

Root-of-Trust and Trusted Execution Environment Crosscon and (secure) friends 28th June 2024

Macarena C. Martínez-Rodríguez 1, Nicola Tuveri 2

¹ Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC-US, macarena@imse-cnm.csic.es

² Tampere University, nicola.tuveri@tuni.fi

Goal and Outline

Goal

Implementation of a hardware **Root-of-Trust** (RoT) for secure identity and cryptographic operations coupled with an open-source **Trusted Execution Environment** (TEE) to protect trusted applications.

Outline

- HW Root-of-Trust
- Components of the HW RoT
- SPIRS platform using programmable logic
- Integration with the TEE
- HW RoT Protection
- Software integration within TEE

Hardware Root-of-Trust

- Implementation of a hardware Root-of-Trust (RoT) for secure identity and cryptographic operations.
- RTL description of each module is technologically indepent.
- Each IP module is provided with AXI standard interface.
- All of them are compliant with the NIST test vector

[1] Rojas-Muñoz, L.F. *et al.* (2024). Cryptographic Security Through a Hardware Root of Trust. In: Skliarova, I., Brox Jiménez, P., Véstias, M., Diniz, P.C. (eds) Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2024. Lecture Notes in Computer Science, vol 14553. Springer, Cham. https://doi.org/10.1007/978-3-031-55673-9_8

Preliminary and final RoT

Physical Unclonable Functions (PUF)

- Constrained-resource architecture based on Ring oscillators.
- Functionality:
 - ID

HDintra	HDinter
0.03	47.5-48.5

TRNG

NIST Test 800-22 ✓	NIST Tests 800-90b ✓	AIS 31 Test ✓
--------------------	----------------------	---------------

- More compact.
- It includes countermeasures against Electromagnetics attacks.
- Performance evaluated under variations voltaje supply and temperature.

[3] Rojas-Muñoz, L.F.; Sánchez-Solano, S.; Martínez-Rodríguez, M.C.; Brox, P. True Random Number Generation Capability of a Ring Oscillator PUF for Reconfigurable Devices. Electronics 2022, 11, 4028. https://doi.org/10.3390/electronics11234028

^[2] Martínez-Rodríguez, M.C.; Rojas-Muñoz, L.F.; Camacho-Ruiz, E.; Sánchez-Solano, S.; Brox, P. Efficient RO-PUF for Generation of Identifiers and Keys in Resource-Constrained Embedded Systems. Cryptography 2022, 6, 51. https://doi.org/10.3390/cryptography6040051

AES

Functionality:

Symmetric cipher for data encryption and decryption.

- Architecture that implements 128/256 bits AES -ECB.
- AESAVS NIST ✓

• Includes **countermeasures** integrating a signature generator for fault injection attacks (FIA) and Leakage-Resilient Masking Scheme for sidechannel attacks.

[4] V. Zúñiga-González, E. Tena-Sanchez and A. J. Acosta, "A Security Comparison between AES-128 and AES-256 FPGA implementations against DPA attacks," 2023 38th Conference on Design of Circuits and Integrated Systems (DCIS), Málaga, Spain, 2023, pp. 1-6, doi: 10.1109/DCIS58620.2023.10336003.

Functionality: hashing function

• SHA-2:

- Architecture that implement all hash functions within the SHA-2 family.
- CAVP NIST ✓
- Enhanced arquitecture.

• SHA-3:

- Architecture for the Keccak function intended for use in the hash functions of the SHA-3 family.
- CAVP NIST

[5] E. Camacho-Ruiz, S. Sánchez-Solano, M. C. Martínez-Rodríguez and P. Brox, "A complete SHA-3 hardware library based on a high efficiency Keccak design," 2023 IEEE Nordic Circuits and Systems Conference (NorCAS), Aalborg, Denmark, 2023, pp. 1-7, doi: 10.1109/NorCAS58970.2023.10305448.

Digital Signature accelerator

Functionality:

HW acceleration of generation and validation of Digital signatures

- RSA accelerator:
 - architecture based on a Karatsuba modular multiplier.
 - NIST Test vector for RSA DS ✓
- EdDSA25519 accelerator:
 - architecture based on a 4-level Karatsuba modular multiplier.
 - Test Vectors provided by the RFC 8032 ✓

System Level protector (SLP)

- Functionality:
 - prevent FIA attacks across the entire system
- Architecture to detect
 - signal glitches
 - temperature and voltage out of range

[6] Potestad-Ordóñez, F.E.; Casado-Galán, A.; Tena-Sánchez, E. Protecting FPGA-Based Cryptohardware Implementations from Fault Attacks Using ADCs. Sensors 2024, 24, 1598. https://doi.org/10.3390/s24051598

Preliminary SPIRS platform

ETH

Final SPIRS platform (I)

Final SPIRS platform (II)

Area	#LUTs	118630
	#FFs	77173
	#RAM36	81
	#DSP	135
Genesys 2 occupation	LUTs (%)	58.21
	FFs (%)	18.93
	RAM36 (%)	18.20
	DSP (%)	16.07
Power (W)		2.578
Frequency (MHz)		50

Integration within the TEE

SPIRS TEE Design

- ☐ Based on the open-source project: **Keystone**
- ☐ GlobalPlatform TEE API
 - ☐ TEE Client API (v1.0)
 - ☐ TEE Internal Core API (subset of, v 1.1.2)
 - ☐ Reducing the gap between RISC-V and ARM ecosystems

HW RoT Protection

Software integration within TEE (I)

- Leverages the RoT Library for SPIRS Platform (v4.3)
 - 1. Developed in WP2
 - 2. Available at: gitlab.com/hwsec/lib_rot_spirs
 - 3. API for accessing HW RoT cores
 - Linux Userspace apps
 - SPIRS TEE Trusted Applications
 - 4. Includes a demo for:
 - AES
 - SHA2
 - o SHA3
 - EdDSA accelerator
 - PUF/TRNG

Software integration within TEE (II)

- Leverages the RoT Library for SPIRS Platform (v4.3)
- Allow TAs to access non-critical HW RoT cores
 - AES, SHA2, SHA3, EdDSA
- Maintain high level API
 - Same source used by a Linux application can be used from a TA
 - Low-level API changes only

```
MMIO_WINDOW win_sha3_512;
createMMIOWindow(&win_sha3_512, BASEADDR_SHA3_512, MS2XL_LENGTH);
sha3_512(buf_in_sha3_512, buf_out_sha3_512, length_sha3_512, win_sha3_512, 0);
closeMMIOWindow(&win_sha3_512);
```

- Published in SPIRS Keystone repository v1.6.0
 - Based on <u>PR#418@Keystone (upstream)</u>
 - Demo included in SPIRS TEE SDK repository

Questions & Answers

