted in [1], numerous low-cost, small-size, and low-power consumption hardware devices

emerged as possible deployment hardware to deploy secure applications. These devices often do not

have basic hardware-based memory safety features, such as Micro Controller Units (MCU), and this

makes them more vulnerable to attacks. Thus, as discussed in [1], within CROSSCON we will adopt a

software-based methodology to ensure the isolation between normal applications and trusted applica-

tions. This approach entails the implementation of PISTIS [14] and allows for memory isolation, remote

attestation, and secure code update services, all fortified by robust security assurances. The architecture

in this case will then be the one shown in Figure 4.

Figure 4: TEE and virtualization less architecture.

The memory map of Figure 2 lifted in the case of TEE and virtualization less architecture can be repre-

sented in a pictorially way as in Figure 5.

Figure 5: An example of a refined memory map for the TEE and virtualization less case.

To formalize the CROSSCON design and the layout of the memory map described in Figure 5, and prove

that it preserves memory isolation, we first need to introduce some basic concepts. For simplicity, as-

sume that we have a memory M that contains the code where data can also be stored and that there

is a finite number of registers for the program counter PC, the stack pointer SP, and for intermediate

results (e.g. Rj for some j). Moreover, let us also assume that there is an interrupt vector table (IVT)
that contains the addresses of the first instruction of the Interrupt Service Routine (ISR).

Any application can be thought of as composedof sequences and combinations of the following primitive

instructions:

Definition 1 (Primitive (unsafe) instructions). The set of primitive (unsafe) instructions is the following

(we assume that the address i is a valid address for the memory M):

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 28 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

I Read(M,i) that reads the content of memory M at address i: it denotes M[i];
I Write(M,i,V) that writes V in memory M at address i: it denotes M[i] = V;

I Goto(M,i) that modifies the program counter PC to contain the address i of the given memory M:

it denotes PC = i;
I End that terminates the execution of the entire application;

I Primitive operations (e.g. and, add, comparison) operating on registers/constants, and assignment

(=) to a register.

An application P is a sequence and combination of the above primitive instructions, together with the

IVT table specifying the addresses of the interrupt service routines.

We can safely assume that all the instructions of a typical MCU can be written in terms of these basic

primitives. Let us consider, for instance, some instructions taken from theMSP430MCU’s family:

I CALL funcname: the execution of this instruction stores in the stack (in thememory) the current PC,
modifying the SP to create space for storing the PC, and then modifies the PC to point to the address

corresponding to funcname in the memory. Thus, it corresponds to SP = SP-1, to create space in

the stack, followed by Write (M,SP,PC), towrite PC in the stack, followed by Goto (M,funcname)
to update PC and continue execution from address funcname.

I RET: corresponds to R = Read(M,SP) followed by SP = SP+1, and finally Goto(M,R), using the

value stored in the register R .

The primitive instructions also allow the modeling of more complex instructions like PUSH and POP in a

very similar fashion, as well as different addressing modes (e.g. indexed, symbolic, indirect, absolute,

as, for instance, supported by the MSP430 MCU’s family). For example,

I MOV 0x22(R3), 0x10(R4) corresponds to Write(M,0x10 + R4, Read(M, 0x22 + R3));
I ADD 0x22(R3), 0x10(R4) corresponds to

Write(M, 0x10 + R4, Read(M, 0x22 + R3)+ Read(M, 0x10 + R4));
I MOV @R4, &0x3000 corresponds to Write(M, 0x3000, Read(M, R4));
I MOV 0x22, &0x3000 corresponds to Write(M, 0x3000, Read(M, PC + 0x22)).

Given the above basic concepts, and letting word [N] denote a bit vector of size N, to proceed with the

formalization of the CROSSCON design, the layout of the memory map described in Figure 5, and the

access policy AP (for reading, writing, and jumping), we need to: i) refine the memory M distinguishing

between the persistent memory (MP), the volatilememory (MV), and thememorymapped IO (MMIO)
1;

ii) explicitly introduce the finite set of Entry Point addresses for the CROSSCON corememory EnPo = { i :

word[N] } of addresses for the CROSSCON core instruction area as specified by the access policy; iii) and

finally introduce the VIVT : array [K] of word[N] - the interrupt vector IVT of size K. Moreover,

we also need:

I utcb, utce - start and end addresses of the CROSSCON core;

I aimb, aime - start and end addresses of the App Instruction Memory;

I aromb, arome - start and end addresses of the App Read-Only Memory;

I utdmb, utdme - start and end addresses of the CROSSCON Data Memory;

I admb, adme - start and end addresses of the App Data memory;

I mmiob, mmioe - start and end addresses of the MMIO Registers.

The following constraint formalizes thememory layout and the non-overlapping of the differentmemory

areas.
0N < utcb < utce < aimb < aime < aromb < arome ≤ 2N−1

N
0N ≤ utdmb < utdme < admb < adme ≤ 2N−1

N
0N < mmiob < mmioe ≤ 2N−1

N

1Without loss of generality, we consider each memory as an array of size 2N of bit vectors of size N (i.e. array word[N] of word[N]),
although only a small part might be used. The addresses are bit vectors of size N (i.e. word[N]. We use 0N to represent the unsigned word of

size N corresponding to value 0, similarly, 2N−1
N to represent the unsigned word of size N corresponding to value 2N−1.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 29 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

To model the constraint that the execution of CROSSCON core instructions only happens through pre-

defined Entry Points, we need a predicate EP(i) which is true iff the address i is utcb ≤ i ≤ utce and i is
an Entry Point address EP j ∈ EnPo for the CROSSCON core memory.

EP(i)↔ ((utcb ≤ i ≤ utce) ∧ i ∈ EnPo)

Then, to formalize the read/write/jump policies as those enforced in the Figure 5, we define the follow-

ing terms:

APR(i,M)↔

(M = MP → (aromb ≤ i ≤ arome)) ∧

(M = MV → (admb ≤ i ≤ adme)) ∧

(M = MMIO → (mmiob ≤ i ≤ mmioe))


APW(i,M)↔

(M = MV → (admb ≤ i ≤ adme)) ∧

(M = MMIO → (mmiob ≤ i ≤ mmioe))∧
(M = MP)→ ⊥)


APX(i,M)↔

(
(M = MP) ∧ (EP(i) ∨ (aimb ≤ i ≤ aime))

)
Moreover, we need also to ensure that each element of the IVT table is a valid address w.r.t. the access

policy, so that:

APIVT (M)↔ ∀i.APX(VIVT [i],M)

We denote by AP the access policy resulting from the memory layout, from the read/write/jump con-

straints, and from the fact that each i ∈ EnPo is such that utcb ≤ i ≤ utce. Given the above formal-

izations, we can formally define when an application preserves memory isolation w.r.t. a given access

policy AP.

Definition 2. Given a memory layout and an access policy AP, an application P preserves memory iso-

lation w.r.t. the access policy AP iff any of its read/write/jump instructions in all possible executions is

such that the addresses used in such instructions satisfy the given access policy AP.

We remark that the primitive instructions in Def. 1 do not enforce particular restrictions on the addresses

where to read/write or jump (it suffices for them to be valid addresses). As thoroughly discussed, if the

addresses of the application are constant, then checking whether the application preserves memory

isolation is trivial. It suffices to check whether each address in the application satisfies AP. However, as
noted, in many cases such addresses are the results of the execution of the application itself, and thus

the check can only be performed during the execution of the application.

To enforce memory isolation, for a given access policy AP, we can define safe variants of the read-

/write/jump instructions thatwill guarantee at runtime that no violationof the access policy occurs.

Definition 3 (Safe primitive instructions). Given an access policy AP, the safe read/write/jump primitive

instructions w.r.t. AP are:

I Readsf(M,i) that reads the content of memory M at address i if address i is such that read policy

APR(i,M) holds, otherwise it ends execution;
I Writesf(M,i,V) that writes V in memory M at address i if address i is such that write policy

APW(i,M) holds, otherwise it ends execution;
I Gotosf(M,i) that modifies the program counter PC to contain the address i if address i is such that

branch access policy APX(i,M) holds, otherwise it ends execution.

The following theorem holds for the safe primitive instructions defined above.

Theorem 11. Given an access policy AP, the safe primitive instructions Readsf, Writesf, and Gotosf
w.r.t. such AP preserve memory isolation and do not allow us to violate AP.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 30 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

The proof directly follows from the definition of the safe primitive instructions w.r.t. an AP (see Sec-

tion 4.1 for the proof). If AP is violated, then each instruction results in ending the execution of the

entire application, thus preventing access to memory areas prohibited by AP. On the other hand, if the

address satisfies AP, instruction-specific access to the specified memory location is allowed.

Given this, we can prove that any application P such that i) APIVT (M) holds (i.e. each address i ∈ VIVT

satisfies APX(M, i)), and ii) uses only the safe primitive instructions, preserves memory isolation.

Theorem 12. Let AP be an access policy, P be an application specified with the set of (unsafe) primitive

instructions. Let Psf be the application obtained from P by replacing each of the unsafe primitive instruc-

tions with the corresponding safe primitive instructions. If APIVT (M) holds, then Psf preserves memory

isolation, preventing accessing memory addresses or executing code that violates AP.

The proof is by induction on the structure of the application Psf utilizing Theorem 11 (see Section 4.1

for the proof). We note that enforcing each element of IVT to satisfy AP also ensures that the interrupt

routines are located in memory locations allowed by AP. This requirement can be relaxed by not only

rewriting the unsafe read/write/jump instructions with the corresponding safe ones, but also adding for

each interrupt routine a newwrapping interrupt routine andmodifying the IVT to point to the respective

wrapping interrupt routine. Each wrapping interrupt routine first checks that the target address is a safe

one, and if so, it does the jump to the original address in the non-modified IVT copy. Otherwise, it ends

the execution.

We remark that for the case of TEE and virtualization-less architecture, we leverage amodified toolchain

to transparently rewrite each potentially unsafe dynamic instruction and replace it with a safe virtualized

equivalent that can be accessed via a call to a subroutine stored in the protected Trusted Computing

Module (TCM) memory area. The target address of the corresponding instruction is verified at runtime

when the subroutine is invoked. The execution continues normally if it is valid. Otherwise, a MCU reset

is triggered.

4.1 Formal Proofs of Theorems 11 and 12

Proof of Theorem 11. In order to prove Theorem 11, we formalized the three operations in NUXMV [15]

(a state-of-the-art symbolic model checker), and for each of the three formalizations we considered

some Linear Temporal Logic (LTL) [16] properties aiming at proving the correctness of the operations.

In this approach we codify the three different operations as a sequential program encoded in NUXMV

in the form of Single Static Assignment [17] (as is typically done in compilers and in software model

checking), specifying for each value of the program counter: s0 before the implicit condition checking

the respective access policy, i.e. APR(i,M), APW(i,M) or APX(i,M)); s1 if the access point condition

holds; s2 right after the real operation on the memory for reading, writing, or modifying the program

counter if correct; end representing the location to jump to if the access policy is violated. The variable i
is a free variable that models the address we aim to read from, write to and jump to, respectively. Then

we have the three memories PM (Primary Memory), VM (Volatile Memory), and MMIO. v is the value to

write in the memory in the case of Writesf.

The listing 4.2 contains the NUXMV code for Readsf. Here we model the Readsf with DEFINE ReadSV
that is a word of size N+1 where the N+1 bit is set to 0 if the access policy APR(i,M) holds, and to

1 otherwise. The model is then complemented with three LTL properties. The first states that if the

APR(i,M) is always true, then the state can never take value end. The second property states that if

the APR(i,N) is always true, then the N+1 is always 0 if the state is different from s0 (i.e., the state

before a Readsf). Finally, the last LTL property states that if it is possible to reach a state where the

violation of APR(i,N) holds, then it is possible to reach the state end (the state where the read has

violated the access policy). In this model, the i variable can range over any possible value (there is thus

an implicit universal quantification (∀)).

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 31 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

Listing 4.1 reports the output of running NUXMV (taken from https://nuxmv.fbk.eu/) on this file. The

execution was done on a Linux laptop. NUXMV was able to prove (or disprove) the three LTL properties

in a few seconds.

computer_shell > nuXmv −int −dcx pistis_read.smv

*** This is nuXmv 2.0.0 (compiled on Oct 14 2019)

....

nuXmv > go_msat

nuXmv > check_ltlspec_ic3 −i

....

−− LTL specification (G APr −> G state != end) is true

−− LTL specification (G APr −> G (state != s0 −> ReadSV[32 : 32] = 0ud1_0)) is true

−− LTL specification (F !APr −> F state = end) is false

−− (trace generation was suppressed)

nuXmv > quit

Listing 4.1: Run of NUXMV on the pistis_read.smv file to prove the correctness of the Readsf
instruction.

These results show that the first two properties hold, while the last one is violated (as expected) to

indicate that the only possible way to reach the end state is to violate APR(i,M) in a Readsf. In this case,

NUXMV can generate a trace showing how to reach that state (in the run, for the sake of presentation

we disabled the extraction of the counterexample, option -dcx at the command line).

Similar considerations hold for the other two instructions. Listing 4.3 is the NUXMV code for proving the

correctness of Gotosf, while the one for the instruction Writesf can be found in Listing 4.4.

Proof of Theorem 12. The proof of Theorem 12, proceeds by induction on the structure of the applica-

tion Psf leveraging on Theorem 11.

Base case: There are four base cases each constituted respectively by: i) the NOP no-op instruction that

does not perform any access to thememory neither for writing nor reading nor executing; ii) the Readsf;

iii) the Writesf; iv) the Gotosf. The last three instructions preserve memory isolation, as proved in

Theorem 11. The NOP preserves memory isolation since it does not access memory to write, read, or

execute. Thus, the single-instruction program preserves memory isolation.

Step case: Let us assume that a program P preserves memory isolation. Let P′ = P; inst be a pro-

gram obtained by adding an instruction inst immediately after the last instruction of P. The possible

instructions inst are: NOP, Readsf, Writesf, and Gotosf. These instructions preserve memory isola-

tion (given the base case and Theorem 11), thus, given that P preserves memory isolation and the fact

that the possible extension of the program P (that is, the program P′) also preserves memory isolation,

we can conclude that the theorem holds.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 32 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

−− To run it:

−− shell > nuXmv −int pistis_read.smv

−−

−− At the nuXmv prompt issue following commands:

−− go_msat; check_ltlspec_ic3 −i; quit

−−

MODULE main

VAR PM : array word[32] of word[32]; −− Persistent memory

VAR VM : array word[32] of word[32]; −− Volatile memory

VAR MMIO : array word[32] of word[32]; −− MMIO

VAR mem_k : {_PM, _MMIO, _VM}; −− kind of memory

VAR state : {s0, s1, s2, end}; −− Possible values of the PC

VAR PC : word[32]; −− The program counter;

VAR v : word[32]; −− Value to write

VAR i : word[32]; −− Address to read from/write to

−− Memory layout as mandated by the policy

VAR EPadd : array word[3] of word[32]; −− List of entry points

DEFINE utc_b := 0h32_00000010;

DEFINE utc_e := 0h32_00000100;

DEFINE aim_b := 0h32_00001000;

DEFINE aim_e := 0h32_00010000;

DEFINE arom_b := 0h32_00100000;

DEFINE arom_e := 0h32_01000000;

DEFINE utdm_b := 0h32_00000010;

DEFINE utdm_e := 0h32_00000100;

DEFINE adm_b := 0h32_00001000;

DEFINE adm_e := 0h32_00010000;

DEFINE mmio_b := 0h32_00000010;

DEFINE mmio_e := 0h32_00000100;

INVAR

0h32_00000000 < utc_b & utc_b < utc_e & utc_e < aim_b &

aim_b < aim_e & aim_e < arom_b & arom_b < arom_e &

arom_e < 0h32_FFFFFFFF;

INVAR

0h32_00000000 < utdm_b & utdm_b < utdm_e &

utdm_e < adm_b & adm_b < adm_e & adm_e <

0h32_FFFFFFFF;

INVAR

0h32_00000000 < mmio_b & mmio_b < mmio_e & mmio_e

< 0h32_FFFFFFFF;

−− Access policy

DEFINE APr :=

(((mem_k = _PM) −> ((arom_b <= i) & (i <= arom_e))) &

((mem_k = _VM) −> ((adm_b <= i) & (i <= adm_e))) &

((mem_k = _MMIO) −> ((mmio_b <= i) & (i <= mmio_e))));

DEFINE APw :=

(((mem_k = _VM) −> ((adm_b <= i) & (i <= adm_e))) &

((mem_k = _MMIO) −> ((mmio_b <= i) & (i <= mmio_e))));

DEFINE APx :=

((mem_k = _PM) & (EP | ((aim_b <= i) & (i <= aim_e))));

DEFINE EP := (((utc_b <= i) & (i <= utc_e)) &

((i = READ(EPadd, 0d3_0)) | (i = READ(EPadd, 0d3_1)) |

(i = READ(EPadd, 0d3_2)) | (i = READ(EPadd, 0d3_3)) |

(i = READ(EPadd, 0d3_4)) | (i = READ(EPadd, 0d3_5)) |

(i = READ(EPadd, 0d3_6)) | (i = READ(EPadd, 0d3_7))));

−− Read_sf(M, i) := if (APr(i,M)) return M[i] else goto end;

ASSIGN

init(state) := s0;

next(state) := case

state = s0 & APr : s1;

state = s1 & APr : s2;

state = s2 : s2;

TRUE : end;

esac;

DEFINE ReadSV := case

state = s0 & APr : 0d33_0;

state = s1 & APr : case

mem_k = _PM : 0d1_0 :: READ(PM, i);

mem_k = _VM : 0d1_0 :: READ(VM, i);

mem_k = _MMIO : 0d1_0 :: READ(MMIO, i);

TRUE : 0h33_FFFFFFFF;

esac;

state = s2 : 0d1_0 :: 0h32_FFFFFFFF;

state = end : 0d33_0;

TRUE : 0d33_0;

esac;

−− If the APr is always true, then there is not a possibility to

−− reach the end state.

LTLSPEC

G(APr) −> G(state != end)

−− If the APr is always true, and we are in any state different

from

−− s0, then the error flag bit is always 0

LTLSPEC

G(APr) −> G(state != s0 −> ReadSV[32:32] = 0d1_0)

−− If APr is violated, then the state eventually become end,

−− i.e. end is only reachable if APr is violated

LTLSPEC

F(!APr) −> F (state = end)

Listing 4.2: The encoding to prove the correctness

of the Readsf

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 33 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

−− To run it:

−− shell > nuXmv −int pistis_goto.smv

−−

−− At the nuXmv prompt issue following commands:

−− go_msat; check_ltlspec_ic3 −i; quit

−−

MODULE main

VAR PM : array word[32] of word[32]; −− Persistent memory

VAR VM : array word[32] of word[32]; −− Volatile memory

VAR MMIO : array word[32] of word[32]; −− MMIO

VAR mem_k : {_PM, _MMIO, _VM}; −− kind of memory

VAR state : {s0, s1, s2, end}; −− Possible values of the PC

VAR PC : word[32]; −− The program counter;

VAR v : word[32]; −− Value to write

VAR i : word[32]; −− Address to read from/write to

−− Memory layout as mandated by the policy

VAR EPadd : array word[3] of word[32]; −− List of entry points

DEFINE utc_b := 0h32_00000010;

DEFINE utc_e := 0h32_00000100;

DEFINE aim_b := 0h32_00001000;

DEFINE aim_e := 0h32_00010000;

DEFINE arom_b := 0h32_00100000;

DEFINE arom_e := 0h32_01000000;

DEFINE utdm_b := 0h32_00000010;

DEFINE utdm_e := 0h32_00000100;

DEFINE adm_b := 0h32_00001000;

DEFINE adm_e := 0h32_00010000;

DEFINE mmio_b := 0h32_00000010;

DEFINE mmio_e := 0h32_00000100;

DEFINE END := 0h32_10000000;

INVAR

0h32_00000000 < utc_b & utc_b < utc_e & utc_e < aim_b &

aim_b < aim_e & aim_e < arom_b & arom_b < arom_e &

arom_e < 0h32_FFFFFFFF;

INVAR

0h32_00000000 < utdm_b & utdm_b < utdm_e &

utdm_e < adm_b & adm_b < adm_e & adm_e <

0h32_FFFFFFFF;

INVAR

0h32_00000000 < mmio_b & mmio_b < mmio_e & mmio_e <

0h32_FFFFFFFF;

−− Access policy

DEFINE APr :=

(((mem_k = _PM) −> ((arom_b <= i) & (i <= arom_e))) &

((mem_k = _VM) −> ((adm_b <= i) & (i <= adm_e))) &

((mem_k = _MMIO) −> ((mmio_b <= i) & (i <= mmio_e))));

DEFINE APw :=

(((mem_k = _VM) −> ((adm_b <= i) & (i <= adm_e))) &

((mem_k = _MMIO) −> ((mmio_b <= i) & (i <= mmio_e))));

DEFINE APx :=

((mem_k = _PM) & (EP | ((aim_b <= i) & (i <= aim_e))));

DEFINE EP := (((utc_b <= i) & (i <= utc_e)) &

((i = READ(EPadd, 0d3_0)) | (i = READ(EPadd, 0d3_1)) |

(i = READ(EPadd, 0d3_2)) | (i = READ(EPadd, 0d3_3)) |

(i = READ(EPadd, 0d3_4)) | (i = READ(EPadd, 0d3_5)) |

(i = READ(EPadd, 0d3_6)) | (i = READ(EPadd, 0d3_7))));

−− goto_sf(M, i, v) := if (APx(i,M)) PC = i else goto end;

ASSIGN

init(state) := s0;

next(state) := case

state = s0 & APx : s1;

state = s1 & APx : s2;

state = s2 : s2;

TRUE : end;

esac;

INIT

PC != END;

ASSIGN

next(PC) := case

state = s0 & APx : PC;

state = s1 & APx : i;

state = s2 : PC;

TRUE : END;

esac;

−− If the APx is always true, then there is not a possibility to

reach the end state.

LTLSPEC

G(APx) −> G(state != end)

−− If the APx is always true, then the PC never assumes value

END

LTLSPEC

G(APx) −> G (state != s0 −> PC != END)

−− If APx is violated, then the state eventually become end,

−− i.e. end is only reachable if APx is violated

LTLSPEC

F(!APx) −> F (state = end)

Listing 4.3: The encoding to prove the correctness

of the Gotosf

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 34 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

−− To run it:

−− shell > nuXmv −int pistis_write.smv

−−

−− At the nuXmv prompt issue following commands:

−− go_msat; check_ltlspec_ic3 −i; quit

−−

MODULE main

VAR PM : array word[32] of word[32]; −− Persistent memory

VAR VM : array word[32] of word[32]; −− Volatile memory

VAR MMIO : array word[32] of word[32]; −− MMIO

VAR mem_k : {_PM, _MMIO, _VM}; −− kind of memory

VAR state : {s0, s1, s2, end}; −− Possible values of the PC

VAR PC : word[32]; −− The program counter;

VAR v : word[32]; −− Value to write

VAR i : word[32]; −− Address to read from/write to

−− Memory layout as mandated by the policy

VAR EPadd : array word[3] of word[32]; −− List of entry points

DEFINE utc_b := 0h32_00000010;

DEFINE utc_e := 0h32_00000100;

DEFINE aim_b := 0h32_00001000;

DEFINE aim_e := 0h32_00010000;

DEFINE arom_b := 0h32_00100000;

DEFINE arom_e := 0h32_01000000;

DEFINE utdm_b := 0h32_00000010;

DEFINE utdm_e := 0h32_00000100;

DEFINE adm_b := 0h32_00001000;

DEFINE adm_e := 0h32_00010000;

DEFINE mmio_b := 0h32_00000010;

DEFINE mmio_e := 0h32_00000100;

INVAR

0h32_00000000 < utc_b & utc_b < utc_e & utc_e < aim_b &

aim_b < aim_e & aim_e < arom_b & arom_b < arom_e &

arom_e < 0h32_FFFFFFFF;

INVAR

0h32_00000000 < utdm_b & utdm_b < utdm_e &

utdm_e < adm_b & adm_b < adm_e & adm_e <

0h32_FFFFFFFF;

INVAR

0h32_00000000 < mmio_b & mmio_b < mmio_e & mmio_e <

0h32_FFFFFFFF;

−− Access policy

DEFINE APr :=

(((mem_k = _PM) −> ((arom_b <= i) & (i <= arom_e))) &

((mem_k = _VM) −> ((adm_b <= i) & (i <= adm_e))) &

((mem_k = _MMIO) −> ((mmio_b <= i) & (i <= mmio_e))));

DEFINE APw :=

(((mem_k = _VM) −> ((adm_b <= i) & (i <= adm_e))) &

((mem_k = _MMIO) −> ((mmio_b <= i) & (i <= mmio_e))));

DEFINE APx :=

((mem_k = _PM) & (EP | ((aim_b <= i) & (i <= aim_e))));

DEFINE EP := (((utc_b <= i) & (i <= utc_e)) &

((i = READ(EPadd, 0d3_0)) | (i = READ(EPadd, 0d3_1)) |

(i = READ(EPadd, 0d3_2)) | (i = READ(EPadd, 0d3_3)) |

(i = READ(EPadd, 0d3_4)) | (i = READ(EPadd, 0d3_5)) |

(i = READ(EPadd, 0d3_6)) | (i = READ(EPadd, 0d3_7))));

−− write_sf(M, i, v) := if (APw(i,M)) M[i] = v else goto end;

ASSIGN

init(state) := s0;

next(state) := case

state = s0 & APw : s1;

state = s1 & APw : s2;

state = s2 : s2;

TRUE : end;

esac;

TRANS

case

state = s0 & APw : next(PM) = PM & next(VM) = VM &

next(MMIO) = MMIO;

state = s1 & APw : case

mem_k = _PM : next(PM) = WRITE(PM, i, v) &

next(VM) = VM & −− VM not touched

next(MMIO) = MMIO; −− MMIO not

touched

mem_k = _VM : next(VM) = WRITE(VM, i, v) &

next(PM) = PM & −− PM not touched

next(MMIO) = MMIO; −− MMIO not

touched

mem_k = _MMIO : next(MMIO) = WRITE(MMIO, i, v) &

next(VM) = VM & −− VM not touched

next(PM) = PM; −− PM not touched

TRUE : next(PM) = PM & next(VM) = VM & next(MMIO)

= MMIO;

esac;

state = s2 : next(PM) = PM & next(VM) = VM & next(MMIO)

= MMIO;

state = end : next(PM) = PM & next(VM) = VM &

next(MMIO) = MMIO;

TRUE : next(PM) = PM & next(VM) = VM & next(MMIO) =

MMIO;

esac;

−− If the APw is always true, then there is not a possibility to

−− reach the end state.

LTLSPEC G(APw) −> G(state != end)

−− If APw is violated, then the state eventually become end,

−− i.e. end is only reachable if APw is violated

LTLSPEC

F(!APw) −> F (state = end)

−− If the APw is violated, then the memory is not modified

LTLSPEC

G(!APw) −> G (next(PM) = PM & next(VM) = VM &

next(MMIO) = MMIO)

Listing 4.4: The encoding to prove the correctness

of the Writesf

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 35 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

5 Conclusions

In this document, we have presented the first draft of the open formalization of the CROSSCON sepa-

ration kernel and of the security properties that we will consider within CROSSCON. We started from

the individual architectural components of CROSSCON and the possible implementation alternatives of

the CROSSCON stack discussed in [1]. We proved for the CROSSCON separation kernel the properties

of interest. For the TEE and Hypervisor-less hardware, we performed a more detailed formalization,

and we mechanically proved memory isolation of the design leveraging model checking techniques and

satisfiability modulo theory.

As future work, among the ones envisaged in the tasks, we will consider the extension of the separa-

tion kernel formalization to consider dynamic reconfigurations of the memory layout (E.g., in response

to an update or because of specific requests). Furthermore, we will automate the verification of the

CROSSCON configuration file (see Deliverable [1]) using SMT techniques, and define a proper certifica-

tion manifest to accompany CROSSCON applications.

The resulting finalized version of this document will then be reported in the final version of the CROSS-

CON Formal Specification deliverable [18]. We are also planning to submit an excerpt of the content of

this document to scientific venues to valorize the carried out research.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 36 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

References

[1] Markus Miettinen, Shaza Zeitouni, Marco Roveri, Michele Grisafi, Žiga Putrle, João Sousa, David

Cerdeira, Sandro Pinto, and Lukas Petzi. D2.1 CROSSCON Open Specification - Draft. 2023.

[2] Ainara García, David Purón, Bruno Crispo, Hristo Koshutanski, Krystian Hebel, Maciej Pijanowski,

Michał Żygowski, and Rafał Kochanowski. Deliverable D1.1: Use Cases Definition Initial Version.

2023.

[3] David Purón, Ainara García, Rafał Kochanowski, Ziga Putrle, Yacine Felk, Emna Amri, Akos Mi-

lankovich, Gergely Eberhardt, Sandro Pinto, Bruno Crispo, Marco Roveri, Michele Grisafi, and Pe-

ter Ten.Deliverable D1.2: Deliverable D1.2: Requirements Elicitation Initial Technical Specification.

2023.

[4] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray, Thomas Sewell, Rafal Kolanski,

and Gernot Heiser. “Comprehensive formal verification of an OS microkernel”. In: ACM Trans.

Comput. Syst. 32.1 (2014), 2:1–2:70.

[5] Sel4 - The Proof. [Online]. Available: https://sel4.systems/Info/FAQ/proof.pml. Jan. 2024.

[6] Saar Amar, Tony Chen, David Chisnall, Felix Domke, Nathaniel Filardo, Kunyan Liu, Robert Norton-

Wright, Yucong Tao, Robert N. M.Watson, and Hongyan Xia. CHERIoT: Rethinking security for low-

cost embedded systems. Tech. rep. MSR-TR-2023-6. Microsoft, Feb. 2023. URL: https : / /www .

microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-

systems/.

[7] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Jonathan Anderson, David Chis-

nall, Brooks Davis, Ben Laurie, Simon W. Moore, Steven J. Murdoch, and Michael Roe. Capability

Hardware Enhanced RISC Instructions: CHERI Instruction-set architecture. Tech. rep. UCAM-CL-

TR-864. University of Cambridge, Computer Laboratory, Dec. 2014. DOI: 10.48456/tr-864. URL:

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-864.pdf.

[8] David Greve,MatthewWilding, andWMark Vanfleet. “A separation kernel formal security policy”.

In: Proc. Fourth International Workshop on the ACL2 Theorem Prover and Its Applications. 2003.

[9] J. A. Goguen and J. Meseguer. “Security Policies and Security Models”. In: 1982 IEEE Symposium

on Security and Privacy. 1982, pp. 11–11. DOI: 10.1109/SP.1982.10014.

[10] JohnM. Rushby. “Noninterference, Transitivity, and Channel-Control Security Policies 1”. In: 2005.

URL: https://api.semanticscholar.org/CorpusID:8472202.

[11] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled, and Helmut Veith. Model

checking, 2nd Edition. MIT Press, 2018.

[12] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. “Satisfiability Modulo

Theories”. In: Handbook of Satisfiability. Vol. 336. Frontiers in Artificial Intelligence and Applica-

tions. IOS Press, 2021, pp. 1267–1329.

[13] Anubhav Gupta, Kenneth L. McMillan, and Zhaohui Fu. “Automated assumption generation for

compositional verification”. In: Formal Methods Syst. Des. 32.3 (2008), pp. 285–301.

[14] Michele Grisafi, Mahmoud Ammar, Marco Roveri, and Bruno Crispo. “PISTIS: Trusted Computing

Architecture for Low-end Embedded Systems”. In: 31st USENIX Security Symposium, USENIX Secu-

rity 2022, Boston,MA, USA, August 10-12, 2022. Ed. by Kevin R. B. Butler and Kurt Thomas. USENIX

Association, 2022, pp. 3843–3860. URL: https://www.usenix.org/conference/usenixsecurity22/

presentation/grisafi.

[15] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, An-

drea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. “The nuXmv Symbolic Model

Checker”. In: CAV. Vol. 8559. Lecture Notes in Computer Science. Springer, 2014, pp. 334–342.

[16] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems - specifi-

cation. Springer, 1992. ISBN: 978-3-540-97664-6. DOI: 10.1007/978-1-4612-0931-7.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 37 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

https://doi.org/10.48456/tr-864
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1007/978-1-4612-0931-7

[17] Alessandro Cimatti, Raffaele Corvino, Armando Lazzaro, Iman Narasamdya, Tiziana Rizzo, Marco

Roveri, Angela Sanseviero, and Andrei Tchaltsev. “Formal Verification and Validation of ERTMS

Industrial Railway Train Spacing System”. In: CAV. Vol. 7358. Lecture Notes in Computer Science.

Springer, 2012, pp. 378–393.

[18] CROSSCON Team. Deliverable D2.4: CROSSCON formal specification - Final Version. 2025.

Document name: D2.2 CROSSCON Formal Framework - Draft Page: 38 of 38

Reference: D2.2 Dissemination: PU Version: 1.0 Status: Final

	Document Information
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Executive Summary
	Introduction
	Relation to Other Project Work
	The CROSSCON high-level architecture
	Structure of the Document

	CROSSCON Security properties
	Related works
	Security properties of seL4
	CHERIoT security properties
	GWV security properties
	Noninterference security property

	The CROSSCON proposal

	The CROSSCON separation kernel formalization
	Separation kernel
	Machine state
	Single-core state
	Multi-core state
	Core assignment

	Memory protection
	Memory partitioning
	Memory mapped I/O sub-region
	Effective domain

	Instruction semantics
	Memory access obligations
	Ordinary (unprivileged) instructions

	Memory security
	Validity of access
	Invalid access
	Valid access

	Access type
	Read access
	Write access
	Fetch access

	Security properties
	Integrity
	Confidentiality
	Isolation
	Availability

	Context switching
	Safe domain execution context storage
	Interrupt handling
	User-mode software interrupts
	Separation kernel calls
	Domain switch

	Formalization for a TEE and Hypervisor less hardware
	Formal Proofs of Theorems 11 and 12

	Conclusions
	Bibliography

