

This document is issued within the frame and for the purpose of the CROSSCON project. This project has received funding from the European
Union’s Horizon Europe Programme under Grant Agreement No.101070537. The opinions expressed and arguments employed herein do not
necessarily reflect the official views of the European Commission.
The dissemination of this document reflects only the author’s view, and the European Commission is not responsible for any use that may
be made of the information it contains. This deliverable is subject to final acceptance by the European Commission.
This document and its content are the property of the CROSSCON Consortium. The content of all or parts of this document can be used and
distributed provided that the CROSSCON project and the document are properly referenced.
Each CROSSCON Partner may use this document in conformity with the CROSSCON Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g. web (Deliverables flagged as public will be automatically published in CORDIS project’s
page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the Commission
Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-S) EU SECRET under
the Commission Decision No2015/444.

Cross-platform Open Security Stack for Connected Device

D1.4 Use Cases Definition Final Version

Keywords:

CROSSCON use cases, IoT device multi-factor authentication, Firmware updates, Commissioning and
Decommissioning of IoT devices, Remote attestation of UAVs, Secure provisioning of FPGA
workloads.

Document Identification

Status Final Due Date 31.10.2023

Version 1.0 Submission Date 30.10.2023

Related WP WP1 Document Reference D1.4

Related
Deliverable(s)

D1.1 Dissemination Level (*) PU

Lead Participant

ATOS Lead Author Hristo Koshutanski

Contributors BIOT, 3MDEB, CYSEC,
BEYOND, TUD

Reviewers UNITN

UMINHO

Document name: D1.4 Use Cases Definition Final Version Page: 2 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Ainara García BIOT

David Purón BIOT

Krystian Hebel 3MDEB

Maciej Pijanowski 3MDEB

Michał Żygowski 3MDEB

Rafał Kochanowski 3MDEB

Piotr Król 3MDEB

Emna Amri CYSEC

Yannick Roelvink CYSEC

Malvina Catalano CYSEC

Shaza Zeitouni TUD

Markus Miettinen TUD

Bruno Crispo UNITN

Hristo Koshutanski ATOS

Document History

Version Date Change editors Changes

0.1 09/02/2023 Hristo Koshutanski (ATOS) Creation of a working document based on
the submitted version of D1.1.

0.2 05/04/2023 Emna Amri, Yannick Roelvink
(CYSEC)

Description of UC4

0.3 02/06/2023 Shaza Zeitouni and Markus
Miettinen (TUD)

Description of UC5

0.4 06/10/2023 Hristo Koshutanski (ATOS) Creation of a first draft of D1.4 based on the
working document. Ready for quality
review.

0.5 18/10/2023 João Sousa (UMINHO), and
Bruno Crispo (UNITN)

Peer review comments and suggestions on
improvements.

0.6 23/10/2023 Ainara García (BIOT) and
Malvina Catalano (CYSEC)

Revision of comments regarding UC2 and
UC3, and UC4, respectively.

0.7 25/10/2023 Piotr Król (3MDEB) Revision of comments regarding UC1.

0.8 26/10/2023 Hristo Koshutanski (ATOS) Editorial changes across all sections and
revision of comments.

1.0 31/10/2023 Hristo Koshutanski (ATOS) QC and final submission.

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Hristo Koshutanski (ATOS) 30/10/2023

Quality manager Juan Alonso (ATOS) 30/10/2023

Project Coordinator Hristo Koshutanski (ATOS) 30/10/2023

Document name: D1.4 Use Cases Definition Final Version Page: 3 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ...2

Table of Contents ...3

List of Tables ...5

List of Figures ..6

List of Acronyms ...7

Executive Summary ..8

1 Introduction ..9

1.1 Purpose of the document ..9

1.2 Ambition of use cases ..9

2 CROSSCON Objectives ... 11

3 UC1: Device Multi-Factor Authentication ... 13

3.1 Scenarios Description .. 13

3.2 Architecture and Workflow... 14

3.3 Threat Model... 15

3.3.1 Use Case 1 - one-way authentication between a low-end device and a high-end device 16

3.3.2 Use Case 2 - mutual authentication between two devices ... 17

3.4 Assumptions and Security Properties ... 17

3.5 Testbed Prerequisites ... 18

4 UC2: Firmware Updates of IoT Devices ... 19

4.1 Scenarios Description .. 19

4.1.1 Something has changed in the system BIOS ... 20

4.1.2 Something has changed in the firmware – full update (changes controlled by the OEM) 20

4.1.3 Something has changed in the firmware – partial update (changes controlled by the OEM)
 20

4.1.4 Something has changed in the software (changes NOT controlled by the OEM) 20

4.1.5 Poor network conditions ... 20

4.1.6 Existence of a multitude of dispersed devices with massive update needs 20

4.2 Architecture and Workflow... 20

4.3 Threat Model... 24

4.3.1 Firmware package encryption ... 25

4.3.2 Firmware sniffing protection ... 25

4.3.3 Firmware integrity protections ... 25

4.3.4 Firmware downloads channel authentication .. 25

4.3.5 Firmware rollback protections .. 25

4.3.6 Fail-safe mechanisms (A/B) ... 26

4.4 Assumptions and Security Properties ... 26

Document name: D1.4 Use Cases Definition Final Version Page: 4 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

5 UC3: Commissioning and Decommissioning of IoT devices .. 29

5.1 Scenarios Description .. 30

5.1.1 Application Commissioning ... 31

5.1.2 Decommissioning .. 31

5.2 Architecture and Workflow... 32

5.3 Threat Model... 34

5.4 Assumptions and Security Properties ... 34

5.5 Testbed Prerequisites ... 34

6 UC4: Remote Attestation for Identification and Integrity Validation of Agricultural UAVs 36

6.1 Scenarios Description .. 36

6.2 Architecture and Workflow... 37

6.2.1 Fleet Identification and Authentication Workflow ... 37

6.2.2 In-Flight Software Integrity Validation Workflow ... 38

6.2.3 Hybrid Tampering Detection Workflow .. 39

6.3 Threat Model... 40

6.4 Assumptions and Security Properties ... 41

6.5 Testbed Prerequisites ... 42

7 UC5: Intellectual Property Protection for Secure Multi-Tenancy on FPGA 43

7.1 Scenarios Description .. 43

7.2 Architecture and Workflow... 44

7.3 Threat Model... 46

7.4 Assumptions and Security Properties ... 46

7.5 Testbed Prerequisites ... 47

8 Conclusions .. 48

References ... 49

Document name: D1.4 Use Cases Definition Final Version Page: 5 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1: CROSSCON Objectives and Use Cases .. 11
Table 2: UC2 Typical IoT Device Firmware Update Steps .. 23
Table 3: UC2 Threat Model .. 24
Table 4: UC3 Commissioning and Decommissioning Workflow Steps .. 33

Document name: D1.4 Use Cases Definition Final Version Page: 6 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1: UC1 Device MFA High-level View ... 13
Figure 2: Simplified architecture.. 14
Figure 3: IoT devices communicate only through gateway ... 14
Figure 4: IoT devices can communicate with gateway and each other .. 15
Figure 5: IoT devices must use intermediary to communicate with the rest of the world 15
Figure 6: UC2 Firmware Updates of IoT Devices High-level View ... 21
Figure 7: UC2 Typical IoT device firmware update process ... 23
Figure 8: UC2 Testbed Elements and Relationship .. 28
Figure 9: UC3 IoT Device Lifecycle Commissioning and Decommissioning Processes 29
Figure 10: UC3 Commissioning and Decommissioning Processes Workflow .. 32
Figure 11: UC3 Testbed Elements and Relationship .. 35
Figure 12: UC4 Remote Attestation of Agricultural UAVs Overview ... 37
Figure 13: UC4 Fleet Identification and Authentication Workflow ... 38
Figure 14: UC4 In-Flight Software Integrity Validation Workflow ... 39
Figure 15: UC5 Intellectual Property Protection for Secure Multi-Tenancy on FPGA – A Workflow View
 ... 44
Figure 16: UC5 Vendor-provisioned FPGA equipped with a trust anchor.. 44
Figure 17: UC5 Client to cloud FPGA communications to upload a proprietary design (IP) 45
Figure 18: UC5 Trust anchor’s steps to allocate an IP on the FPGA .. 45
Figure 19: UC5 FPGA multi-tenancy view of two different clients’ proprietary designs (IPA, IPB) 45

Document name: D1.4 Use Cases Definition Final Version Page: 7 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /
acronym

Description

BIOS Basic Input/Output System

CoT Chain of Trust

CRP Challenge Response Pair

D1.1 Deliverable number 1 belonging to WP1

DM Device Management

DoA Description of Action

DoS Denial of Service

EC European Commission

FPGA Field-Programmable Gate Array

HSM Hardware Security Module

IoT Internet of Things

MITM Man-in-the-Middle

ODM Original Design Manufacturer

OEM Original Equipment Manufacturer

OTA Over-the-Air

PUF Physically Unclonable Function

RoT Root of Trust

SBC Single-board Computer

SoC System on a Chip

TEE Trusted Execution Environment

TPM Trusted Platform Module

TRL Technology Readiness Level

UAV Unmanned Aerial Vehicle

UC Use Case

WP Work Package

Document name: D1.4 Use Cases Definition Final Version Page: 8 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

This document revises and completes the initial version of the CROSSCON use cases, reported in D1.1,
with two new use cases to offer a comprehensive and enriched context for demonstration and
validation of the CROSSCON IoT security stack.

The CROSSCON stack aims at supporting IoT developers in the design and implementation of secure
IoT applications across a highly fragmented landscape of devices with diverse security features and
capabilities. The stack enables essential security mechanisms offering Root of Trust (RoT), Chain of
trust (CoT), Trusted Execution Environment (TEE), and trusted services to guarantee an acceptable
level of security throughout the entire IoT device ecosystem and minimise potential entry points for
attackers.

Given the high ambition of the project, there is a need to define use cases (UC) and scenarios to
validate and demonstrate the effectiveness of the results with high industrial and community
relevance. To do so, the project consortium has defined a final set of five use cases: UC1) IoT device
multi-factor authentication; UC2) Firmware updates of IoT devices; UC3) Commissioning and
decommissioning of IoT devices; UC4) Remote attestation for identification and integrity validation of
agricultural Unmanned Aerial Vehicles (UAVs); and UC5) Intellectual Property Protection for Secure
Multi-Tenancy on FPGA.

Each use case is defined by its scenarios, architecture, workflow, threat model, security assumptions
and properties, and testbed prerequisites. The definition of the use cases will serve and feed the next
task in the project workplan on revision of requirements elicitation, validation criteria, and KPIs for the
CROSSCON stack.

This document contributes to the completion of milestone MS3 on “First version of CROSSCON Open
Specification, Use Cases finalised.”

Document name: D1.4 Use Cases Definition Final Version Page: 9 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This document defines the final set of the CROSSCON use cases based on the result of collaborations
between application/service providers – BIOT, 3MDEB and CYSEC, and the academic (UNITN, UMINHO,
UWU, TUD) and industrial partners (BEYOND, ATOS) of the project.

The use cases have been selected and defined based on their relevance and representation of
significant instances of the security problems that IoT developers, integrators, consumers, and vendors
face in the field as routine or even daily tasks. As such, the use cases will serve as demonstrators of the
innovation results of the CROSSCON stack, produced by the technical work packages WP2, WP3, and
WP4, and validated at the required TRL4 testbed implementations in WP5.

To address the ambitious scope of the project and the wide spectrum of platforms and security
challenges, we adopted a comprehensive approach when defining the use cases. For each UC we
targeted a specific demonstration in WP5 depending on factors such as the considered threat model,
the class of devices supported by each UC provider, the type of connectivity and interactions among
the different IoT entities, all according to the final UC provider’s model and the end users’ needs.

We consider this to be the right approach not only for the initial but also for the final version of the
document, to avoid the danger of providing too narrow or restrictive use cases for the research
activities.

1.2 Ambition of use cases

The final set of the CROSSCON use cases: UC1) IoT device multi-factor authentication – provided by
3MDEB; UC2) Firmware updates of IoT devices – provided by BIOT; UC3) Commissioning and
decommissioning of IoT devices – provided by BIOT; UC4) Remote attestation for identification and
integrity validation of agricultural UAVs – provided by CYSEC; and UC5) Intellectual Property Protection
for Secure Multi-Tenancy on FPGA – provided by TUD.

As identified in D1.1, the initial and extended set of use cases reported in this document will be used
to investigate security issues related to some of the IoT application domains explicitly challenged by
the call1 such as i) Effective management of cybersecurity patches for connected devices in restricted
environments such as IoT devices; ii) Effective mechanisms for inventory management, detection of
insecure components and decommissioning; and iii) Methods for secure authentication and secure
communication for connected devices in restricted environments such as IoT devices.

The use cases will be used by CROSSCON to test and validate the effectiveness and efficiency of the
CROSSCON research and innovation results. In essence, the ambition of CROSSCON use cases in the
first version resides in delivering an effective solution for a) multi-factor device authentication, b)
secure firmware updates, and c) secure commissioning and decommissioning of IoT devices; while in
the final version of the document the ambition extends to two promising application domains of
identification and integrity validation agricultural UAVs, and intellectual property protection in the
context of FPGA workloads.

The ambition of CROSSCON remains the same since the first version in D1.1 and is further reinforced
in the final version of the use cases in this document. Firstly, the use cases present security problems
that could be solved with existing technology for some classes of devices, but it remains challenging
and, in some cases, even impossible to solve for other classes of devices, typically, but not only, those
more resources constrained. CROSSCON aims at extending the range of devices for which it is possible
to provide a secure solution in the presented use cases. Secondly, CROSSCON aims at providing

1 https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl3-2021-cs-
01-02

https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl3-2021-cs-01-02
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl3-2021-cs-01-02

Document name: D1.4 Use Cases Definition Final Version Page: 10 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

innovative technology that allows to implement some secure realizations of the use cases that are
difficult to implement nowadays, or current implementations are not fully satisfactory. Thirdly,
CROSSCON aims at demonstrating the interoperability of its solution using heterogenous devices from
different vendors in its use cases.

In the initial and final version, every use case contains three essential elements, namely actors, goals
and process steps that include functional requirements and anticipated behaviour. However,
describing the requirements of a system exclusively from the end user's perspective might present a
challenge in CROSSCON. Variations to the basic flow might be needed in different “layers” of
CROSSCON stack. There is also an ambition to refer to the specific processes that must happen in
various parts of the system, including dependencies, necessary supporting features, and the external
environment.

Document name: D1.4 Use Cases Definition Final Version Page: 11 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

2 CROSSCON Objectives

We will first recall the main objectives of CROSSCON with the aim to give a better context to the use
cases discussed in the document. Particularly, presenting the project’s targeted results will facilitate
comprehension of why the selected use cases and scenarios for the validation of the project’s results.

CROSSCON aims at designing a new open, modular, highly portable, and vendor-independent IoT
security stack that allows OSes and applications on the layers above to leverage essential security
mechanisms and trusted services across a wide range of devices and heterogeneous hardware
architectures. The stack will offer a unified set of trusted APIs to the layers above to address
interoperability issues from different hardware architectures and security mechanisms at lower levels.

It will feature a high-level of modularity. The stack will allow configuring only those security features
necessary depending on the underlying hardware and firmware. It will flexibly leverage the security
features implemented at the layers below and, in case security features are missing, like in bare metal
devices, the stack will offer an entire TEE implementation suitable for such devices. The unified set of
APIs will allow the use of TEE’s functionalities and trusted services on a customizable and need-to-use
basis. CROSSCON also aims at improving and enriching the traditional trusted services supported by
existing TEEs to higher-level modules and applications.

As devices are getting more powerful and more security mechanisms and features are incorporated
directly into the hardware, there is the need to extend the stack’s primitives to leverage such advanced
security features and open its scope to domain-specific hardware architectures.

The project will demonstrate that the CROSSCON stack supports the implementation of high-level
security services such as device multi-factor authentication, secure updates, device commissioning,
remote attestation and decommissioning. The security properties and guarantees offered by the
stack’s design will be formally verified. The project will provide a methodology and tools to formally
verify the correctness of the code implementing the stack. Thus, CROSSCON’s stack will guarantee
trusted services with a high-level of assurance across an entire IoT system.

Table 1 shows the main CROSSCON objectives and their relevance to the different use case
demonstrators. The table is revised and extended in its second and final version of the use cases
including the additional use cases UC4 and UC5.

Table 1: CROSSCON Objectives and Use Cases

CROSSCON Objectives UC1 Device
Multi-Factor
Authentication

UC2
Firmware
Updates of
IoT Devices

UC3
Commissioning &
Decommissioning
of IoT Devices

UC4 Remote
Attest. for
Identification
and Integrity
Validation of
Agricultural
UAVs

UC5
Intellectual
Property
Protection
for Secure
Multi-
Tenancy on
FPGA

Objective 1: Support
IoT stakeholders with
the design and
implementation of an
innovative IoT open-
source security stack,
that enables essential
security mechanisms
and trusted services.

✓ ✓ ✓ ✓ ✓

Document name: D1.4 Use Cases Definition Final Version Page: 12 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Objective 2:
Strengthening
memory protection
and isolation in new
and existing TEEs.
Mitigate the impact of
side-channels attacks

 ✓ ✓

Objective 3: Provide
IoT stakeholders with
methodology,
techniques, and
related tools to
formally verify
"correct by design"
secure open-source
software and firmware
for connected devices

✓ ✓ ✓ ✓

Objective 4: Support
the IoT stakeholders
with a set of additional
novel and high
assurance trusted
services

✓ ✓ ✓ ✓ ✓

Objective 5: Provide
IoT stakeholders with
a toolchain that
integrates and
validates lightweight
techniques for security
assurance

 ✓ ✓

Objective 6: Provide
IoT stakeholders with
a validation and
testing methodology,
a replicable testbed,
and testing and
validation results for
CROSSCON
innovations

✓ ✓ ✓ ✓

Objective 7: Enable
the valorisation and
adoption of
CROSSCON flagship
results

✓ ✓ ✓ ✓ ✓

Document name: D1.4 Use Cases Definition Final Version Page: 13 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

3 UC1: Device Multi-Factor Authentication

The Internet of Things (IoT) has revolutionized the way we live and work by connecting devices and
allowing them to communicate with each other. However, this increased connectivity also introduces
new challenges in terms of security. One of the main challenges is ensuring that only authorized
devices can access the network, or other specific resources.

In recent years, Physically Unclonable Functions (PUFs) have been proposed as a solution for device
authentication in low-end devices. This is because, some low-end devices, such as IoT devices, have
limited computational resources and cannot use regular cryptographic operations. PUF-based
authentication is therefore seen as a lightweight solution in such cases.

However, PUF-based authentication has proven to be difficult to implement in practice and is
vulnerable to a variety of attacks. By combining multiple factors, we aim to overcome the limitations
of existing PUF-based solutions and provide a more robust defense against MITM (Man-in-the-Middle).

As a final goal of this use case, we aim to propose a multi-factor authentication (MFA) solution for IoT
devices to improve their security, as shown in Figure 1. While the initial idea emerged based on the
devices that leverage PUFs and other device-specific factors, we may extend it further, to provide
general-purpose MFA solution.

Figure 1: UC1 Device MFA High-level View

3.1 Scenarios Description

Description of stakeholders taking part in following scenarios:

Device - Network-connected equipment such as a sensor or gateway which is running the CROSSCON
stack. One common attribute of all such devices is the ability to connect and exchange data with other
devices.

Vendor - manufacturer of Device or its firmware, or both.

Owner - physical owner, administrator, or maintainer of one or more Devices connected into a
network. It may not be equivalent to user, for example kiosks or infotainment systems are made
available to people other than Owner.

Document name: D1.4 Use Cases Definition Final Version Page: 14 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Cloud - catch-all term for providers of various services external of Owner’s infrastructure. In following
scenarios, Cloud includes target services with which Devices communicate, but also the Internet and
other networks not controlled by Owner.

Scenario 1

The Owner wants to send the data collected by valid Device to the Cloud. Owner needs assurance that
no external actor can send data to the Cloud in name of valid Device.

Scenario 2

The Vendor needs to authenticate his Devices, for instance, for updating the firmware of his devices’
firmware. The Vendor does not want to send the update image to Devices other than his own.

Scenario 3

Owner has some Devices (e.g., sensors) that produce data that is an input to other Devices
(e.g., actuators). Owner expects that only his Devices can communicate with each other.

3.2 Architecture and Workflow

Following the assumption that user has no control over Internet and cloud provider’s network, the
architecture can be generalized and simplified to the state presented on Figure 2. Note that this figure
shows all possible interconnections, not all of them have to be present in each scenario.

Figure 2: Simplified architecture

Figures 2-4 show different possible connections based on type of communication, with marked points
that can be hit by man-in-the-middle attacks. Complex networks may have a combination of more than
one kind of connections presented here, potentially with mesh topology or subnetworks.

Figure 3: IoT devices communicate only through gateway

Figure 3 demonstrates a case where all devices connect directly only to a gateway or router, regardless
of whether the device communicated with cloud or another device in the same network. Attackers
have to access each connection between device and gateway for each device they are targeting.

Document name: D1.4 Use Cases Definition Final Version Page: 15 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Another option would be to hook into a connection between gateway and Cloud or in the Cloud itself,
but attacks against infrastructure outside Owner’s control are out of scope for this use case. In many
cases, implementing countermeasures on the gateway is sufficient since it is the common point of all
communication.

Figure 4: IoT devices can communicate with gateway and each other

Devices can also communicate with each other directly, without use of a gateway or router, as depicted
in Figure 4. This can be used to offload the router by creating a mesh network, which may result in
higher fault-tolerance, better coverage of wireless signal and lower cost of infrastructure. As the
number of interconnections increases, so does the number of possible points that an attacker has to
break into to get a full view of data exchange. Countermeasures have to be applied to all devices since
there is no central device that all communication is passed through.

Figure 5: IoT devices must use intermediary to communicate with the rest of the world

A special case of a device-to-device connection is shown in Figure 5. It is very similar to the previous
one, except now only one of the devices is capable of connecting to the gateway. This is often used by
more constrained devices which cannot use protection mechanisms, data rates or other attributes
enforced by the main network. It is possible to use this approach to connect devices using other
wireless technology standards than Wi-Fi, for example Bluetooth, Zigbee, LoRaWAN. In that case,
possible attack vectors depend on the topology of the subnetwork and may be the same as either of
two previously described cases.

All presented topologies have to be taken into account. Even if they generally are not used for a given
scenario (e.g., firmware update requests happen between an IoT device and some external server,
they usually do not need device-to-device communication inside the local network), the possibility of
having different flow of data opens up new attack vectors.

3.3 Threat Model

One of the most important attack vectors in the IoT device authentication is the MITM adversary. In
the following attack models, we define the adversary:

 Has full access to the data flowing in the communication channel between devices (can freely
eavesdrop and intercept the data transmitted between IoT devices).

 Can add own device to impersonate the device to be authenticated or the device being
authenticated to.

 Can generate and send malicious/replayed packets to the communication channel (and so to the IoT
devices).

Document name: D1.4 Use Cases Definition Final Version Page: 16 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

 Does not have physical access to the IoT devices performing authentication as we consider it out of
scope for MITM (it would resemble Evil Maid attack in such case).

While there are many existing protocols and methods to solve the problem of MFA in case of the
interactive scenarios (involving user interaction) and high-end systems, the problem is still an open
issue (thus, interesting for the project), if we consider non-interactive scenarios (i.e., no user
interaction) and/or more constrained devices. Thus, the following use cases have been selected:

1. Use case 1: one-way authentication between a low-end device and a high-end device (like
gateway).

2. Use case 2: mutual authentication between two high-end devices.

3.3.1 Use Case 1 - one-way authentication between a low-end device and a high-end device

For low-end device with limited resources, possible second factor options for the authentication are
the wireless connection signal properties. Moreover, a low-end device may be equipped with less
complex PUF circuit with a limited number of Challenge Response Pairs (CRPs).

Typically, such devices are compact, lightweight, and low-power sensors. Due to the limitation in
memory and processing capability, they do not participate in Internet communication in a secure way.
These devices usually communicate with the help of proxies or gateways using a protocol stack
specifically designed for IoT device with constraints. [1]

3.3.1.1 Threat model

We specify the possible attacks need to be considered and recommendations to mitigate them for
low-end devices:

1. Brute-force attack: cloning the CRP table by issuing all possible challenges.

To mitigate the issue, one should limit the number of authentication attempts in time to make
brute-force attacks more time consuming. Using PUF with large number of CRPs or use larger
challenges and responses is not feasible for resource constrained devices.

2. Replay attack: issuing the same authentication request again (with the same challenge and
response).
To mitigate the issue do not allow to use the same CRP more than once. It may be difficult to
achieve on low-end devices with PUFs having small number of CRPs. A workaround here may be
to use device with reconfigurable PUFs to change the available CRP pool. Alternatively,
obfuscate the challenges and responses and periodically change the obfuscation functions if the
device runs out of all CRPs.

3. Eavesdropping: adversary can gain access to private information by monitoring transmissions
between nodes.

This attack can be mitigated with and end-to-end encryption. There exist lightweight symmetric-
based encryption protocols that could be implemented even for some low-end devices. The
problem always relies on protection of the cryptographic keys on such devices.

Any encryption of the communication protocol (such as TLS) is not feasible for low-end devices,
so more lightweight methods are proposed. Typical mitigation in such case would be to
obfuscate challenges and responses or using any other methods that will not cause the
challenges and responses to be transmitted in a plain form. It will successfully make the
adversary’s job harder to figure out CRPs.

4. Machine learning attack: model PUF behaviour to predict its CRPs.

This attack is an option available after successful eavesdropping the communication channel.
Because of that challenge and response obfuscation is also a possible mitigation here.
Additionally, one can consider using PUFs with low predictability rate when modelling or PUFs
with different challenge and response word length to make it less predictable.

Document name: D1.4 Use Cases Definition Final Version Page: 17 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

3.3.2 Use Case 2 - mutual authentication between two devices

High-end devices can support the typical communication protocol stacks, because are less constrained.
Examples include an IP camera or a smart meter that is based on 32-bit processors. However, these
devices also can benefit from using low-power and lightweight protocols, and from consuming less
bandwidth [1]. They are also capable of supporting complex cryptographic operations (e.g., modular
exponentiation) thus they could offer stronger security properties than low-end devices (more PUF
options to choose from, secure storage capabilities, etc.). For a second factor, there are numerous
options to choose from including hashes, keys and other secrets held in secure storage.

3.3.2.1 Threat model

We specify the possible attacks needed to be considered and the recommendations to mitigate them
for high-end devices:

1. Brute-force attack: cloning the CRP table by issuing all possible challenges.

To mitigate the issue, one should limit the number of authentication attempts in time to make
brute-force attacks more time-consuming. Additionally use PUFs with large number of CRPs or
use larger challenges and responses. Devices should be capable of having such PUF security
properties.

2. Replay attack: issuing the same authentication request again (with the same challenge and
response).
To mitigate the issue do not allow to use the same CRP more than once. A device equipped with
PUFs with high number of possible CRPs should not hit this problem quickly. If needed obfuscate
the challenges and responses and periodically change the obfuscation functions (e.g., different
hashing algorithm) if the device runs out of all CRPs. Challenges may also include timestamps,
nonce or another randomly generated secret. Additionally use large enough challenges and
responses to have a wide pool for CRP obfuscation.

3. Eavesdropping: adversary can gain access to private information by monitoring transmissions
between nodes.

Devices considered in this use case should be capable of performing heavyweight cryptographic
operations. The communication protocol could be encrypted (using TLS for example) to
effectively disable eavesdropping adversaries.

4. Machine learning attack: model PUF behaviour to predict its CRPs.

This attack is an option available after successful eavesdropping the communication channel.
Due to communication channel encryption, it should not be possible to catch CRPs and model
PUF behaviour.

3.4 Assumptions and Security Properties

This section describes assumptions about device types and their security properties. The division of
devices is made based on the threat model presented in Section 3.3 of the document.

Low-end devices:

 Devices with constrained resources
 Equipped with simple PUFs with limited number of CRPs (but some low-end devices may have a

reconfigurable PUF)
 Not capable of performing heavyweight operations, like heavy cryptographic operations
 No secure storage, so authentication cannot store secrets on these devices
 Capable of one-way authentication only to a high-end device (no mutual authentication)
 Tamper-resistant by its nature (no exposure of external buses, integrated flash), any tampering

automatically destroys PUF

High-end devices:

Document name: D1.4 Use Cases Definition Final Version Page: 18 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

 Devices are not resource-constrained
 Equipped with more complex PUFs with high number of CRPs
 Capable of executing performance heavy operations like asymmetric cryptography
 Secure storage capabilities, so authentication may store secrets on these devices
 Capable of mutual authentication to another high-end devices
 Secure booting and additional tamper-resistant mechanisms present on the devices

3.5 Testbed Prerequisites

In this chapter, the impact of different factors on the testbed definition will be evaluated.

First Factor (PUF)

A PUF is required as the first authentication factor in all cases. However, PUF circuits are not commonly
found on commonly available off-the-shelf development boards. As this research is not focused on the
first authentication PUF factor but rather on adding another factor, it is possible to fall back to
simulating the first authentication factor in software, focusing on the properties of the second factor.
Alternatively, hardware providing dedicated PUF Emulation Services [1], such as the Microchip
PolarFire SoC [2], or dedicated hardware modules providing PUF capabilities, such as the ChipDNA [3]
series from MaximIntegrated, can be considered. The most flexible option would be to use an SoC
providing both CPU and FPGA blocks, allowing for easier prototyping.

Scenarios

In this use case, we propose two scenarios for further testing and evaluation. The first scenario involves
a low-end device in a one-way authentication scenario. The second scenario involves a more complex
device in a mutual authentication scenario.

To implement the first scenario, at minimum, a low-end device and a gateway device are required. For
the second scenario, at minimum, two more complex devices are required for mutual authentication.

Connectivity

IoT devices typically use wireless connectivity for several reasons, such as flexibility, ease of
deployment, cost-effectiveness, efficient use of resources, scalability, and integration with mobile and
remote devices. Wireless connectivity allows for greater flexibility and ease of deployment by
eliminating the need for physical connections, making it easy to add new devices or move existing
ones. Because of that, it is important to consider the connectivity aspects when designing a testbed.

Low-end devices have limited resources, such as processing power, memory, or battery life. Due to
these limitations, the types of connectivity used by these low=end devices are typically low-power,
low-bandwidth wireless technologies. There are multiple technologies in this area. One important
group is the one based on the 2.4 GHz bandwidth.

The most common are Bluetooth Low Energy, Thread, and Zigbee. There are also other technologies,
such as LoRaWAN or SigFox, which are focused on achieving greater ranges and even lower power
consumption at the cost of bandwidth.

More complex IoT devices or gateway devices typically do not have such limitations on resources and
power efficiency. They also might use the aforementioned technologies, but they can also use others,
such as WiFi, or Bluetooth.

Document name: D1.4 Use Cases Definition Final Version Page: 19 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

4 UC2: Firmware Updates of IoT Devices

Firmware update is a critical process for IoT device security. Not being able to update IoT device
firmware is one of the most common sources of vulnerability during the device lifecycle. Furthermore,
an insecure update process also presents a major issue as it allows an attacker to upload malicious
logic on the device.

Typically, firmware updates are installed Over-The-Air (OTA). Updates and security patches can be
digitally signed, such that their integrity and authenticity can be verified. However, despite digital
signatures, the problem of secure updates still persists, since: i) updates often come as a bundle of
libraries developed by different parties, ii) the signatures are not always issued by a mutually trusted
certification authority, iii) digital signatures do not give any guarantee on the logic of the update. This
use case, considers two types of updates:

 Full update: the package contains the full replacement of the old package to be installed regardless
of what the previous firmware installed was.

 Partial update: the package contains just the binary difference between the new firmware version
and the old firmware version. In this case, the device has to reassemble the firmware package using
the binary difference (diff) and the old package.

As described in recent studies such as [8] and [9], it is very common to find IoT devices in the field
without a secure firmware update system. Even those devices having firmware update mechanisms
are in many cases not updated. The main reason is that current solutions cannot provide enough trust
to device operators because they can’t manage challenges such as poor network connectivity,
management of the device resources to ensure minimal downtime or address a heterogeneous
footprint of different hardware and software stacks within the same deployment. In [10] the authors
present an analysis performed over a total of 1.061.284 devices in the field and show the average age
of the installed firmware is 19.2 months, meaning device firmware is not even updated once a year,
leading to many vulnerabilities uncovered during large periods of time.

4.1 Scenarios Description

The CROSSCON stack under investigation aims to serve complex IoT scenarios, as well as enable other
techniques focused on edge computing in order to secure services in various real-world scenarios.
There may be several actors that can add functionalities that will give the device a final use during the
use of the CROSSCON stack.

Both the conventions regarding the common vocabulary to be used and the definition of the actors
have been carried out following RFC 9019 "A Firmware Update Architecture for the Internet of Things"
[6]. It includes:

 Author: the one that creates the firmware image. It could be several authors, according to the type
of IoT device, that could be highlighted with the classification of devices described previously.

 Device operator: the day-to-day operator of a fleet of IoT devices.
 Network operator: responsible for the network to which IoT devices connect.
 Trust Provisioning Authority (TPA): can be the original equipment manufacturer (OEM) or original

design manufacturer (ODM). Manufacturers are responsible for the firmware update process of
their products but may decide to share or delegate rights to other stakeholders.

 User: the end user of a device, who may use user interfaces and apps.

Moving forward in regard to scenarios, this section presents scenarios that define the use case for
firmware updates on IoT devices. These scenarios serve as a basis to identify user actions, associated
transactions, inherent risks, and potential security mitigations. The identified scenarios are presented
in greater detail in the sections below.

Document name: D1.4 Use Cases Definition Final Version Page: 20 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

4.1.1 Something has changed in the system BIOS

As described in the document NIST SP 800-155 – BIOS Integrity Measurement Guidelines [7], BIOS
updates often fix bugs in the power management system, hard disk or network management, or
another important component. However, a BIOS could also be changed for malicious purposes.

For this reason, system administrators must be able to tell what version of BIOS is loaded on a device
to be able to correctly manage it. The update of the BIOS presents specific challenges as it might be
part of the update process itself and end up with a malfunctioning device if not performed correctly.

4.1.2 Something has changed in the firmware – full update (changes controlled by the OEM)

The package contains the full replacement of the old package, regardless of the previously installed
firmware. Being able to update the firmware allows to patch security vulnerabilities of the integrated
third-party sub-modules in aa device’s firmware (for example, libraries for managing SSL certificates),
or to improve system performance (for example, optimizing power consumption. The update must be
sent over a secure communications channel, including authentication and encryption.

4.1.3 Something has changed in the firmware – partial update (changes controlled by the
OEM)

The package contains just the binary difference between the new firmware version and the old
firmware version. In this case, the device must reassemble the firmware package using the binary
difference (diff) and the old package.

4.1.4 Something has changed in the software (changes NOT controlled by the OEM)

In this scenario, the device operator wants to update the software, meaning specific applications or
libraries containing the end user logic. The system should allow independent management of
applications deployed on IoT devices. In these cases, changes might come in the form of updated
binary libraries from third parties, and therefore it is very important to be able to check the integrity
and security of the included software via Software Bill of Materials (SBOM) or similar techniques.

Other changes like user configuration or applications settings should be managed remotely, beyond
pure system updates, such as applications parameters or network settings, however, this is not
considered within the scope of this use case as it is not a software update.

4.1.5 Poor network conditions

Network conditions play a significant role in OTA updates, as in devices with more resources and
computing power, full update packages can be in the range of hundreds of MB, and many IoT service
providers charge high prices for data traffic, which is a significant barrier to any communication that is
required between devices and servers in a deployment. This can cause, for example, an OTA update to
take too long to download or to be interrupted, and it is a scenario that needs to be addressed in the
use cases.

4.1.6 Existence of a multitude of dispersed devices with massive update needs

Distributing software updates to diverse devices with diverse trust anchors presents unique
challenges. Devices have a broad set of constraints, requiring different metadata to make appropriate
decisions. There may be many actors in the production of IoT systems, each of whom has some
authority. Distributing firmware in such a multi-party environment presents additional challenges.
Multiple signatures may be required from parties with different authorities.

4.2 Architecture and Workflow

Due to the very nature of IoT devices regarding their connection to the Internet, firmware updates
must be provided over the Internet rather than traditional interfaces. Sending updates over the
Internet requires the device to fetch the new firmware image as well as the manifest.

Document name: D1.4 Use Cases Definition Final Version Page: 21 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

The architecture presented in the UC definition is shown in Figure 6.

Figure 6: UC2 Firmware Updates of IoT Devices High-level View

In should include:

1. As a first step in the firmware update process, the OTA Update server needs to inform the
CROSSCON stack client that a new firmware update is available. This can be accomplished via
polling (client-initiated), push notifications (server-initiated), or more complex mechanisms
(such as a hybrid approach).

2. If the update package is available, it should download it. The download step is the process of
acquiring a local copy of the firmware image. When the download is client-initiated, this means
that the firmware consumer chooses when to download and initiates the process. When a
download is server-initiated, this means that the status tracker tells the device when to
download or that it initiates the transfer directly to the firmware consumer.

3. Integrity protection ensures that no third party can modify the manifest or the firmware
image. To accept an update, a device needs to verify the signature covering the manifest.
There may be one or multiple manifests that need to be validated, potentially signed by
different parties. The device needs to have trust anchors to verify those signatures.

4. A/B system updates, also known as rolling updates, ensure that a working bootable system
remains on disk during an OTA update. A/B updates require changes on every system involved
in the update process, from the firmware build server to the logic that is performing the update
in the device itself. However, the OTA package server should not require changes: update
packages are still served over HTTPS.

5. Executing a secure boot process includes verifying and invoking the new image. The invocation
process is security sensitive. An attacker will typically try to retrieve a firmware image from
the device for reverse engineering or will try to get the firmware verifier to execute an
attacker-modified firmware image. Therefore, the firmware verifier will have to perform
security checks on the firmware image before it can be invoked. These security checks by the
firmware verifier happen in addition to the security checks that took place when the firmware
image and the manifest were downloaded by the firmware consumer. The overlap between
the firmware consumer and the firmware verify functionality comes in two forms, namely:

a. A firmware verifier must verify the firmware image it boots as part of the secure boot
process. Doing so requires metadata to be stored alongside the firmware image so

Document name: D1.4 Use Cases Definition Final Version Page: 22 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

that the firmware verifier can cryptographically verify the firmware image before
booting it to ensure it has not been tampered with or replaced. This metadata used by
the firmware verifier may well be the same manifest obtained with the firmware
image during the update process.

b. An IoT device needs a recovery strategy in case the firmware update/invocation
process fails. In the latter case, the firmware consumer functionality is contained in
the recovery image and requires the necessary functionality for executing the
firmware update process, including manifest parsing.

Taking RFC 9019 as reference, the following components are necessary on a device for a firmware
update:

 The protocol stack for firmware downloads. Firmware images are often multiple kilobytes,
sometimes exceeding one hundred kilobytes, for resources constrained devices but can even be
several megabytes for devices running full-fledged operating systems like Linux. The protocol
mechanism for retrieving these images needs to offer features like congestion control, flow control,
fragmentation and reassembly, and mechanisms to resume interrupted or corrupted transfers. It is
not CROSSCON's intention to work with specific network protocols but to be generic enough to work
with any network protocol out in the market.

 The capability to write the received firmware image to persistent storage (most likely flash memory).
 A manifest parser with code to verify a digital signature or a message authentication code (MAC).
 The ability to unpack, decompress, and/or decrypt the received firmware image.
 A status tracker.

Figure 7 shows the workflow of a typical firmware update process. This workflow is added in the use
case for informational purposes, other workflows where firmware updates are done in a different way
shall be also applicable to the future CROSSCON technical specification. The elements included in this
architecture are:

 IoT Device: The device using the CROSSCON stack.
 DM Server: The device management server, serving the manifest and other required data for

firmware download.
 Firmware repository: The shared repository where the binary images with the new firmware or the

patches are stored.
 Build server: The server required for building and signing the new firmware. This could be

subdivided into several components such as code repository, certification manager, signing server,
etc. but it is not relevant to the use case addressed here.

Document name: D1.4 Use Cases Definition Final Version Page: 23 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Figure 7: UC2 Typical IoT device firmware update process

The steps that are outside the scope of CROSSCON are added for completion, however, the CROSSCON
stack is not involved, so there are no derived requirements. It is important to mention that the use
case shall not be tied to specific network protocol implementations. The steps that are inside the scope
of CROSSCON are the ones that will end up in specific requirements for the stack that will help execute
the use case. The workflow contains the following steps shown in Table 2.

Table 2: UC2 Typical IoT Device Firmware Update Steps

Step Description Stakeholders involved

1 Build and sign
firmware

This first step is outside the scope of
CROSSCON. Here, the new image
firmware is created.

The firmware may consist of the firmware
image or software, described similar to
the firmware but typically dynamically
loaded by an OS. Also, the considered
firmware updates can be partial or full
updates.

The digital signature and MAC securing
the firmware image must be applied to
confirm that the firmware hasn´t been
corrupted.

The author is the entity that
creates the firmware image.

The TPA (either OEM or
ODM) distributes trust
anchors and authorization
policies.

Document name: D1.4 Use Cases Definition Final Version Page: 24 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

2 Validate
manifest

Here, the manifest is verified with
information like:

Does the firmware update apply to this
device? (Vendor ID, Class ID, Device ID).

Is the update older than the active
firmware? (Sequence number in the
manifest)

The TPA (either OEM or
ODM) provides information
such as Device ID and number
of the latest firmware to the
device operator.

The device operator validates
that the manifest is correct
with its device information on
the device management
server.

The user downloads the
firmware.

3 Generate
Unique ID

Finally, the IoT device should be able to
unpack and interpret a format,
decompress, and/or decrypt the received
firmware image. The firmware must have
a storage location and component
identifier and a status tracker. The new
configuration is then ready to start its use
on the IoT platform or other devices.

Users start to use the device
with the new firmware
update.

4.3 Threat Model

Many IoT devices do not have firmware upgrade capabilities, or their firmware upgrade process is not
secure enough, presenting a huge attack surface for DoS or privilege escalations attacks. In Table 3, we
have identified relevant attacks or threats, their impact, and a corresponding countermeasure.

Table 3: UC2 Threat Model

Relevant attack or threat Impact Countermeasure

Information access Firmware packages can present
valuable insight for an attacker

Firmware package encryption

Firmware sniffing protection

Firmware modification Can cause privilege escalations,
information leakage, or any type of
device malfunction

Firmware integrity protections

Identity theft Can cause a device to be updated by
an illegal entity

Firmware downloads channel
Authentication

Firmware signature
authentication

Firmware rollback Can cause the device to run a
previous vulnerable version

Firmware rollback protections

Denial of service - DoS Can cause the device to fail using
malformed updates or other
techniques

Fail-safe mechanisms (A/B)

Document name: D1.4 Use Cases Definition Final Version Page: 25 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

4.3.1 Firmware package encryption

Firmware package encryption can include encryption of the entire firmware package, or just specific
sections of it, such as the bootloader or configuration settings. The encryption key is typically stored
in a secure location on the device or on a separate authentication server and is used to decrypt the
firmware when it is loaded onto the device.

4.3.2 Firmware sniffing protection

Firmware sniffing protection can include measures such as encrypting the firmware, using code
obfuscation techniques, and implementing anti-debugging and anti-tampering measures.

 Encryption of firmware can be done using symmetric or asymmetric encryption algorithms, which
makes it harder for an attacker to access the firmware without the decryption key. Code obfuscation
is the technique of making the code difficult to read, which makes it harder for an attacker to identify
vulnerabilities.

 Anti-debugging and anti-tampering measures are designed to detect an attacker that is attempting
to debug or modify the firmware. These consist of techniques such as code signing, which ensures
that firmware comes from a trusted source, and checksums, which can be used to detect changes
to the firmware.

4.3.3 Firmware integrity protections

Firmware integrity protection can include measures such as code signing, checksums, and secure boot.

 Code signing is a process that uses digital signatures to ensure that the firmware comes from a
trusted source and has not been tampered with. The signature is generated using a private key and
can be verified using a public key. This ensures that the firmware has not been modified and is from
a trusted source.

 Checksums are a simple way to ensure that the firmware has not been modified. A checksum is a
mathematical value that is calculated based on the contents of the firmware. If the firmware is
modified, the checksum will change, and the device will be able to detect this change.

 Secure boot is a process that ensures that only firmware that is digitally signed and verified can be
loaded onto the device. This prevents malicious actors from installing unauthorized firmware on the
device. Secure boot can include several stages of verification, including verifying the signature of
the bootloader, the kernel, and the system firmware.

4.3.4 Firmware downloads channel authentication

Firmware download channel authentication can include measures such as digital signing, secure boot,
and secure communication protocols.

 Using secure communication protocols such as HTTPS, SFTP, or SSH is also important to ensure that
the firmware update is being transmitted securely over the network. This prevents attackers from
intercepting or tampering with the firmware update during transmission.

4.3.5 Firmware rollback protections

Firmware rollback protection can be accomplished by using techniques such as version numbers,
digital signatures, and secure boot. When a firmware update is released, it is typically given a unique
version number that is higher than the previous version. The device checks the version number before
installing the update and will only install the update if the version number is higher. This helps to
ensure that the device is always running the latest version of the firmware.

In addition to version numbers, digital signatures can be used to ensure that the firmware update is
authentic and has not been tampered with. The signature is generated using a private key and can be
verified using a public key. This helps to ensure that the firmware update is from a trusted source and
has not been tampered with.

Document name: D1.4 Use Cases Definition Final Version Page: 26 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

4.3.6 Fail-safe mechanisms (A/B)

A/B partitioning, also known as A/B updates or dual partition, involves creating two partitions on the
device's storage, usually called A and B, and keeping one partition active at a time. When a firmware
update is available, the device downloads and installs it on the inactive partition. Once the update is
installed, the device can then switch to the updated partition, thus making it active. This allows the
device to boot into the updated firmware, while keeping the original firmware intact in case something
goes wrong.

If the update causes any issues, the device can be rebooted back into the original partition, allowing
the user to roll back to the previous firmware version without losing any data. This technique can also
be used in other areas of device functionality, such as the bootloader, recovery, and system images,
allowing for a safer and more robust system.

4.4 Assumptions and Security Properties

There are several assumptions that are often made when it comes to firmware updates on IoT devices,
some of which include:

1. Firmware updates will be available: It is often assumed that firmware updates will be available
for IoT devices, either from the manufacturer or through third-party sources.

2. The device has an Internet connection: It is also assumed that the IoT device will have an
Internet connection, either through a wired or wireless connection, in order to download
firmware updates.

3. The device has the capability to install updates: It is assumed that the device has the necessary
hardware and software to install firmware updates, such as a bootloader, storage, and a
processor.

4. The device can be updated remotely: Many IoT devices are designed to be updated remotely,
without the need for physical access to the device.

5. The updates are secure: It is assumed that the firmware updates are secure and have been
properly authenticated and verified using the CROSSCON stack as trust anchor before being
installed on the device.

6. The device is able to maintain its functionality after the update: It is assumed that the device
will continue to function properly after a firmware update and that any new features or bug
fixes will not negatively impact the device's performance.

7. The device is able to communicate with other devices: In IoT, Device-to-Device (D2D)
communication allows devices to connect and communicate with each other directly, without
the need for a central hub or intermediary. This can lead to increased efficiency and reduced
latency, as well as increased security, as the data does not have to be transmitted over the
Internet or through a central server. It can also be used to:

a. Create ad-hoc networks, where devices can connect and communicate with each
other without the need for a pre-existing network infrastructure. This can be useful in
situations where a traditional network infrastructure is not available or is not feasible
to set up.

b. Create mesh networks, where devices can pass data along to other devices until it
reaches its destination. This allows for increased network coverage, and can also help
to increase network resilience, as data can still be transmitted even if one or more
devices in the network fail.

The security properties that we propose to be addressed within the scope of the CROSSCON project
and considering this use case are the following:

Document name: D1.4 Use Cases Definition Final Version Page: 27 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Secure Provisioning:

AA process that is used to securely provision keys and other security-sensitive data to IoT devices
during the manufacturing process. This can include the provisioning of encryption keys, secure boot
keys, and other credentials that are used to secure the device and protect it against unauthorized
access or modification. The CROSSCON stack could play a critical role here to ensure certain standards.

The secure provisioning process typically involves several steps, including:

● Secure generation of keys: The keys are generated using a secure key generation process, such
as a hardware security module (HSM) or a secure random number generator.

● Secure storage of keys: The keys are securely stored, either on the device or on a separate
secure server, in a way that ensures that they cannot be accessed or tampered with by
unauthorized parties.

● Secure transfer of keys: The keys are securely transferred to the device during the
manufacturing process, using secure communication protocols such as HTTPS, SFTP, or SSH.

● Secure installation of keys: The keys are securely installed on the device, and the device is
configured to use them for secure boot and other security-sensitive operations.

● Secure destruction of keys: Once the keys are installed on the device, the keys stored on the
server or other location are securely destroyed to prevent unauthorized access.

Isolated Execution:

AA security technique that is used to isolate the firmware update process from the rest of the system,
to prevent malicious actors from modifying or tampering with the firmware update.

Isolated execution can be achieved by using a separate processor or co-processor, a secure element,
or a secure boot process, to run the firmware update process. This ensures that the firmware update
process runs in a secure and isolated environment, separate from the rest of the system.

The firmware update process can include several steps such as:

● Firmware query: The device contacts a firmware update server to check if a new firmware
version is available.

● Firmware verification: The device verifies the authenticity and integrity of the firmware
update, using digital signatures and/or other forms of authentication.

● Firmware installation: The device installs the firmware update and configures the device to
use the new firmware.

Secure Storage, to store manifests and firmware package:

A technique that is used to securely store security-sensitive data, such as firmware packages and
manifests, to protect them from unauthorized access or modification. Secure storage can be achieved
by using a variety of techniques, such as encryption, secure boot, and secure communication protocols
as described in previous sections. Testbed Prerequisites

The following points are prerequisites for the testing of the firmware updates use case:

● Devices: Raspberry-P4 and Beaglebone AI-64 with the CROSSCON prototype stack will be used

● Firmware: Barbara OS, a secure Linux distribution, built from the Kernel, or real time OS such
as Free RTOS for smaller devices.

● DM Server: Barbara´s Device Management Server, hosted in Barbara Cloud

The following Figure 8 shows the testbed elements and its relationship:

Document name: D1.4 Use Cases Definition Final Version Page: 28 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Figure 8: UC2 Testbed Elements and Relationship

We also propose to build updates and the rest of the consortium partners can push them through the
DM Server. To check whether the update information is accessible and working as expected, an IoT
Server is required. It can be individual per partner or a common infrastructure (e.g., Azure or AWS IoT
Platforms.).

Document name: D1.4 Use Cases Definition Final Version Page: 29 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

5 UC3: Commissioning and Decommissioning of IoT devices

IoT Device Commissioning is the process by which connected devices acquire the necessary
information and configuration parameters for their intended use or application: this can include
security certificates, credentials, application configuration such as URLs, and others. Commissioning is
a critical step in the IoT device lifecycle, and it needs to happen before the device starts to perform its
regular operation.

As opposed, IoT Device Decommissioning is the process by which the commissioned information is
removed from the device. This way the device gets back to its original state when it will no longer be
used or used for a different purpose or customer. This is important, especially in the case of industrial
devices that may contain sensitive information.

Figure 9 shows a typical state diagram of an IoT device lifecycle around the commissioning and
decommissioning processes in a multi-stakeholder case, marking in red those processes which are part
of the use case addressed by CROSSCON in this project:

Figure 9: UC3 IoT Device Lifecycle Commissioning and Decommissioning Processes

Once the hardware is assembled, a Factory Line provisioning process is required. This happens in the
factory lines. Thereby, the device read-only memory is flashed with specific information that are
required for bootstrapping, such as:

● Serial Number

● Model Number

● Hardware version

● Bootstrap configurations (Server URI, Server CA Certificate)

Then, once the device is shipped to its owner, at first boot there is a second step of provisioning which
is the Application Commissioning, understood as the process that sets user-related configuration such
as:

Document name: D1.4 Use Cases Definition Final Version Page: 30 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

● Device Private Key

● Device Certificate

● Trusted Public Keys

● Application endpoints

● etc.

Once the Application Commissioning is done, the device should be able to communicate with IoT
Servers and other devices as expected. Application Commissioning presents in general more security
challenges than Factory Provisioning because Factory Provisioning is done in a controlled environment
(the Factory), while Application Commissioning is not. Therefore, this CROSSCON use case will focus
on how Application Commissioning and Decommissioning are done, however, this will need a sort of
simplified Factory Line Provisioning before the Application Commissioning.

In each state the name written in parenthesis shows the main stakeholder involved, and each process
includes the basic security properties used and the trust anchor typically used. The current solutions
in the market, especially for resource constrained devices, do not allow in many cases to generate
unique random keys per device in a multi-stakeholder environment. This ends up in many cases with
devices shipping with default and hard-coded credentials. Adversaries can have access to one device
and using brute force or privilege escalations attacks, steal device credentials and therefore gain access
to the wider footprint of devices in the field and escalate to higher impact attacks such as DDoS, as it
happened in the Mirai Botnet attack [11].

5.1 Scenarios Description

During the processes of commissioning and decommissioning, multiple stakeholders are involved and
may use the CROSSCON stack at different stages and in different ways. Similar to the previous use case,
these are defined in the bullet list below. Some of the stakeholders can be combined in one company,
or in other words, a company can have multiple combined roles in the commissioning and
decommissioning processes.

 OEM (Original Equipment Manufacturer): This is the company who is designing and
commercializing the devices to the end customers, and it is typically the “owner” of the factory
commissioned root of trust. OEM does not own manufacturing facilities.

 ODM (Original Device Manufacturer): This is the company that owns the manufacturing facilities
and does not typically own any data that needs to be commissioned in the device.

 Device Operator: the day-to-day operator of a fleet of IoT devices, or in other words the company
who buys the device to the OEM, and typically the owner of the application commissioned data such
as IoT Platform Credentials and so on.

 Trust Provisioning Authority (TPA): can be the original equipment manufacturer (OEM) or original
design manufacturer (ODM). It is responsible for the firmware update process of their products but
may decide to share to delegate rights to other stakeholders.

 User: This is the human person who is operating the device.

The way commissioning and decommissioning is done today in many IoT devices is not ideal from the
security point of view, and lead to several threats that are addressed in Section 7.3. Many devices have
hard coded or guessable IDs and weak credentials. This poses a constant threat to the IoT device.
Therefore, the ideal provisioning process downloads securely and dynamically the information from a
server, normally called bootstrap or device management server. This can be hosted by the Device
operator or the OEM on behalf of the Device operator.

The objective of this use case is to exemplify a secure commissioning and decommissioning process
which can be enabled by the CROSSCON stack.

Document name: D1.4 Use Cases Definition Final Version Page: 31 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

5.1.1 Application Commissioning

Application commissioning in the scope of CROSSCON will be done using a device management server.
The Device Management server must have the capability to securely produce keys and certificates that
will be delivered to the device during the commissioning process, however, this is outside the scope of
the use case. The pre-requisites for the Application Commissioning process are:

 There is Device Management Server that can serve the Application Provision information.
 The device has already gone through a Factory Provision performed by the ODM on behalf of the

OEM, which enables the device to communicate with the Device Management Server.
 The Commissioning process is triggered by the device operator using the Device Management Server

and starts the Device has network connectivity with the Device Management Server.

5.1.2 Decommissioning

Like the Commissioning process, the Decommissioning is performed using a Device Management
server. This doesn’t prevent the device from having other decommissioning processes (for example,
automatic decommissioning if suspicious activities are detected), but this would be outside the scope
of the use case.

The prerequisites for the Commissioning process are:

● There is a Device Management Server that the device operator or the End User can use to send
a Decommissioning Request.

● The Decommissioning process is triggered by the device operator using the device
management server and starts when the device has network connectivity with the device
management server.

Document name: D1.4 Use Cases Definition Final Version Page: 32 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

5.2 Architecture and Workflow

Figure 10: UC3 Commissioning and Decommissioning Processes Workflow

Figure 10 describes the workflow including the commissioning and decommissioning processes. This
workflow is added in the use case for informational purposes, other workflows where commissioning
and decommissioning are done in a different way shall be also applicable to the future CROSSCON
technical specification. The elements included in this architecture are:

 IoT Device: The Device running the CROSSCON stack.
 DM Server: The Device management server.
 IoT Platform or Other Device: The elements that the device needs to connect to after a successful

commissioning process.

The use case and elicited requirements shall be generic enough to not force specific communications
between the IoT Device and the DM Server, IoT Platforms, or other devices. There are multiple network
protocols for this, such as MQTT, HTTP, COAP, LwM2M, etc.

The focus of the CROSSCON project is on the IoT device hardware/software stack that enables to
perform those communications securely, but that has to be independent from the communication
protocols chosen in each commissioning scenario. In other words, the use case has to be agnostic to
the protocol stack.

The steps that are outside the scope of CROSSCON are added for completion, however, CROSSCON
stack is not involved in them so there won’t be requirements derived. The steps that are inside the

Document name: D1.4 Use Cases Definition Final Version Page: 33 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

scope of CROSSCON are the ones that will end up in specific requirements for the stack that will help
execute the use case.

The workflow contains the steps described in Table 4.

Table 4: UC3 Commissioning and Decommissioning Workflow Steps

Step Description Stakeholders involved

1 Factory Device
Provisioning

Here, the initial device information, such
as serial number, device management
URL and related certificates, or other
information, is flashed into the device in
the factory line. CROSSCON stack will
enable secure provisioning of this data.
This will enable the device to
communicate first with the DM Server.

OEM provides information
to be provisioned.

ODM executes the factory
line provisioning.

2 Device
Configuration in
the DM Server

This step is outside the scope of
CROSSCON. Here, the information
required to start the application
commissioning of a specific device is set
up in the device management server. This
will include, at minimum, a Device ID that
the server can use to identify a specific
device after boot.

OEM provides information
such as Device ID and other
data to the device operator.

Device operator configures
the device Management
Server with that information.

3 Generate Unique
ID

The device at first boot, using the
CROSSCON stack, generates a unique ID
and send it to the Device Management
server using any secure communications
protocol (generally any, using two-way
TLS).

User boots the device for
first time.

4 Check ID This step is outside the scope of
CROSSCON. The DM Server identifies the
device and retrieves from its database, or
generates dynamically, the application
information that needs to be
commissioned to that device. This might
include, but not limited to, IoT Platform
certificates, URLs, and others.

None (this is automatic).

5 Decrypt, verify,
store

The device downloads the commissioning
information using any secure
communications protocol (generally any,
using two-way TLS) and decrypts, verifies,
and stores the information using the
CROSSCON stack so that it can be further
used by the device in its normal
operations.

None (this is automatic).

6 Remove
information

When decommissioned, the device uses
the CROSSCON stack to remove all
previously commissioned information,
both in the factory line provisioning as

The User or the device
operator triggers the
decommissioning process.

Document name: D1.4 Use Cases Definition Final Version Page: 34 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

well as the application commissioning, so
that it can’t be further used.

5.3 Threat Model

Commissioning and decommissioning are one of the most critical processes of the IoT device life cycle
in terms of security. A wrong designed or insecure commissioning or decommissioning process can
open big attack surfaces that will remain there for the whole operation life of the device.

Relevant attack or
threat

Impact Countermeasure

Information access If there is not enough randomness and
strength in the keys and algorithms used to
encrypt commissioning information at rest
or in transit, attackers can use brute force
attacks to access this information and steal
critical information such as private
certificates, keys, or credentials that can be
further used for eavesdropping, spoofing or
other high impact attacks. Considering
devices are unattended, and the capability
to perform brute force attacks will increase
with quantum computing, as quantum
computers speed up random number
generation and can reduce exponentially
the time to break a cryptography algorithm
This risk is currently medium but will
become high in the short-term future.

Data encryption at rest.

Data encryption in transit.

Configuration
modification

If the authentication and authorization
process between the device and the device
management server is vulnerable, an
attacker can impersonate the DM Server
and send wrong configurations to devices
which can lead to DoS or similar attacks.
Since this can significantly impact all devices
without requiring physical access to them,
the risk is high.

Device unique and secure
identities.

Device to server 2-way
authentication and
authorization.

Data integrity mechanisms.

5.4 Assumptions and Security Properties

The following security properties are expected in the device’s the security stack:

 Secure Provisioning, for provisioning keys in the factory during the Factory Line provisioning.
 Isolated Execution, for executing the commissioning and decommissioning logic.
 Secure Storage, to commissioning information, that has to be deleted once decommissioned.

5.5 Testbed Prerequisites

To test the device commissioning and decommissioning use case, Raspberry-P4 and Beaglebone AI-64
with the CROSSCON prototype stack will be used. Additionally, more resource constrained devices can

Document name: D1.4 Use Cases Definition Final Version Page: 35 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

be also tested to ensure CROSSCON benefits are maximized through different classes of devices. The
information to be commissioned/decommissioned in the use case will be URL and certificates to access
an IoT Server.

Apart from the devices, the following elements will be needed:

 Device Management Server: while there are a number of DM Servers out there, Barbara will provide
free of cost to the consortium partners a license of Barbara Panel, a secure device management
server that can be used in SaaS model, meaning that it does not require any hardware installation
by partners. Barbara Panel uses secure MQTT to manage IoT devices in the field.

 IoT Server: once commissioned, it is important to be able to check the commissioned information is
accessible and working as expected. In order to do this, an IoT server is required, such as AWS or
Azure.

Figure 11 shows the UC3 testbed elements and their relationship:

Figure 11: UC3 Testbed Elements and Relationship

Document name: D1.4 Use Cases Definition Final Version Page: 36 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

6 UC4: Remote Attestation for Identification and Integrity
Validation of Agricultural UAVs

Agricultural UAVs (Unmanned Aerial Vehicles), also known as agricultural drones, are becoming an
increasingly important tool in modern agriculture. These UAVs are equipped with sensors and cameras
that can gather data on crops and soil, allowing farmers to make more informed decisions about
planting, fertilization, irrigation, and pest control.

Some of the benefits of using agricultural UAVs include:

• Improved efficiency: UAVs can cover large areas of farmland quickly and accurately, reducing
the time and cost of traditional methods such as manual labour or satellite imaging.

• Precision agriculture: UAVs can provide detailed, high-resolution data on soil moisture,
nutrient levels, and plant health, enabling farmers to apply fertilizers, pesticides, and water
precisely where they are needed, reducing waste and increasing yields.

• Reduced environmental impact: By providing farmers with precise data, agricultural UAVs can
help reduce the amount of pesticides and fertilizers that are applied to crops, minimizing their
impact on the environment.

• Increased safety: UAVs can be used to monitor crops and livestock without putting farmers at
risk of injury or exposure to hazardous chemicals.

While agricultural UAVs offer many advantages, they also pose some security-related challenges that
need to be addressed such as:

• Privacy concerns: Agricultural UAVs can gather a large amount of data on crops, soil, and other
aspects of farmland, raising concerns about privacy and data security.

• Unauthorized access: Agricultural UAVs can be stolen, hacked or used for malicious purposes
if they fall into the wrong hands, potentially causing damage to crops, property, or even human
life.

• Legal and regulatory compliance: Agricultural UAVs are subject to a range of regulations and
restrictions, such as registration requirements, flight restrictions, and privacy laws, which can
be complex and difficult to navigate.

Addressing these challenges is not an easy task especially when the UAVs can be operated by third
parties, do not have a permanent internet connection and are geographically scattered (large
scalability), and require a comprehensive approach that involves technological solutions, such as
Remote attestation for identification and integrity validation.

6.1 Scenarios Description

Here we are considering the use of agricultural UAVs entirely dedicated to vineyard protection in big
Swiss wine fields. In this use-case, the company who is manufacturing and managing the drones offer
two types of services to its clients:

• Direct intervention: where the devices are operated by the manufacturer according to a
mission co-designed with the vineyard owner. This service can be quite costly as it involves
the travel and operation of the company employees to perform the necessary treatment.

• UAVs loan: where the vineyard owner is given a training on how to operate the device so he
can use it autonomously during a pre-defined period of time and give it back after its
completion.

In both cases, the UAVs are shared resources and are used for multiple different vineyards, that’s
why identification and integrity checks are very important to detect any SW or HW tempering,
potentially done by a malicious user.

Document name: D1.4 Use Cases Definition Final Version Page: 37 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Figure 12: UC4 Remote Attestation of Agricultural UAVs Overview

Figure 12 illustrates a high-level view of the UC4 scenario description. The devices manufacturer can
benefit from remote attestation to perform the following checks:

1. Fleet Identification and authentication to ensure communication with a vetted device and not
with an imposter and deny take-off of devices known to have issues / have not been cleared
after maintenance.

2. In-Flight Software Integrity Validation: Recurrent validation of the system parameters to
ensure integrity and compliance with strict regulations and if possible, to ensure the UAV does
not deviate from the prescribed path and altitude.

3. Hardware and Software Tampering Detection: the drones are not necessarily operated by the
manufacturer that needs a way to remotely ensure that his device is not tampered with.

6.2 Architecture and Workflow

Any of the aforementioned security checks should be executed by a trusted party, but as the
confidentiality of the UAV in question is the system that is being validated, it cannot be trusted to
perform these tests itself. Hence, an external party (called the Verifier) will be used to attest the status
of the UAV remotely. Using Remote Attestation, the status of the UAV at any moment in time can be
attested with a remote verifier, which will request the UAV to prove to it that it is currently in an
authorized operational state.

6.2.1 Fleet Identification and Authentication Workflow

For example, any checks related to Fleet Identification and authentication follow a workflow similar to
that of UC3, regarding commissioning and decommissioning of IoT devices, as illustrated in Figure 13.

https://docs.google.com/document/d/1a9IXPnO-O32QVbUxHbHFac4dEmF3y8VQ/edit#heading=h.1mrcu09

Document name: D1.4 Use Cases Definition Final Version Page: 38 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Figure 13: UC4 Fleet Identification and Authentication Workflow

Before launch, a list of the Remote Attestation measurements is loaded into the verifier, to which it
will attest any remote attestation requests from the UAVs. Afterwards, when the operator wants to
launch the drone, the UAV must request the verifier to provide a positive attestation report before it
is allowed to start the take-off procedure. This could be achieved by, for example, encrypting the
partition in which the take-off procedure is loaded, with only the verifier who has the decryption key.

When the verifier receives an attestation request, it first checks if the ID provided with the request
matches any of its known IDs. If so, the verifier challenges the UAV to generate a Remote Attestation
based upon the current status of the system, and to send it back to the verifier. Next, the verifier checks
whether the measurements within the generator Remote Attestation report fit the pre-loaded
measurements for this specific ID and sends a reply whether or not the Remote Attestation has been
completed successfully, or whether the current status of the UAV is refused. If the attestation reply is
positive, the launch authorization is forwarded to the operator to indicate that the attestation was
accepted, and that the device is ready for launch (e.g., because the UAV was able to decrypt the
partition containing the code for the take-off procedure). If, however, the Remote Attestation is
refused, the UAV forwards the refusal to the operator and remains stationary.

6.2.2 In-Flight Software Integrity Validation Workflow

In a similar manner, using a recurrent remote attestation system that can be triggered by
predetermined events, the status of the UAV can be verified while in-flight. The workflow for this
specific scenario is illustrated in Figure 14:

Document name: D1.4 Use Cases Definition Final Version Page: 39 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Figure 14: UC4 In-Flight Software Integrity Validation Workflow

Unlike the scenario described in Figure 14, the Remote Attestation request is not triggered by the
operator of the UAV, but rather by the UAV itself: If a certain predefined chain of suspicious events
occurs, e.g. GPS points that are outside of the regulated airspace, and/or a certain amount of time has
elapsed since the last Remote Attestation, the UAV starts a similar verification request as for the Fleet
Identification and authentication. Afterwards, the UAV checks whether or not it received a positive
reply from the verifier. If it did, the operations resume and the UAV resets the timer for the recurrent
Remote Attestation procedure. If, however, the verifier refuses the attestation from the UAV, the
manufacturer can implement actions to be undertaken to safely halt all operations of the UAV. As this
depends on the requirements of the manufacturer, these final operations are outside of the scope of
the CROSSCON stack.

6.2.3 Hybrid Tampering Detection Workflow

Lastly, the UAV manufacturer would like to ensure that their drones are not tampered with, neither in
terms of software, nor hardware. After all, if an operator that is leasing the UAV from the manufacturer
decides to replace one of the sensors and/or motors with a replacement that is not vetted or qualified
by the manufacturer, this can cause significant risks in terms of safety and liability.

To avoid this, the Remote Attestation procedures introduced in both sections 6.2.1 and 6.2.2 will need
to be capable of not only measuring the software state of the UAV, but also the state of the hardware
of the system, including but not limited to:

Document name: D1.4 Use Cases Definition Final Version Page: 40 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

• Status of any connected actuator (e.g., motors, spray nozzles, etc.).

• Status of any connected sensor (e.g., GPS, camera, etc.).

• Verification whether all hardware parts required for nominal operation are present.

• Verification whether any unauthorized hardware is inserted (e.g., USB sticks).

These measurements would be performed during the procedures introduced in sections 6.2.1 and
6.2.2, their workflows would not change depending on the type of measurement performed.

6.3 Threat Model

Agricultural UAVs are vulnerable to a range of cybersecurity threats that can compromise the
confidentiality, integrity, and availability of data and systems.

In our use-case the attacker can be a malicious client or a third-party who managed to get
unauthorized access to the UAVs (at the manufacturer premises, at the client premises, during
operation…). The attacker can also be an ill-intentioned employee of the manufacturing company.

Here are some of the most common cybersecurity threats that the agricultural UAVs can be suggested
to within the scope of our use-case.

Threat Description Impact

Malware injection The UAVs can be infected with
malware, such as viruses, worms, and
trojans propagated through
vulnerabilities in the UAV's software
or firmware, phishing attacks, or
physical access to the UAV's
hardware.

Once the malware is injected into
the UAV's system, it can perform
various malicious activities, such as
taking control of the UAV's flight
path, stealing sensitive data, or
causing the UAV to malfunction or
crash.

Data interception The data collected by agricultural
UAVs, such as images and sensor
readings, can be intercepted by
attackers during its transmission to
the ground control system. The
attacker can intercept the data by
eavesdropping on the communication
channel or by hacking into the
communication network. The
intercepted data can include sensitive
information such as the UAV's
location, altitude, speed, camera
footage, and other sensor data.

The intercepted data can be used for
malicious purposes such as
espionage, theft, or sabotage. For
example, the attacker could use the
UAV's camera footage to spy on the
farm owner's activities or steal
valuable crop data. They could also
use the intercepted data to take
control of the UAV and manipulate
its flight path or payload.

Unauthorized
access

Agricultural UAVs can be accessed by
unauthorized individuals who gain
access to the UAV's system without
the owner's knowledge or consent.
The attacker can use various methods
to gain unauthorized access to the
UAV's system, such as exploiting
vulnerabilities in the UAV's software
or firmware, stealing login credentials,
or physically accessing the UAV's
hardware.

The attacker can manipulate the
UAV's flight path and cause it to
crash, resulting in damage to the
UAV and potential harm to people
and property. Additionally, the
attacker can steal sensitive data such
as the UAV's location, altitude,
speed, camera footage, and other
sensor data, which can compromise
the owner's privacy and business
operations.

Denial-of-service
attacks

Agricultural UAVs can be targeted by
denial-of-service (DoS) attacks that

DoS attacks can render the UAV
unable to perform its intended

Document name: D1.4 Use Cases Definition Final Version Page: 41 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

can occur when an attacker floods the
UAV's communication network with
traffic or exploits vulnerabilities in the
communication protocols to overload
the UAV's system resources, making it
unable to transmit data or receive
commands from the ground control
system or other connected devices.

functions, leading to a loss of
productivity and revenue for the
farm owner. Additionally, it can
compromise the safety of the UAV
and the surrounding environment if
the UAV is unable to receive
commands to avoid obstacles or
respond to emergencies.

GPS jamming Agricultural UAVs rely on GPS
technology to navigate and collect
data, but this technology can be
jammed when an attacker uses a
jamming device to broadcast radio
signals that interfere with the GPS
signals received by the UAV. This
attack can also be performed by
exploiting vulnerabilities in the GPS
receiver software.

GPS jamming can cause the UAV to
lose its GPS lock, resulting in a loss of
control and stability. Additionally, it
can cause the UAV to deviate from
its intended flight path, collide with
obstacles or other UAVs, or crash,
causing damage to the UAV and
potential harm to people and
property.

Physical attacks Physical attacks on UAVs refer to any
physical manipulation or damage done
to the UAV, either intentional or
accidental. Physical attacks can
include physical tampering with the
UAV's hardware, such as removing or
replacing components, cutting wires,
or applying destructive forces such as
heat or pressure.

Physical attacks can result in the
destruction of the UAV, leading to
significant financial losses for the
owner. It can also cause damage to
property or people in the
surrounding area if the UAV is out of
control.
Physical attacks also facilitate the
performance of all the previous
attacks.

To mitigate these cybersecurity threats, agricultural UAVs need to be equipped with strong security
measures, such as encryption, authentication, and access controls. Remote attestation will not
mitigate all the attacks mentioned above but it will help with the detection of most of them at the
earliest stage.

6.4 Assumptions and Security Properties

To perform remote attestation on UAVs, the following security properties are required:

• Root of Trust: To perform remote attestation, the UAV must have a trusted root of trust that
can generate, and store cryptographic keys and certificates used for remote attestation.

• Secure Boot: To perform remote attestation, the UAV must have a secure boot mechanism
that verifies the integrity of the firmware and software components before they are loaded.

• Code and Data Integrity: To perform remote attestation, the UAV must have mechanisms in
place to ensure the integrity of the code and data loaded onto the UAV. This can be achieved
using digital signatures, checksums, or other cryptographic mechanisms.

• Secure Communication: To perform remote attestation, the UAV must have a secure
communication channel that can be used to transmit the attestation data to the remote
verifier. The communication channel must be encrypted and authenticated to prevent
eavesdropping and tampering.

Document name: D1.4 Use Cases Definition Final Version Page: 42 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

6.5 Testbed Prerequisites

The agricultural UAVs are based on the combination of a Raspberry Pi 4B and a Pixhawk 4 auto-pilot
system. This combined system can be simulated using a similar RPi with the following technical
specifications:

• 4 Gb of RAM.

• A GPS dongle used for the positioning of the UAV.

• A 4G LTE (Long-Term Evolution GSM connection) dongle, in order to provide internet to the
UAV.

• A 2.4G (2.4 GHz WiFi) dongle used to connect to the remote controller of the drone.

Within the UAV, the remote attestation service needs to be hosted inside a TEE or similar on the
Raspberry Pi and will connect to the remote verifier using the internet connection provided by the LTE
dongle. As such, in order to assess the functionality of the system in the testbed, this implementation
will have to be performed in a similar manner.

On the other end of the communication link, the verifier server, needs to be hosted on a routable and
remotely accessible server.

Document name: D1.4 Use Cases Definition Final Version Page: 43 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

7 UC5: Intellectual Property Protection for Secure Multi-
Tenancy on FPGA

Due to limitations in computational and memory capacity, many IoT nodes are limited in what kind of
workloads can be executed on them. Especially compute-intensive tasks related to, e.g., training and
inference of AI algorithms can be too heavy operations for IoT devices to handle themselves. There is
therefore a need to offload compute-intensive tasks to accelerator nodes that are accessible over the
network. In particular, FPGA-based accelerators offered by Cloud Service providers are here of interest,
as they offer the possibility for highly efficient computations of compute tasks optimised for the task
at hand.

To reduce the cost of such “FPGA as a service” offerings, it is highly desirable for the cloud service
providers to be able to provision the compute workloads of several different clients onto the same
FPGA fabric, thereby enabling multi-tenancy on the FPGA. A key question here is, how secure multi-
tenancy can be assured so that workloads of one tenant cannot have adverse effects on the workloads
of other tenants or the FPGA fabric itself and does not lead to unintended leakage of private
information processed on the FPGA.

One can distinguish between temporal and spatial multi tenancy. In temporal multi-tenancy, only one
client has access to the entire FPGA fabric at a time. Multi-tenancy is thus achieved through alternation
of the entire FPGA resource to different clients at different times. In previous work, TUDa has
developed a solution for secure temporal multi-tenancy. In the context of CROSSCON, however also
spatial multi-tenancy will be of high interest, as this allows clients to have access to FPGA-accelerated
services in parallel in a continuous manner. This is particularly important, e.g., for tasks related to
ongoing AI-based on-line inference. The goal of this use case is therefore to demonstrate secure spatial
multi-tenancy on an FPGA fabric offered as a cloud-based service. The particular challenge to be solved
here is related to the confidentiality of the proprietary IP to be provisioned on the FPGA: How can the
cloud service provider verify that the IP does not contain any malicious payloads potentially having
adverse effects on the FPGA or leading to data leakage of other tenants, while at the same time
preserving the confidentiality of the IP in order to protect the client’s intellectual property?

7.1 Scenarios Description

Individual Players:

 FPGA vendors (or platform vendors in general)
 Clients
 Cloud Service Provider (CSP)

Clients’ capabilities and goals: Clients may share physical resources on the cloud. We focus here on
FPGA clients only. They can be malicious and try to attack the platform or co-clients. The clients can
perform only remote attacks. We consider in this work package remote physical attacks only, which
are enabled due to the configurable nature of FPGAs and the fact that clients can freely configure cloud
FPGAs.

CSP’s capabilities and goals: CSP provides paid services for clients and allows them to rent computing
resources for a given time. Currently, CSPs allocate the entire FPGA resources to one client at a time.
This is known as temporal multi-tenancy. Nevertheless, since FPGA resources can be configured
partially, spatial multi-tenancy is feasible, i.e., FPGA resources can be split among several clients
simultaneously, and is likely to be adopted to maximize profit. Clients upload their workloads, including
applications and hardware designs and data, to be processed on the cloud. Unless security
countermeasures are in place, the CSP can access clients’ private or confidential data or designs.

Document name: D1.4 Use Cases Definition Final Version Page: 44 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

Figure 15: UC5 Intellectual Property Protection for Secure Multi-Tenancy on FPGA – A Workflow View

Figure 15 shows the workflow view of the UC5 scenario description, which will be presented in more
details in the next section.

7.2 Architecture and Workflow

First, the FPGA Vendor provides FPGAs equipped with a trust anchor (TA) to the CSP as shown in Figure
16. There are several options for how the trust anchor can be implemented. The trust anchor
functionalities are demonstrated in the workflow, while we discuss the different implementation
options at the end of this section.

Figure 16: UC5 Vendor-provisioned FPGA equipped with a trust anchor

When client A wants to run a proprietary design (IPA) on a cloud FPGA, it first rents the required FPGA
resources. Next, the client attests the integrity of the TA on the allocated FPGA using information made
available by the FPGA vendor (similar to attesting enclaves on a TEE). Then, the client exchanges a
session key with the TA to encrypt its IP design and sends the encrypted IPA to the FPGA. Note that the

Document name: D1.4 Use Cases Definition Final Version Page: 45 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

client does not have to communicate directly to the FPGA, the communications can be performed
through any device of the CSP. Figure 17 illustrates the steps above.

Figure 17: UC5 Client to cloud FPGA communications to upload a proprietary design (IP)

Once received by the TA on the FPGA, the TA decrypts the encrypted IPA and vets IPA using a virus
scanner to ensure no rogue circuits are included. If confirmed, the TA can configure IPA on the allocated
resources on the FPGA. Figure 18 illustrates the steps above.

Figure 18: UC5 Trust anchor’s steps to allocate an IP on the FPGA

Now, client B wants to rent enough FPGA resources to fit its proprietary design IPB. Client B follows the
same steps as demonstrated for client A. The TA decrypts the encrypted IPB, scans IPB to ensure no
rogue circuits are included. If confirmed, the TA can configure IPB on the allocated resources on the
FPGA. Figure 19 shows the multi-tenancy view of the two proprietary designs.

Figure 19: UC5 FPGA multi-tenancy view of two different clients’ proprietary designs (IPA, IPB)

Trust anchor functionalities. the trust anchor, which is implanted by the FPGA vendor in the FPGA
chip, should perform the following security functions:

Document name: D1.4 Use Cases Definition Final Version Page: 46 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

 Prove its integrity and authenticity to clients.
 Exchange secret session keys with clients for the encryption of their IP designs.
 Decrypt and verify the integrity of clients’ IP designs.
 Scan the clients’ IP designs prior to configuration on the allocated FPGA resources.
 Configure clients’ IP designs on the FPGA and prevent unauthorized read back of clients’ IP

configurations from the FPGA.

The trust anchor can be designed to be entirely implemented in hardware or can be implemented with
the help of HW-SW co-design. The hardware components of the trust anchor can be further
implemented as hardwired logic and reconfigurable logic to allow patching and updating. The
hardwired components constitute the root-of-trust on the FPGA and allow for extending trust to other
components (reconfigurable HW components as well as the SW components) of the trust anchor.

7.3 Threat Model

Recent research demonstrated remote physical attacks specific to the FPGA hardware on commercially
deployed cloud FPGAs. One of the attacks allows clients to potentially damage FPGAs hosted in the
cloud and consequently disable the computing resources of other clients. A malicious client can
perform such a denial-of-service (DoS) attack by only uploading a design circuit that drains an excessive
amount of current from the power supply of the FPGA until the whole platform stops functioning.
Further, side and covert-channel attacks have been demonstrated for different sharing scenarios, i.e.,
temporal and spatial multi-tenancy.

On the other hand, cloud FPGAs do not support client IP protection through IP encryption &
authentication. One of the main reasons is session key generation and management.

Our focus is mainly on the security issues of cloud FPGAs.

FPGA vendors are trusted players. Both CSP and clients trust the platforms delivered by the vendors.

The goal of a malicious client is to perform:

i. A denial-of-service attack on cloud FPGAs.

ii. A fault injection or side/covert channel attack based on power or thermal leakage on co-clients
on the same FPGA or other computing resources sharing the same power supply system.

A malicious client would only need to configure rogue IP designs containing delay sensors or power-
draining circuits to perform such attacks.

The goal of a malicious CSP is to gain access to clients’ data or private designs. The CSP can access the
client's data if no IP protection mechanism is enabled on the FPGA for remote clients.

7.4 Assumptions and Security Properties

To allow secure spatial multi-tenancy on cloud FPGAs, the following security properties are required:

 A trust anchor on the FPGA to support IP decryption, verification, configuration on the FPGA, and
protection after configuration.

 FPGA vendor support for remote secret key generation: To enable IP protection on cloud FPGAs for
different clients, each client needs to share a secret key with the allocated FPGA to decrypt and
verify the IP configuration's integrity before configuring the FPGA. Thus, FPGA vendors must support
remote secret key generation and provisioning on the FPGA such that a client can exchange a session
key with the pertinent FPGA.

 An up-to-date FPGA virus scanner: CSP must have access to a virus scanner to vet clients’ IP
configurations.

 Secure Communication: the CSP, the clients, and the FPGA vendors communicate with each other
over secure channels to transmit the attestation data to the remote verifier. The communication
channel must be encrypted and authenticated to prevent eavesdropping and tampering.

Document name: D1.4 Use Cases Definition Final Version Page: 47 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

7.5 Testbed Prerequisites

To prototype the FPGA trust anchor and the proposed workflow, an FPGA-SoC will be used to emulate
the setup. The trust anchor components will be implemented/emulated using the processing system,
i.e., the ARM cores, of the FPGA-SoC. We propose the use of Xilinx Zynq UltraScale+ MPSoC ZCU102
Evaluation Kit with the following features that would be sufficient to implement our trust anchor: A
quad-core Arm Cortex-A53 with TrustZone enabled and 4GB RAM.

Document name: D1.4 Use Cases Definition Final Version Page: 48 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

8 Conclusions

CROSSCON aims to develop a new, open, flexible, and highly portable IoT security stack that can
operate on various edge devices and multiple hardware platforms. This stack will enable essential
security mechanisms and trusted services, providing a consistent security baseline throughout the
entire IoT system.

We have presented the definition of the final use cases of the project, including two new use cases
UC4 and UC5. The final version of the use cases represents significant challenges of their application
domains and will serve to test, validate, and demonstrate the effectiveness of the CROSSCON stack
and its relevance from both industrial standpoint but also from the EC’s expected outcomes from the
call topic.

This document contributes to the completion of milestone MS3 on “First version of CROSSCON Open
Specification, Use Cases finalised.” The document also marks the finalisation of the T1.1 activities.

Document name: D1.4 Use Cases Definition Final Version Page: 49 of 49

Reference: D1.4 Dissemination: PU Version: 1.0 Status: Final

References

[1] https://onlinedocs.microchip.com/pr/GUID-3284C736-48C0-4FC5-ADCB-7AD4202EEEDB-en-US-
1/index.html?GUID-D9DEC4D8-FF32-49C6-A6FC-2E859837E417

[2] https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas

[3] https://pdfserv.maximintegrated.com/en/an/ChipDNA-Unclonable-Protects-Embedded-
Systems.pdf

[4] https://www.quicklogic.com/products/soc/eos-s3-microcontroller/

[5] https://www.gowinsemi.com/upload/database_doc/47/document/5c36e77302539.pdf?_file=da
tabase_doc%2F47%2Fdocument%2F5c36e77302539.pdf

[6] Brendan Moran, Hannes Tschofenig, David Brown, Milosch Meriac, "RFC 9019: A Firmware
Update Architecture for the Internet of Things", IETF, 2021

[7] Andrew Regenscheid, Karen Scarfone, “BIOS Integrity Measurement Guidelines”, NIST, 2011

[8] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig and E. Baccelli, "Secure Firmware Updates for
Constrained IoT Devices Using Open Standards: A Reality Check," in IEEE Access, vol. 7, pp.
71907-71920, 2019, doi: 10.1109/ACCESS.2019.2919760.

[9] A. Kolehmainen, "Secure Firmware Updates for IoT: A Survey," IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS,
Canada, 2018, pp. 112-117, doi: 10.1109/Cybermatics_2018.2018.00051.

[10] F. Ebbers, "A Large-Scale Analysis of IoT Firmware Version Distribution in the Wild," in IEEE
Transactions on Software Engineering, 2022, doi: 10.1109/TSE.2022.3163969.

[11] M. Antonakakis, T. April, M. Bailey, et al. “Understanding the Mirai Botnet” in the Proceedings of
the 26th USENIX Security Symposium, 2017, Vancouver, BC, Canada. ISBN 978-1-931971-40-9.
Open access at https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-
antonakakis.pdf

https://onlinedocs.microchip.com/pr/GUID-3284C736-48C0-4FC5-ADCB-7AD4202EEEDB-en-US-1/index.html?GUID-D9DEC4D8-FF32-49C6-A6FC-2E859837E417
https://onlinedocs.microchip.com/pr/GUID-3284C736-48C0-4FC5-ADCB-7AD4202EEEDB-en-US-1/index.html?GUID-D9DEC4D8-FF32-49C6-A6FC-2E859837E417
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas
https://pdfserv.maximintegrated.com/en/an/ChipDNA-Unclonable-Protects-Embedded-Systems.pdf
https://pdfserv.maximintegrated.com/en/an/ChipDNA-Unclonable-Protects-Embedded-Systems.pdf
https://www.quicklogic.com/products/soc/eos-s3-microcontroller/
https://www.gowinsemi.com/upload/database_doc/47/document/5c36e77302539.pdf?_file=database_doc%2F47%2Fdocument%2F5c36e77302539.pdf
https://www.gowinsemi.com/upload/database_doc/47/document/5c36e77302539.pdf?_file=database_doc%2F47%2Fdocument%2F5c36e77302539.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf

