
One for All and All for One:
GNN-based Control-Flow Attestation for Embedded Devices

Marco Chilese∗, Richard Mitev∗, Meni Orenbach†,
Robert Thorburn‡, Ahmad Atamli†‡, Ahmad-Reza Sadeghi∗

∗Technical University of Darmstadt, †NVIDIA, ‡ University of Southampton

Abstract—Control-Flow Attestation (CFA) is a security service
that allows an entity (verifier) to verify the integrity of code
execution on a remote computer system (prover). Existing
CFA schemes suffer from impractical assumptions, such as
requiring access to the prover’s internal state (e.g., memory or
code), the complete Control-Flow Graph (CFG) of the prover’s
software, large sets of measurements, or tailor-made hardware.
Moreover, current CFA schemes are inadequate for attesting
embedded systems due to their high computational overhead
and resource usage.
In this paper, we overcome the limitations of existing CFA
schemes for embedded devices by introducing RAGE, a novel,
lightweight CFA approach with minimal requirements. RAGE
can detect Code Reuse Attacks (CRA), including control-
and non-control-data attacks. It efficiently extracts features
from one execution trace and leverages Unsupervised Graph
Neural Networks (GNNs) to identify deviations from benign
executions. The core intuition behind RAGE is to exploit the
correspondence between execution trace, execution graph, and
execution embeddings to eliminate the unrealistic requirement
of having access to a complete CFG.
We evaluate RAGE on embedded benchmarks and demonstrate
that (i) it detects 40 real-world attacks on embedded software;
(ii) Further, we stress our scheme with synthetic return-
oriented programming (ROP) and data-oriented programming
(DOP) attacks on the real-world embedded software bench-
mark Embench, achieving 98.03% (ROP) and 91.01% (DOP)
F1-Score while maintaining a low False Positive Rate of 3.19%;
(iii) Additionally, we evaluate RAGE on OpenSSL, used by
millions of devices and achieve 97.49% and 84.42% F1-Score
for ROP and DOP attack detection, with an FPR of 5.47%.

1. Introduction
Remote attestation is a security service allowing an entity
(verifier) to verify the integrity (and authenticity) of the
software’s state on a remote computing system (prover).
Conventional static remote attestation schemes can only de-
tect attacks that manipulate the binaries [1], [2], [3], [4], [5],
[6], [7], [8], are unable to detect code-reuse attacks (CRAs),
such as control-data attacks and non-control-data attacks
(e.g., return-oriented programming attacks and data-oriented
programming attacks, respectively). Yet, these attacks have
increased significantly recently, especially on embedded de-
vices; examples are the remote execution vulnerability on

0x0a
0x0b
0x0c
0x0d
0x0b
0x0e

Execution
Trace

Execution
Graph

Execution
Embeddings

!2

!5

!4

!7

!3

!6

0x0a

0x0c 0x0b

!1

0x0d

0x0e

0x0f

0x0g

0x0a: [0.44,0.16, ...]
0x0b: [0.73,0.18, ...]
0x0c: [0.32,0.96, ...]
0x0d: [0.06,0.22, ...]
0x0e: [0.67,0.55, ...]
0x0f: [0.64,0.61, ...]

Figure 1. Correspondence between the recorded execution trace, the pro-
cessed execution graph, and the execution embeddings produced by RAGE’s
model. The preserved mapping between basic blocks, graph nodes and
embedding is highlighted in red.

Belkin’s IoT smart plugs1 [9], a remote access vulnerability
to 200 million cable modems2 [10], a privilege escalation
vulnerability in Linux firewall3 [11], and allowing malware
to bypass Samsung’s phones ASLR (Address Space Layout
Randomization)4 [12].
Related work limitations. Control-Flow-Attestation
(CFA) [13] schemes were proposed to overcome the
limitations of static attestation. However, current CFA
schemes suffer from several shortcomings: They typically
assume the availability of a large set of execution
measurements [13], [14], [15], [16], [17], [18], [19], a
complete Control-Flow Graph (CFG) [13], [14], [15],
[16], [17], [18], [19], [20], or specialized hardware [14],
[15], [16], [20]. The efficacy of approaches that require a
full CFG directly relates to the completeness of the used
CFG, which can only be approximated in practice [21],
[22], [23], [24], [25], [26]. Although novel CFG extraction
approaches improved on the approximation [26], extracting
a complete CFG remains an open problem. Further, existing
attestation approaches based on machine learning have
limitations, such as reliance on a-priori measurements and
the need for prior knowledge of the system’s internal state
(e.g., memory, code) [27], [28], [29]. Moreover, specialized
hardware is not feasible for off-the-shelf devices.
Research Questions and Our Proposal. In order to over-
come the shortcomings of previous works, we aim to answer
1 CVE-2018-6692. 2 CVE-2019-19494, CVE-2019-19495
3 CVE-2022-25636 4 CVE-2023-21492, CVE-2023-2149

ar
X

iv
:2

40
3.

07
46

5v
1

 [
cs

.C
R

]
 1

2
M

ar
 2

02
4

the following research questions:
(RQ1) Is it possible to relax the assumption made by pre-

vious works about the availability of the complete CFG?
(RQ2) Is it possible to preserve the inner characteristics

of an execution trace while transposing it to a lower di-
mensional space (i.e., embeddings), leveraging a machine
learning (ML) algorithm?

(RQ3) Are the information extracted through a ML algo-
rithm (i.e., execution embeddings) fine grained enough to
separate benign executions from malicious ones?

(RQ4) Are the execution embedding changes (i.e.,
structure-wise or behaviour-wise) related to code reuse
attacks?

For thoroughly answering the research questions above,
we designed RAGE, a novel CFA scheme that addresses
the shortcomings of the existing CFA approaches; it does
not require access to the complete CFG, a wide set of
measurements, or specialized hardware. Our approach only
needs a minimal set, basically only one, of basic blocks’ ex-
ecution traces, not imposing any assumptions on the trace’s
completeness (coverage), or disclosing the memory content.
Moreover, due to its low overhead, RAGE is adequate for
deployment on embedded systems.
We overcome the limitations of previous works with an
efficient approach that traces the program execution at the
basic block level and utilizes an Unsupervised Graph Neural
Network (GNN) to discern between partial Control-Flow
Graphs of benign and malicious program executions. The
primary rationale behind RAGE is to exploit the subtle
relation between an execution trace, execution graph, and
execution embedding, as shown in Figure 1. This approach
results in a compact model which allows swift attestation.
Similarly to works which assume an (approximated) com-
plete CFG, RAGE works on incomplete execution graphs;
more concretely, it utilizes only one execution trace. How-
ever, by leveraging a deep unsupervised geometric model
— which learns the benign behavior of a program — we
can generalize over benign execution paths and identify
control-flow deviations (i.e., control-data and non-control
data attacks). We discuss this further in Section 7.
Our evaluation focuses on various embedded software,
which we evaluated with both real-world runtime attacks and
synthetic attacks. We evaluated a set of 40 real-world attacks
on embedded software, including return-to-libc and ROP
attacks from a version of RIPE5 framework [30] extended
by our industry partner. The results demonstrate precise
detection in a real-world scenario.
Since critical cryptographic operations typically rely on
standard libraries, we also evaluated OpenSSL6, which was
recently subject to remote-code-execution (RCE) attacks7

and non-control-data attacks8. To test the capabilities of
RAGE, we synthetically generate generic and stealthy ROP
and DOP attacks.
Finally, aligned with the state-of-the-art [19], we evaluated
a popular and representative embedded benchmark suite

5 github.com/hrosier/ripe64 6 wiki.openssl.org/index.php/Libcrypto API
7 CVE-2022-2274, CVE-2022-2068 8 CVE-2014-0160

Embench [31] that comprises 18 software packages, through
the use of synthetic ROP and DOP attacks.
Our Contributions. In summary our contributions include
the following:
• We introduce RAGE, a novel, lightweight CFA run-time

attestation mechanism based on unsupervised Graph Neu-
ral Networks (GNNs). It does not require the program’s
Complete Control-Flow Graph, memory content, code, or
a-priori measurements, preventing information leakage to
the verifier. Our approach has low computational com-
plexity in extracting features from an execution trace,
making it particularly suitable for resource-constrained
embedded devices.

• We show that Variational Graph Autoencoders (VGAEs)
are suitable for extracting rich graph embeddings that
preserve the control-flow behavior of the attested program.
Our scheme’s model can be trained effectively using just
one execution trace. To achieve this, RAGE finds the
correspondence between execution trace’s basic blocks,
execution graph’s nodes, and execution embeddings. This
allows RAGE to eliminate the need for a complete control-
flow graph compared to prior work.

• We show that RAGE recognizes real-world attacks, such
as ret2libc and return-oriented programming (ROP) at-
tacks. Further, RAGE demonstrates a high level of accu-
racy in detecting synthetic code-reuse attacks, including
ROP and data-oriented programming (DOP) attacks, on
a popular representative embedded benchmark suite, with
a F1-Score of 8.03% (ROP) and 91.01% (DOP) while
maintaining a low 3.19% FPR. Additionally, we evaluate
such synthetic attack on cryptographic libraries, achieving
97.49% (ROP) and 84.42% (DOP) with a FPR 5.47%.

2. Background
This section provides the background information necessary
for understanding our work.

2.1. Control-Flow Graph
A generic Control-Flow Graph (CFG) is the graph repre-
sentation of the steps traversed during a program execution.
More formally:

Definition 1. Given a program P , a CFGP is a
directed graph G = (V,E), where V is the set of
statements (i.e., nodes) and E ⊆ V × V is the set
of edges. A control flow edge from the statement si to
sj is e = (si, sj) ∈ E.

Further, it is necessary to distinguish between a complete
CFG (CCFG) and a partial CFG (PCFG):

Definition 2. A partial control-flow graph (PCFG) is
the control flow graph of a program P , executed with
input i ∈ I , where I is the set of all the possible inputs.
It is defined as:
PCFGP (i) = CFGP (i)(V

′, E′) s.t. V ′ ⊆ V , E′ ⊆ E,
where V and E are the nodes and edges set of
CCFGP .

github.com/hrosier/ripe64
wiki.openssl.org/index.php/Libcrypto_API

Definition 3. A complete control-flow graph (CCFG)
is the control flow graph of a program P , which
includes all the possible paths in P (i.e., for all the
possible inputs). It is defined as:

CCFGP =
⋃
i∈I

PCFGP (i).

Intuitively, given the non-finite nature of the input set I ,
and considering the halting-problem [32], practically, it is
not always possible to reconstruct a CCFG, as it falls under
the family of NP-hard problems [33]. In real-world, CCFGs
can only be approximated [21], [22], [23], [24], [25], [26].
More precisely, it is possible to build a CCFG only if a
program P does not contain any indirect jump, any indirect
branch, or any indirect call. Otherwise, it is impossible to
ensure that all execution paths have been discovered [34].
Recent works have shown that approximation approaches
are still far from generating near-to-complete CFGs. Specif-
ically, Rimsa et al. [34] showed that static and dynamic
analyses can be combined to generate more comprehensive
CFGs. However, they can only approximate up to 46%
of SPEC CPU20179. Zhu et al. [26] reported that previ-
ous approximation approaches missed, on average 34.9%
of basic blocks. Moreover, approximation techniques are
computationally intensive, requiring multicore CPUs, large
amounts of memory, and several hours of computation,
which are impractical, especially for resource-constrained
devices.

2.2. Control-Flow Attestation
Control-Flow Attestation (CFA) is a critical security service
to remotely verify the execution path integrity of a pro-
gram [13]. CFA involves creating a record of the instructions
sequence executed during the program’s run-time and then
using this record to verify that the program was executed
correctly. This method can detect run-time software attacks
or data input manipulation. CFA schemes have been pro-
posed as solutions in software, hardware, or a combination
of both (cf., Section 8).

2.3. Code Reuse Attacks
Code-Reuse Attacks (CRAs) are a type of run-time attack
that hijack the control flow of a program by using the
code segments already present in the program’s memory.
These attacks construct malicious code sequences, called
gadgets, by chaining them in a specific order, enabling
them to perform unauthorized actions such as program
interruption, data tampering, exfiltrate sensitive information,
or code execution. Remote-Code-Execution (RCE) attacks
are a subset of CRAs that have been growing in number and
complexity, accounting for 25% of all reported vulnerabil-
ities10. The most common type of CRA is return-oriented
programming (ROP) [35], where the attacker uses gadgets
chained together through return instructions. In the past,
many variations of ROP attacks were published, including
Jump-oriented programming (JOP) [36] or Load-oriented

9 www.spec.org/cpu2017/ 10 cvedetails.com/vulnerabilities-by-types.php

programming (LOP) [37], which all work similarly, only
distinguished by the type of instructions to link the gadgets.
Another type of CRA is non-control-data attacks [38], gener-
alized as Data-oriented programming (DOP) [39] where the
adversary manipulates the data stored in memory to change
the flow of execution.
ROP, JOP, LOP, and DOP attacks change the benign control-
flow of a program. However, DOP does not introduce
new edges in the program’s Control-Flow Graph (i.e., new
jumps), and are generally harder to detect.
Since the effect of ROP, JOP, and LOP attacks on the CFG
are very similar, we continue referencing this family of
control-data attacks as ROP attacks throughout this paper.

2.4. Graph Neural Networks
Graph Neural Networks (GNNs) are types of Neural Net-
works (NN) that work with graph-structured data [40], [41].
Specifically, GNNs are used as a component of Graph
Autoencoders (GAEs). GAEs are an unsupervised applica-
tion of GNNs that transform graphs into a low-dimensional
vector representation and then reconstruct the original graph
data from that latent representation (i.e., a set of features
that captures the underlying structure of data). Their usage
includes compression and encoding graph data and feature
extraction, a crucial task for graph generation in training.
2.4.1. Variational Graph Autoencoders (VGAEs)
VGAEs are a type of GAEs introduced by Kipf et al. [42],
which are inspired by traditional Variational Autoencoders
(VAEs) [43]. VGAEs combine the concepts of GAEs and
VAEs. Like GAEs, they encode nodes and graphs into a
low-dimensional vector representation (i.e., embedding or
encoding) and then reconstruct the original graph data from
that representation.
These types of models are trained by optimizing the vari-
ational lower bound L to approximate the true distribution
of the training data:
L = Eq(Z|X,A) [log p(A|Z)]− KL [q(Z|X,A) ∥ p(Z)] (1)

In the above equation, X represents the features matrix of
the nodes in the input graph, and A is the graph’s structure,
such as the adjacency matrix. On the other hand, q(Z|X,A)
represents the inference model, which is defined as:

q(Z|X,A) =

N∏
i=1

q(zi|X,A), with

q(zi|X,A) = N (zi|µi, diag(σ2
i))

(2)

where µ and σ are the output of graph convolutional
layers (ConvGNN). p(Z) depicts the Gaussian prior
p(Z) =

∏N
i=1 p(zi), where zi is the i-th element of the latent

space array captured in Z. KL, instead, is the Kullback-
Leibler divergence. Considering two probability distribu-
tions Q and P sampled from X , KL is defined as the relative
entropy, or the difference, from Q to P , that is:

KL(P ∥ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
. (3)

After the training process, the VGAE’s encoder is used to

www.spec.org/cpu2017/
cvedetails.com/vulnerabilities-by-types.php

obtain graph embeddings.
2.4.2. Graph Embeddings
To extract crucial, yet not accessible, information from a
graph G, we leverage the capability of VGAEs to extract
latent features from the data. The process of graph embed-
ding can be defined as follows.

Definition 4. Considering a graph embedding model
f and a graph G = (V,E), where V is the set of
nodes and E is the set of edges, we define ZG as the
embeddings of G. Z is the mapping of the original
high-dimensional irregular domain (i.e., the graph) to
a latent low-dimensional space, such that it is dense
and continuous:

ZG ∈ R|V |×L s.t. L≪ |V |.
The embedding model f can be defined as:

f : vi → zi ∈ RL

where vi represents a node in the original space and
zi represents its corresponding embedding in the low-
dimensional space, establishing so a direct link be-
tween the two spaces.

It should be noted that the node’s properties, such as their
structure, are preserved in the latent space, meaning that
nodes close in the original space will also be close to each
other in Z [44]. In our case, we utilize the VGAE model
to perform the embedding process, resulting in an array
EmbG ∈ Rn×L for a given graph G, where n is the number
of nodes in G.

3. System and Threat Model
Our system model comprises two primary entities, an un-
trusted prover device and a trusted verifier device. The
prover device is equipped with a root of trust, such as a
Trusted Execution Environment (TEE)11, which runs the
tracing program and ensures its integrity (cf., Section 5.1)
that cannot be compromised. Ultimately, an adversary can
tamper with the software executed in the prover, e.g., by per-
forming CRAs, but cannot manipulate the tracer, protected
by the TEE, which ensures the integrity of the collected
execution traces.
As we describe later our design in Section 4, RAGE requires
a minimal number of traces for its operation. More con-
cretely, it utilizes one known benign trace of the program’s
execution for training the model and, at attestation time, as
a reference, which we call trace0. The rest of the trace set
is called the validation set, used for defining the attestation
threshold (cf., Section 5.5). Subsequently, during each attes-
tation request, the verifier obtains a single execution trace
to verify against trace0. On every update of the software to
be attested, the verifier will receive one execution trace (i.e.,
new trace0) to retrain its model. Note that RAGE does not
impose any assumptions about the path completeness of the
generated (partial) CFG from trace0 (i.e., assuming that the
execution graph is falling under the definition of a PCFG).
11 In practice, TEEs exist on of-the-shelf devices such as TrustZone or
TrustZone-M, AMD SEV, Intel’s SGX/TDX.

We base the general design of the remote attestation scheme
on already established mechanisms [13], [19]. Analogously
to related works [13], [19], we deem the performance of
the tracer and its state-of-the-art implementation beyond the
scope of this paper. With this, our approach is independent
of the specific implementation of the tracer (either in soft-
ware or in hardware) and existing tools can be used, as
described in more detail in Section 5.1. Therefore, we aim
to reduce the computational and storage overhead on the
prover’s and verifier’s device.

4. RAGE Design
RAGE is a novel Control-Flow Attestation (CFA) scheme,
the first approach leveraging Graph Neural Networks to
accomplish run-time attestation. The VGAE model is a
powerful technique for learning data that can be represented
as a graph (i.e., graph-structured data). It can learn a com-
pact representation of the execution graph for identifying
deviations from benign patterns. This feature makes VGAE
an ideal tool for anomaly detection in graph-structured data.
We observed that unsupervised Graph Neural Networks and
CFGs have a natural link. More precisely, the model learns
the low-dimensional embeddings of the execution graphs
(cf., Figure 1), which capture the underlying structure and
patterns. Therefore, by combining these concepts, we can
discern between benign and malicious execution graphs
without the need for a CCFG. As shown in Figure 2, our
scheme consists of a (i) training phase (solid black arrow)
and (ii) attestation phase (dashed blue arrow).
Training Phase
The prover starts collecting a set of known benign program
execution traces (T1). The tracer only collects a list of
traversed Program Counter (PC) basic block, which provides
the information needed for reconstructing the execution
flow. At the same time this limited data collection prevents
information leakage to the verifier [45] (cf., Section 7.1).
The collected addresses are used in two steps: one trace
is used for training the VGAE model and the remaining
for calibrating the attestation threshold (cf., Section 5.5).
Initially, the prover transmits the traces securely to the ver-
ifier. The verifier preprocesses the traces into an execution
graph representation (T2), i.e., a PCFG, while extracting
descriptive features of the control flow, maintaining a natural
correspondence between basic block addresses and graph
nodes, as depicted in Figure 1.
Note that the verifier does not need any knowledge about
the code. Further, the preprocessing can also occur on the
prover side, both in software or, if available, on specialized
hardware to minimize data transmission (i.e., as shown
in Section 6.3, network overhead can be minimized when
representing traces directly as graphs).
Then, the verifier trains the VGAE model (T3) by optimiz-
ing the variational lower bound (cf., Section 2.4.1). With the
trained VGAE model’s encoder, the verifier extracts embed-
dings (cf., Definition 4) from the remaining trace set and
calibrates the attestation threshold (T4). The training phase
can also occur offline. The embedded software provider may
be a third party, separate from the vendor. It can also supply

0xff82f0c0
0xff82fb40
0xff82fd5c
0xff82fd74
0xff82ff50
0xff82ff68

Execution Tracing
Preprocessing

𝑣1

𝑣2

𝑣5

𝑣4

𝑣7

𝑣3

𝑣6

VGAE Model
Training

VGAE
Encoding

Threshold

t

Attestation

𝑑 ≤ 𝑡 T

F

Training

Inference

𝑉𝑎𝑙𝑠𝑒𝑡

Encoder Decoder

Emb0

Distance
Computation

∥ ∥
d

Training (Steps Ti)
Attestation (Steps Ai)

Z

… …

Emb

ෙ𝐻

Encoder

Execution Graph

Prover

T1

T2
T4

A1

A3

A4
A5

A2

T3

Figure 2. Overview of RAGE, including both the Training pipeline (carried out by the verifier) and the Inference stage (when attestation occurs).

the attestation model and the threshold to the vendor who
carries out the attestation. This removes the need to reveal
the initial traces to the vendor.

Attestation Phase
Now, once the training phase is completed, the attestation
protocol will run. Upon receiving the attestation challenge,
the prover traces one execution (A1), and preprocessing
occurs (A2). Afterward, the verifier extracts embeddings of
the execution graph through the previously trained VGAE
model’s encoder (A3) and measures the embedding distance
between the execution to attest and the training reference
execution (A4) through the Directed Hausdorff distance (cf.,
Section 4.2), which measures the (dis)similarity among the
executions. Finally, the output of the threshold test is used
to determine the attestation outcome (A5).
RAGE can detect unknown execution flow anomalies with-
out needing a reference CCFG or its execution measure-
ments (e.g., memory states), as it determines whether the
execution is benign through the analysis of the embeddings’
(dis)similarities.

4.1. Geometric Deep Learning Model
After considering numerous deep learning approaches and
models, we chose to adopt Graph Neural Networks, specifi-
cally a Variational Graph Autoencoder (VGAE) as the model
of choice in the design of RAGE, as depicted in Figure 3a.
The use of Graph Neural Networks is a novel and natural
association with programs’ execution traces, as these kinds
of data can naturally be represented as a graph. The VGAE
model is a powerful tool for graph representation learning
that combines the strengths of both Graph Autoencoders
(GAE) and Variational Autoencoders (VAE). GAEs learn
to encode graph structures into a lower-dimensional latent
space (i.e., embedding), while VAEs introduce a probabilis-
tic approach to generate new graphs by sampling from a
prior distribution (cf., Equation (3)). By integrating these
two frameworks, VGAEs generate new graphs and provide
a probabilistic encoding of the input graph.

The encoder component of the VGAE is essential for this
purpose, as it is responsible for mapping the input graph
to the latent space. The encoder architecture that was se-
lected after the model selection process comprises three
graph convolutional layers (ConvGNN) with varying output
channels (15 → 32 → 64 → 48). Each convolutional layer
is followed by a ReLU activation function that introduces
non-linearity to the model. Additionally, two dropout layers
(with p = 0.3) were used to regularize the model and prevent
overfitting.
The final output of the encoder is then passed to two
ConvGNN layers that reduce the dimensionality of the
encodings (48 → 24). These layers are defined as µ and σ
(cf., Equation (2)), which are used to create the probability
distribution for the latent space. This allows the model to
generate new graphs by sampling from this distribution. The
decoder component is a standard inner product decoder [42]
which is used to reconstruct the input graph. Notably, the
total number of parameters for the entire model is 8, 128,
which is relatively small, making the model suitable for edge
devices.

4.2. Graph Encodings Distance
Since different executions may involve a different number
of steps (i.e., nodes), the embeddings obtained from RAGE’s
model may likely have varying sizes (i.e., embbenign ∈ Rn×L

and embattest ∈ Rm×L , where n ̸= m ∨ n = m, and L is
the number of extracted features). As such, it is necessary
to employ a metric that can facilitate this comparison.
For this purpose, we have selected the Directed Hausdorff
distance (qH) [46].

Definition 5. qH captures the distance between two
point sets, A and B, by taking the maximum of the
distances between each point x ∈ A to its nearest

!3

…

…

…

"

#

GNN
layers

ReLU

$1

$2

$5

$4

$7

!1

!7
!6

!2!4

!5
$3

$6

%1
%2

%'
…

$1

$2

$5

$4

$7

$3

$6

Sample

Encoder

Decoder
AA and X

%1
%2

%'
… %1 %2 %'…* *'()

*

*(
Π

1 2 m
1
2

m

…

…

Inference
Sampling

Variational Graph Autoencoder (VGAE)

(a) Variational Graph Autoencoder (VGAE).

𝜇𝜎

ReLU

…

p = 0.3

p = 0.3

ReLU

Dropout

Dropout

GCNConv(15, 32)

GCNConv(32, 64)

GCNConv(64, 48)

GCNConv(48, 24) GCNConv(48, 24)

E
nc
od
er

…

…

… …

(b) Our designed VGAE encoder.

Figure 3. (a) Graphical representation of the Variational Graph AutoEncoders (VGAEs) structure. In the figure, the graph structure (i.e., graph connectivity
in coordinate format - COO) is denoted as A, the features of each node are X , and Z represents the latent variables. The operator ∗ represents the matrix
product and ϕ(·, ·) is the activation function. (b) Representation of the encoder designed for the Variational Graph Autoencoder (VGAE) utilized in RAGE.
The decoder is not represented (i.e., the standard inner product decoder [42]). The overall number of parameters for the entire model is 8, 128.

neighbor y ∈ B:

qH(A,B) = max
x∈A

(
min
y∈B
∥ x, y ∥

)
.

where ∥ ·, · ∥ represents any norm (e.g., euclidean
distance).

As from Definition 5, qH can handle sets with different
cardinalities. Other approaches, such as averaging pure L2-
norms (i.e., euclidean distances) are not applicable in our
scenario. Averaging would result in a misleading distance
metric, as the result would be impacted by most nodes
having a close-to-zero distance to the reference benign trace.
This would lead to an increased number of false-negatives.

5. Implementation
In the following sections we delve into the specific tech-
niques and methods used to carry out the key steps of
RAGE, emphasizing the significance of each in the model’s
performance.

5.1. Tracing and Data Collection
In the following, we describe the methodology employed by
our industry partner for data collection in embedded devices.
We Use DynamoRIO [47] to dynamically instrument prover
programs. Precisely, our tracing prototype instruments a key-
exchange application executing on a BeagleBone Black12

with an AM335x 1GHz ARM Cortex-A8 processor. Further,
we consider a popular cryptographic library executing on
a Xilinx Ultrascale+ ZCU10213 with an ARM Cortex-A53
processor. The CPUs have a 32-bit and 64-bit instruction set
architecture, respectively. The Embench software and the 40
RIPE executions are traced on an NVIDIA Jetson TX2 NX14

equipped with a Dual-core NVIDIA Denver 2 64-bit CPU
and a quad-core ARM Cortex-A57 CPU.
The instrumentation captures the execution path of the
programs in basic-block (BBL) granularity. The execution
12 https://beagleboard.org/black

13 www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
14 https://developer.nvidia.com/embedded/jetson-tx2-nx

path is a single path of the respective Complete Control-
Flow Graph (CCFG) and represents a single execution of an
application. Moreover, as our prototype performs dynamic
instrumentation on the binaries, it traces the applications
and all the loaded libraries. Thus, it does not introduce in-
teroperability issues with legacy non-instrumented libraries,
nor it requires the source code to be available upfront.
This approach is applicable to any firmware and software
which compiles to binary. Finally, each visited BBL address
is stored in a trust anchor isolated to be protected from
adversarial tampering. The executed BBLs’ addresses are
transmitted securely to the verifier. RAGE performs dynamic
binary translation to trace control flows of processes in
the normal world and stores them in the secure world.
To achieve a representative set of execution flows (i.e., a
high code path coverage) we traced the applications using a
mutation-like fuzzing paradigm. Specifically, we start from a
corpus of hand-crafted values and introduce random bit flips
to change the input while observing traces that result in new
execution paths. After the initial tracing for model training,
the same tracing prototype is used to capture the execu-
tion path of programs invocation under potential adversary
control. Using the same tracing approach for training and
inference, we reduce dependencies and data manipulation
requirements that improve the verification throughput.

5.2. Datasets
We evaluate RAGE on (i) a popular benchmark suite for
embedded devices, Embench [31], (ii) the embedded cryp-
tographic library OpenSSL as well as Diffie-Hellman key
exchange, (iii) a set of 40 real-world attacks on embedded
software, and (iv) a set of synthetically generated control-
flow attacks for the first two datasets. All applications are
implemented in C/C++. The data collection methodology is
described in Section 5.1 and the extracted dataset statistics
are reported in Table 1. We traced the applications for a
minimum of 99 times, with different arguments (cf., Sec-
tion 5.1) to acquire a representative set of execution paths,
which are used in turn to train and evaluate RAGE. We will

https://beagleboard.org/black
www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://developer.nvidia.com/embedded/jetson-tx2-nx

evaluate RAGE on a combined dataset size of around 1TB.
5.2.1. Embedded Platforms Dataset
To assess the applicability of RAGE in the context of
resource-constrained devices, we build a dataset by tracing
the benchmarks in Embench [31]15, a representative suite of
18 benchmarks for embedded devices. The benchmarks are
meant for embedded devices, the length of the traces varies
between 112k steps up to 657k steps. The traced benchmark
counts approximately 2k nodes and 2.4k edges.
5.2.2. Cryptographic Dataset
We also evaluate mature encryption algorithms implemented
in the OpenSSL v1.1.1f16 library which are typically used
by embedded devices for maintaining data confidential-
ity. Specifically, we implemented a wrapper application in
C/C++ that encrypts 1KB block with 56-bit DES, 64-bit
DES-X, 64-bit GOST and 128-bit AES using randomly
generated keys. The tracing of these applications resulted
in trace lengths of 13M−16M execution steps with approx-
imately 9k edges and 7k nodes. Additionally, we include
the popular Diffie–Hellman key exchange algorithm17 in the
analysis. While this implementation is relatively simple, its
trace length is approximately 223k execution steps long with
around 2k edges and nodes. Note that, prior work on CFA
for embedded devices, e.g., C-Flat [13] and BLAST [19]
evaluated on the Open Syringe Pump library with just 332
edges. Thus, we consider our datasets to be much more
complex.

TABLE 1. FOR EACH DATASET, THE NUMBERS ARE REPORTED AS
mean±std. # EXE. INDICATES THE NUMBER OF TRACED EXECUTIONS.

TRACE LEN. INDICATES THE LENGTH OF THE TRACED EXECUTIONS
(I.E., AMOUNT OF EXECUTION STEPS).

Dataset # Exe. Trace Len. # Nodes # Edges Degree
Diffie-Hellman 1000 2.23× 105±6.01 × 103 1921±7 2295±9 2±0

DES 260 1.44× 107±2.26 × 103 7194±3 9361±3 3±0

DESX 260 1.47× 107±3.00 × 103 7386±2 9677±3 3±0

GOST 260 1.36× 106±2.35 × 103 7211±52 9301±71 3±0

AES 260 1.62× 106±1.50 × 103 7140±7 9217±9 3±0

aha-mont64 99 3.98× 105±41 1539±12 1783±12 2.3±0

statemate 99 1.45× 105±2.2 × 102 1575±25 1822±26 2.3±0

primecount 99 1.78× 106±3.1 × 102 1533±19 1786±21 2.3±0

sglib-combined 99 6.57× 105±36 1763±1.6 2110±1.8 2.4±0

minver 99 1.12× 105±82 1565±1.7 1831±1.7 2.3±0

edn 99 3.84× 105±18 1586±1.7 1848±1.8 2.3±0

crc32 99 5.4× 105±3.4 × 104 1516±16 1760±17 2.3±0

matmult-int 99 4.2× 105±3.4 1561±1.6 1819±1.9 2.3±0

picojpeg 99 4.4× 105±33 1807±1.6 2148±1.8 2.4±0

md5sum 99 3.42× 105±3.1 × 103 2002±2.0 2319±2.6 2.3±0

nsichneu 99 7.87× 105±62 2152±1.7 2399±1.9 2.2±0

wikisort 99 2.27× 105±1.1 × 102 1680±1.6 1996±2.1 2.4±0

tarfind 99 1.7× 105±95 1544±20 1791±21 2.3±0

huffbench 99 5.13× 105±2.9 × 104 1641±17 1929±19 2.4±0

cubic 99 1.6× 105±15 1881±1.7 2232±2.4 2.4±0

nettle-aes 99 8.95× 104±40 1560±1.7 1814±1.9 2.3±0

slre 99 6.37× 105±72 1641±25 1922±27 2.3±0

qrduino 99 4.73× 105±3.9 × 104 1898±23 2301±25 2.4±0

5.2.3. Real-World Attack Traces
To evaluate the feasibility of our approach, we manually
added a ROP backdoor to the key exchange software. Specif-
ically, we introduce a buffer overflow vulnerability on a
stack pointer that, when exploited, enables an adversary to
modify the function return address to a chosen location. This
technique is similar to existing ROP vulnerabilities. We then
15 https://github.com/embench/embench-iot
16 https://www.openssl.org/news/openssl-1.1.1-notes.html
17 https://github.com/thejinchao/dhexchange

generate attack traces by exploiting this vulnerability while
tracing the program.
Additionally we applied the RIPE framework exploit col-
lection [30], which our industry partner extended to ARM
platforms, to the Embedded Platform Software. The RIPE
benchmark consists of a vulnerable program and a set of
850 buffer overflow exploits with various techniques.
The framework is configurable in terms of attack type (i.e.,
ROP and ret2libc), overflow type (i.e., direct, indirect),
attack location (i.e., stack or heap), target code pointer (e.g.,
function pointer, return address) and function exploited (e.g.,
strcpy, strcat). To verify whether our approach is affected by
different ROP chain lengths we further extended RIPE by a
gadget length configuration option.
To collect traces from different software than the one pro-
vided by RIPE, we extended the framework to include be-
nign application logic. We use the picojpeg benchmark from
the Embench suite as a representative benign application.
We therefore include a configuration option to disable the
exploitation of the vulnerability and continue with executing
the benign application.
As a representative set of attacks we chose 40 different
combinations of configuration options (cf., Table 5). As
RAGE does not discern between different code pointers
or memory locations but only considers the difference in
the traced execution path, we only evaluate all attacks
containing different buffer overflow techniques. Thus, the
attack traces reflect real-world changes in the execution path
addresses, which in turn can be used to evaluate the accuracy
of RAGE.
5.2.4. Synthetic Trace Generation
As discussed earlier, acquiring traces while the program
is under attack needs vulnerabilities to be introduced or
the exploitation of existing (known) ones. However, this is
both time-consuming and limits attack traces to existing vul-
nerabilities and known Control-Flow hijacking techniques.
Instead, we observed that the attack traces and benign traces
differ only in the nodes related to the ROP or ret2libc attack.
While the buffer overflow implementation of the injected
vulnerability is specific to this type of software, the attack
is software agnostic, i.e., it corrupts a code pointer that
causes a change in the execution integrity and is reflected in
the traces. Thus, we propose a novel synthetic attack trace
generation approach, which is based on traces extracted from
the benign execution and modified to accurately simulate
ROP and DOP attacks in the most generic way. In the
following, the algorithms are presented which are based on
the earlier acquired data for ROP attacks and the description
by Hu et al. [39] for the DOP attack traces.
To establish a reliable baseline and evaluation, traces show-
ing malicious behavior in a known region in the trace are
needed. Hence, we inject traces of a ROP or DOP attack into
known benign traces. As described in Section 5.2, we stud-
ied the effects of these attacks on a CFG (cf., Section 2.1)
and implemented two algorithms to mimic the effects of
ROP and DOP attacks. In addition, we parameterized the
algorithms to be able to generate outputs of different lengths,

https://github.com/embench/embench-iot
https://www.openssl.org/news/openssl-1.1.1-notes.html
https://github.com/thejinchao/dhexchange

positions and repetitions.

Algorithm 1 ROP Generator
Input: pos ▷ position in trace to add ROP traces
Input: inserts ▷ amount of malicious steps to insert
Input: trace ▷ list of steps as addresses
Output: trace ▷ list with added ROP

n← pos
while n ̸= pos+ inserts do

elem
$← trace ▷ sample uniformly from trace

trace ← trace0, ..., tracen−1, elem, tracen, ...,
trace|trace|

n← n+ 1
end while
return trace

Algorithm 1 shows the pseudo-code of the algorithm used
to generate traces of an execution of software under ROP
attack. The function takes as arguments the list of execution
steps (i.e., addresses) trace, the number of steps inserts
and the position pos in the trace to insert. The algorithm
uniformly samples inserts elements of the trace list and adds
it to the trace list at position pos. With this, the trace list
contains a block of re-used addresses with (probably) new
jumps (between addresses) which did not exist before in the
input trace. As we don’t know which address belongs to
which processor instruction, uniformly sampling addresses
is the most generic way of creating ROP traces. Usually,
ROP gadgets should end with a return statement (or e.g.,
jump, branch), making our generated traces even more
challenging to detect, as they lack structure.

Algorithm 2 DOP Generator
Input: pos ▷ position in trace to add DOP traces
Input: inserts ▷ amount of malicious steps to insert
Input: repeats ▷ repetitions of inserted steps
Input: trace ▷ list of steps as addresses
Output: trace ▷ list with added DOP

atk ← {atk0, ..., atkinserts| atki ∈ [trace0, tracepos] ⊆
trace, ∀ atki, atki+1 : atki = tracej ∧ atki+1 =
tracej+1, ∃ tracepos−1, atk0 : tracepos−1 = tracej ∧
atk0 = tracej+1, ∃ tracepos, atkinserts : tracepos =
tracej ∧ atkinserts = tracej+1}
trace ← trace0, ..., tracepos−1, atk0, ..., atkinserts,
tracepos, ..., trace|trace|
n← repeats
while n ̸= 0 do

trace ← trace0, ..., tracepos−1, atk0, ..., atkinserts,
tracepos, ..., trace|trace|
n← n− 1

end while
return trace

Algorithm 2 shows the pseudo-code of the algorithm used
to generate traces of an execution of software under DOP
attack. It has the same inputs as Algorithm 1, including an
additional repeats argument, which controls how often the
block of DOP steps is repeated. This is used to mimic the

behavior of DOP attacks on cryptographic software to, e.g.,
locate a secret key in memory [39]. The algorithm tries to
find a sequence of steps (atk) of length inserts from the
already visited nodes (until position pos in trace) where
each pair of steps in the sequence must also be a pair in
the trace list (i.e., all jumps must also occur in the benign
trace). In addition, the first and last element of the sequence
must fit into the benign trace at position pos (i.e., also these
jumps occur in the benign trace). If no solution is found,
the algorithm is re-run with a different pos argument (not
depicted in the pseudocode). Finally, the DOP traces are
repeatedly added repeats times to the trace list on position
pos. This approach creates DOP traces by adding a new path
to the trace list, which only utilizes jumps already taken by
the benign execution (i.e., not creating new edges), therefore
not changing the Control-Flow Graph (CFG) but changing
the control flow by executing jumps in a sequence never
done before by the benign program.

5.3. Data Preprocessing
The objective of the data preprocessing phase is to pre-
pare the raw data obtained from the tracer for subsequent
machine learning steps. A trace consists of a sequence
of memory addresses that the program counter has tra-
versed during execution. The first step in the preprocessing
phase is to convert the list of execution steps, denoted
as Exesteps = {s1, s2, ..., sn}, into a graph representation.
Specifically, we construct an edges list E = {e1, e2, ..., en},
where ei = (vj , vk) represents an edge between two nodes,
vj and vk belonging to V , in the graph. Each node in the
graph represents a unique memory address referenced in the
execution steps.
Once the edges list E is constructed, it is further processed
to convert it into graph connectivity in coordinate format
(COO), referred to as A. This is achieved by applying the
transpose operation A = ET . This conversion is done as the
COO format is more suitable for the subsequent machine-
learning step. Furthermore, while we are iterating on Exesteps
and building the edges list, we also conduct the feature
extraction phase in parallel. This is an essential step as
it allows the addition of extra information to the graph
representation that can be used to improve the model’s
performance.
5.3.1. Feature Extraction
In the feature extraction phase, we aim to identify vari-
ous characteristics of each node vi ∈ V in the graph G,
which represents the control flow of one software execu-
tion. Firstly, we construct the Partial Control-Flow Graph
(PCFG) of this single execution by generating an edge list,
represented as an array E ∈ Nn×2, where n is the number
of executed unique addresses (i.e., vertices) for a given
software.
One such characteristic is the vertex degree, denoted as
deg(vi), which is the number of edges that are incident
to vi. This feature provides information about the number
of edges that are connected to a given node, which can
indicate the centrality of a node in the graph. Another feature

is the number of visits, which is the number of times the
corresponding address is accessed during the execution. This
feature can provide information about the overall activity of
a node in the execution and its frequency of visits.
We also identify the first and last visit of each node,
considering the execution steps. This feature can provide
information about the lifetime of a node in the execution.
In addition, we determine the number of incoming and
outgoing edges, which is the number of edges that end in
vi and the number of edges that start from vi, respectively.
We also compute the frequency of visits, which is the
number of visits over the total number of execution steps,
as well as the time of use, which is the difference between
the last visit and the first visit, i.e., how long that node
has been used during the execution. These features provide
information about the relative importance of a node in the
execution and the amount of time spent on it.
Furthermore, we calculate the standard deviation of all the
visit time to a node, given the list of visits of the node
i, visi = {si, sj , ..., sk}, where sk is the k-th step where
the address represented by vi is seen for the last time and
the mean of the distance between visits, given the list of
visits of the node i, visi = {si, sj , ..., sk}, we compute
the mean of the distance between each couple of visits,
i.e., mean ((sj − si), ..., (sk − sj)). These features provide
information about the temporal relations between visits,
indicating the distribution of the visits.
We also determine the mean number of visits of incoming
and outgoing neighbors for all the nodes that have an edge
ending in vi and for all the nodes that are the ending of the
edges starting from vi, respectively. These features provide
information about the activity of the neighboring nodes,
indicating the level of activity of the surrounding nodes.
After extracting all the features, we normalize them ac-
cording to the trace length to ensure that the values are
comparable across different execution traces. Furthermore,
we categorize these features according to their intended use
in the scope of our study and present them in Appendix in
Table 4. It is crucial to note that all the extracted features
are computationally efficient: we estimated that the algorith-
mic complexity for their extraction can be approximated to
O(n), where n is the length of the trace. This enables fast
data preprocessing and efficient run-time attestation, which
aligns with the goal of our study.

5.4. Model Training
In the training process, our RAGE’s conducts an unsuper-
vised model training utilizing a single arbitrary execution.
The objective of this training is to achieve generalization
to the benign traces, so that the distance between benign
traces (i.e., tracei) and the training trace (i.e., trace0) has to
be as close as possible to 0, i.e., d(trace0, tracei) → 0. To
accomplish this, the VGAE model is trained for a maximum
of 3, 000 epochs, incorporating an early stop mechanism
that monitored the Average Precision (AP) and Area-Under-
Curve (AUC) values, with a patience of 500 epochs. As
outlined in Section 2.4, the goal is to optimize the variational
lower bound, as described in Equation (1)).

Additionally, we carried out an extensive hyperparameter se-
lection process to find the optimal set that resulted in the best
performance of RAGE. Specifically, we tested the system on
multiple hyperparameter combinations, e.g., different sizes
of the latent space, different number of layers in the encoder,
and the number of channels in each layer. To regularize the
learning process, a decaying learning rate (lr) scheme is
adopted, starting with lr = 0.01 and decreasing by a factor
of 3 every 150 epochs until epoch 750, after which it is
fixed. Further, we leverage dropout layers in the encoder
(cf., Figure 3b). This way, we effectively regularize the
learning process and prevent it from getting stuck in a local
minimum, thereby allowing for continuous improvement.
The use of these regularization techniques, in conjunction
with the optimal set of hyperparameters, resulted in a well-
performing model that is able to generalize to unseen benign
traces.
It is especially important to note that RAGE’s model settings
are fixed, i.e., the determined optimal settings are therefore
used for the evaluation of all datasets: RAGE aims to work
“out of the box” without requiring a model selection phase
when changing datasets. It only needs a quick unsupervised
training phase on one benign execution trace.

5.5. Attestation Threshold
A reliable attestation requires a carefully designed attesta-
tion threshold, for determining the integrity of an execution.
To accomplish this, we evaluate the number of traces needed
for defining a reliable threshold by carrying out a systematic
ablation study which we report in Appendix D. We ob-
serve that the selection of just 10 random traces maximizes
the performance of RAGE while maintaining a low false-
positive-rate. For each of these traces, the distance to trace0
is calculated and the threshold t is established using the
following formula:

tattestation = mean(dValSet) + 2× std(dValSet) (4)

where d is the Directed Hausdorff distance (cf., Defini-
tion 5), dValSet represents the list of distances between the
graphs in the validation set and trace0. It is important to
note that while a handful of traces from the validation set is
used for thresholding, only one trace is utilized for training.
During the attestation phase, the embeddings of the ex-
ecution to be verified are obtained through the encoder.
The distance d between these embeddings and the reference
execution, represented by trace0, is subsequently calculated.
If this measure exceeds a predefined threshold, the execution
is deemed to be malicious.

6. Evaluation
In the following sections, we evaluate the effectiveness of
RAGE in detecting different attacks, aiming to answer the
research questions we formulated in Section 1.

6.1. Evaluation Metrics
To evaluate the effectiveness of RAGE, we utilize a variety
of metrics, including Precision, Recall, and F1-score. Ad-
ditionally, we use the False Positive Rate (FPR) to provide

more insight into the detailed performance of the model. The
choice of these metrics is driven by the need for a precise
assessment of the performance of the attestation system: we
particularly care about knowing how reliable the system is.

6.2. Results
To address the above research questions, we test RAGE
against traces containing ROP and DOP attack executions
for each dataset. For the following results, the experiments
are repeated 100 times, and the attestation threshold was
computed based on the distance to trace0 of 10 random
benign traces as described in Section 5.5.
6.2.1. ROP
As described in Section 5.2.3 we utilized the RIPE frame-
work to collect 440 traces in total, including 40 different
real-world ROP and ret2libc attack traces (cf., Table 5 in
Appendix).
The results in Figure 6 in the Appendix clearly depict
RAGE’s capability of correctly separating benign and attack
traces in every case. Formally, this means that the embed-
dings of the real-world attacks under test, are diverging
significantly from the reference embeddings. This leads
us to conclude that the real-world attack traces generated
by adding RIPE exploits are not executed stealthily (i.e.,
resulting in a shell, terminating execution).
Instead, as described in Section 5.2.4, our attack generator’s
traces are much more sophisticated as the simulated ROP
attack returns the execution flow to the benign program
(e.g., instead of terminating the execution), requiring more
advanced detection capabilities.

Insight 1

RQ2: The embeddings of the graph preserve the
characteristics of an execution trace. Specifically,
during the embedding process:

f : vi → zi ∈ RL

RAGE’s model is acting as embedding function f ,
mapping the execution graph’s node vi to embed-
dings zi keeping a close correspondence between
high and low dimensional data [44]. Thanks to this
property the link between the state of the execution
and the latent representation is preserved.

We, therefore, generate multiple ROP attacks with different
attack chain lengths. In particular, we generate 50 malicious
traces by adding ROP-type steps for each of the following
lengths to a random benign execution that is recognized by
RAGE as benign: 5, 10, 15, 30, 40, 50, 75, 100, 150, 200,
250, 350 and 500.
As shown in Table 2, in the case of Diffie-Hellman, our
key exchange dataset (cf., Section 5.2), we can achieve
an F1-Score of 92.58% and a False-Positive-Rate (FPR) of
7.12%. The performance for OpenSSL is better, achieving
an F1-Score of at least 97.95% For Embench, the results
generally show better performances than the cryptographic
dataset, as the binaries are less complex. In the case of

“sglib-combined” and “minver”, we can achieve even perfect
detection and null false-positive. On average, we achieve an
F1-Score 98.03% and an FPR of 3.19%.
We show that RAGE is better at detecting ROP attacks rather
than to detect DOP attacks, as they modify the Control-Flow
Graph’s (CFG) structure (i.e., creating new edges), leading
to better performance. In this case, the extracted features
help to highlight the ongoing attack. Still, the graph plays
a significant role (i.e., the adjacency matrix will change
after the attack). In Figure 4, these results are graphically
represented.
6.2.2. DOP
As described in Section 5.2.4, we generate 100 DOP attacks
with a fixed length of around 2000 execution steps. As
reported in Table 2, in the case of Diffie-Hellman (cf.,
Section 5.2), we can achieve an F1-Score of 69.22% and
a False-Positive-Rate (FPR) of 7.12%. For the OpenSSL
dataset, achieving an F1-Score of at least 86.41% for all
the ciphers is possible. Among these algorithms, DES and
DESX deliver the best results with an F1-Score of 90.10%
and 89.81%, respectively. For Embench, the results show
better performances than the cryptographic dataset, as the
binaries are less complex. Regarding “sglib-combined”, we
can achieve perfect detection and 0 false-positive. On aver-
age, we achieve an F1-Score 91.01% and an FPR of 3.19%.
In contrast to ROP attacks, the changes made by the attack
to the CFG are much less evident (i.e., DOP attacks do
not create new edges; they execute a new path with benign
steps) and, therefore, are much harder to detect. Moreover,
for detecting DOP attacks, the feature extraction phase plays
a fundamental role, as a DOP attack can only be recognized
from the nodes’ features (e.g., the number of visits) and
not from the graph’s structure itself (i.e., the adjacency
matrix, which stays unchanged). In Figure 5, the results are
graphically represented.

Insight 2

RQ3: The embedding changes are sufficient even to
detect the most stealthy changes to the execution
trace made by ROP and even DOP attacks. For-
mally, the model effectively produces embeddings
such that, the separation between benign embeddings
db = d(Embref, Embbenign) and malicious embeddings
da = d(Embref, Embattacks) is da − db ≫ t, where t is the
attestation threshold, is enough to result in accurate
detection.

6.3. Runtime Overhead
We evaluate RAGE’s runtime overhead of the operations car-
ried out by the verifier in terms of storage and computation
time for preprocessing, training, and inference phases. In
Appendix E, we report the results.

7. Security Considerations
In this section, we analyze two main security aspects: (i) im-
plications of not assuming the completeness of the control-

TABLE 2. FOR EACH DATASET, THE FOLLOWING EVALUATION METRICS
ARE REPORTED: FALSE-POSITIVE-RATE (FPR), PRECISION (PR),

RECALL (RE), AND F1-SCORE. ALL THE VALUES ARE IN
PERCENTAGES. THE VALUES ARE A MEAN OF 100 EXPERIMENTS.

ROP DOP
Dataset FPR Re. Pr. F1 Re. Pr. F1
DH 7.12 95.44 90.59 92.58 86.03 62.51 69.22
AES 0.78 99.06 99.69 99.37 78.92 95.88 86.41
DES 9.10 99.70 96.58 98.09 100.0 82.79 90.10
DESX 8.82 99.30 96.66 97.95 98.89 82.98 89.81
GOST 1.51 99.57 99.40 99.48 82.81 93.49 86.60
aha-mont64 0.19 100.0 99.97 99.99 100.0 98.50 99.18
crc32 7.23 96.28 98.93 96.51 85.00 70.07 75.94
cubic 6.56 100.00 99.05 99.52 99.72 94.52 96.93
edn 3.25 99.72 99.52 99.62 99.27 91.89 95.29
huffbench 6.48 99.48 99.06 99.26 94.12 94.06 92.01
matmult-int 0.28 97.02 99.96 98.47 96.72 99.65 98.12
md5sum 3.84 99.99 99.44 99.71 99.47 96.44 97.92
minver 0.00 100.0 100.0 100.0 99.97 100.0 99.98
nettle-aes 2.96 100.0 99.57 99.78 99.51 97.23 98.35
nsichneu 2.90 89.90 99.53 94.43 100.0 68.90 81.41
picojpeg 0.08 100.0 99.99 99.99 100.0 99.92 99.96
primecount 3.69 72.00 99.26 83.46 53.00 94.19 67.76
qrduino 2.57 92.42 99.6 95.16 78.00 75.94 76.95
sglib-combined 0.00 100.0 100.0 100.0 100.0 100.0 100.0
slre 8.06 100.0 98.84 99.41 100.0 93.23 96.40
statemate 1.68 100.0 99.75 99.87 100.0 98.44 99.21
tarfind 1.08 100.0 99.84 99.92 98.57 98.97 98.75
wikisort 6.50 99.97 99.05 99.51 99.83 94.29 96.93

flow graph and (ii) considerations on our performance de-
tecting code reuse attacks.

7.1. CFG Completeness
In Section 2.1, we analyzed the impracticability of assuming
the completeness of a CFG.
On these premises, we stress that the related works such
as C-FLAT [13], Atrium [14], Lo-fat [15], Litehax [16],
OAT [17], Recfa [18], Tiny-CFA [20], and BLAST [19]
cannot be considered practical for control-flow attestation,
as they rely on the availability of a CCFG. Specifically, this
implies that these approaches (i) exhibit a high false-positive
rate proportional to the undiscovered CFG regions and (ii)
miss all attacks that might occur in these regions.
Unlike these approaches, we do not rely on assumptions
about the PCFG. RAGE addresses this challenge by being
independent of the completeness of the PCFG. Specifically,
RAGE operates on execution graphs (i.e., using only one
execution trace) by exploiting a deep unsupervised geomet-
ric model, which learns a program’s benign behavior and
patterns. This is proven by, Insight 1 where we showed that
RAGE’s model acts as an embedding function f which maps
high-dimensional data V (i.e., the execution traces) to a low-
dimensional space Z, extracting latent features that capture
the execution’s behaviour while, ultimately, keeping a close
link between trace and embeddings f : V → Z.
Furthermore, in terms of performance, RAGE achieved a
minimal false-positive rate, as low as 0.39% in the best
scenario. This result significantly surpasses the related works
when considering the above mentioned factors, making it
suitable for real-world applications.
Moreover, RAGE only requires the basic block addresses
traversed by the program counter for attestation. Thus pre-
venting information leakage to the verifier, as this does not
disclose any information about the prover’s computation
content to the verifier [45].

7.2. CRA Detection
Our empirical evaluation has shown that RAGE is effective
in detecting Code Reuse Attacks (CRA) with a high degree
of accuracy (cf., Section 6.2). In addition to the empirical
evidence, this section conceptually discusses the effective-
ness of our approach in detecting (i) control-data attacks and
(ii) non-control data attacks.
To perform control-data attacks, such as ROP attacks, an
attacker must alter the control flow of a program, creating
new transitions (cf., Section 2.3). This results in illegal
edges in the CFG. RAGE exploits the graph representation
of an execution trace for extracting low dimensional em-
beddings that reveal the execution behavior, leveraging the
concepts behind Definition 4 through probability sampling,
as described in Equation (2). Thus, when comparing a
malicious execution with a benign one, RAGE expresses the
(dis)similarity (i.e., distance) of these two executions. High
distance values imply a significant alteration of the CFG.

Insight 3

RQ4: Structural (Behavioural) changes in the graph
are preserved by the embeddings (RQ2, Definition
4) and are related by RAGE to an execution being
attacked by a ROP (DOP) attack.

While performing non-control data attacks, such as DOP
attacks, an attacker would reuse benign transitions to ma-
nipulate the execution flow. This results in a more stealthy
attack, as the execution graph will only consist of benign
edges. While converting an execution trace into an execution
graph, RAGE extracts numerous descriptive features (cf.,
Section 5.3.1) that reveal underlying properties of the execu-
tion flow. Through the embedding comparison, RAGE will
show a significant distance between the benign execution
and the compromised one, resulting in attack detection. For
example, a typical pattern in DOP attacks is the repeated
execution of specific basic blocks, which will result in an
unusual increase in the respective features, e.g., Frequency
of visits (cf., Table 4).

Insight 4

RQ1: Our approach can reliably detect CRAs
(RQ3) while providing sufficient security assump-
tions, therefore being able to relax the assumption of
access to a complete control-flow graph.

8. Related Work
While machine learning has been utilized for attestation, to
the best of our knowledge, we are not aware of any Control-
Flow Attestation (CFA) scheme that uses Graph Neural
Networks (GNN) and exploits the natural correspondence
between execution trace, execution graphs and execution
embeddings. We are also unaware of approaches able to
be trained unsupervised on only one known benign trace.
We focus therefore on existing CFA methods, the different

works on static and run-time attestation, and the recent ML-
based attestation schemes. We report an overview compari-
son between related works in Table 3.

8.1. Static Attestation
Static Attestation is a process by which the security proper-
ties of a system or device are verified based on the analysis
of its design and implementation rather than by observing
its runtime behavior. This means the system or device is
evaluated based on its intended functionality instead of
observing its actual behavior at runtime. A popular approach
for Static Attestation using Software is hashing [1], [2],
[3], [4], [5] or timing of an algorithm working on [6] the
firmware in flash or memory. Utilizing a hardware root of
trust such as a Trusted Platform Module (TPM), it is possible
to attest a device running a known benign software [7], [8].
Other approaches not only measure the critical software but
also protect it at runtime using isolation [48], [49], [50],
[51], others leveraging Physically Unclonable Functions
(PUF) [52], or extra hardware [53] to attest memory at
runtime.

8.2. Control-Flow Attestation (CFA)
CFA can be implemented in various ways: hardware-
based solutions, software-based solutions, or a combination
thereof. CFA solutions protect against attacks such as return-
oriented programming (ROP) attacks. They either require in-
strumentation of software as, e.g., C-Flat [13], OAT [17] and
Recfa [18] or additional hardware components or features
as, e.g., Lo-fat [15], Atrium [14] and Tiny-CFA [20]. The
approaches that rely on a wide amount of measurements,
such as C-Flat [13] and BLAST [19], send the full execution
path or Control-Flow events to the verifier, which has to
keep a large database of known benign executions or events.
This creates a large computational and storage overhead and
the problem of collecting all benign executions or actions.
Other works rely instead on specific hardware features such
as Hardware Performace Counters (HPCs), which provide
ample measurements about the execution used as execu-
tion’s features for the attestation algorithm (e.g., last branch
record, branch trace store). Cfimon [55] can only detect
control-data attacks, but not non-control-data attacks, while
Lambda [56] needs benign programs to be well defined,
and only “large” deviations from benign control flows are
detected. In addition, Numchecker [54] focuses on detecting
attackers in guest VMs from the host. More sophisticated
approaches such as LiteHAX [16] also track data flows to
protect against data-oriented programming (DOP) attacks.
The state-of-the-art is represented by BLAST [19] which
builds on top of C-Flat [13] and OAT [17]. BLAST requires
access to the complete Control Flow-Graph. The proposed
scheme reduces the run-time overhead compared to C-
Flat [13] by reducing the number of TEE domain switches.
However, the approach can only detect control-data attacks
(e.g., ROP attacks).
In contrast, our approach, RAGE, does not need a-priory
knowledge other than around 10+1 (i.e., the threshold set
and one trace for training) known-benign execution traces

and makes no assumptions about the path coverage of
these graphs built from the corresponding traces. RAGE is
lightweight, as the model exhibits a minimal number of
parameters (cf., Appendix E, e.g., less than 10, 000) since
it does not require keeping a database of known traces.

8.3. ML-based Attestation
Machine Learning is utilized for attestation to increase
the precision of the attestation mechanism or to elim-
inate/weaken the strong assumptions of previous works.
Therefore, ML is utilized in many stages in an attestation
approaches pipeline.
Hu et al. [27] utilizes an ML model to predict the vul-
nerability of each function in a program. Depending on
the prediction, the approach switches between fine and
coarse-grained tracing (applying usual attestation hashing
methods). While this shortens the execution’s duration, their
scheme requires access to the software’s code and a labeled
dataset, including ratings for each function’s vulnerabilities.
In contrast to our work, time-consuming manual expert labor
is needed to create such a dataset.
Ma et al. [28] propose a method of attesting Android soft-
ware. Each program to be attested acquires a Control-Flow
Graph (CFG) of the API calls it program executes, which is
then fed to a Recurrent Neural Network (RNN) LSTM-based
model for prediction. Even though this approach acquires
a control-flow graph, the use of RNNs only allows for
working on the sequence of API calls, making the whole
approach, including the model, resource-heavy. In contrast,
RAGE works with GNNs, which are lightweight, allowing
fast training and inference time. Further, RAGE only requires
one execution trace to train the model unsupervised. This
way, we can detect all kinds of code-reuse attacks.
Aman et al. [29] propose to use ML-based classifiers to
verify the integrity of an IoT device’s internal state based
on its memory contents. The approach converts the memory
dump into a grayscale picture where malicious code is
detected using regression, decision trees, and Support Vector
Machines (SVM). In contrast to our approach, for every
attestation, the device’s whole memory must be read and
converted. By converting binary to a picture representation,
possibly information is lost, as it is similar to lossy com-
pression.

9. Discussion: Real-World Applicability
We stress that RAGE is feasible in real-world scenarios with
reasonable assumptions. In contrast, even the most recent
work on CFA, BLAST [19] only theoretically computes the
performance of their approach, assumes knowledge of the
critical paths of the CFG and a well-defined, limited set of
inputs to the attested software to achieve computation of a
complete (relatively to the input set) CFG, which may not
be feasible.
A real-world embedded application to be verified through
attestation the input set I consist of all possible input com-
binations. The cardinality of such a set is exponential and
can be written as |I| → ∞. When we deploy an attestation
scheme that requires access to a CCFG (cf., Definition 3),

TABLE 3. COMPARISON OF ASSUMPTIONS OF RELATED WORK.
✓: THE PROPERTY IS A REQUIREMENT, ×: NOT A REQUIREMENT, (✓): NOT VALIDATED AND, N.A.: NOT APPLICABLE.

COMPLETE CFG: THE APPROACH REQUIRES A COMPLETE CFG, CUSTOM HW: CUSTOM MADE HARDWARE, MEASUREMENTS: A-PRIORI
MEASUREMENTS OF MEMORY OR FEATURES, MEMORY ACCESS: ACCESS TO THE PROVERS PROGRAM MEMORY, PLATFORM SPECIFIC: IS ONLY

APPLICABLE IN SPECIFIC SCENARIOS OR PLATFORMS, HEAVY BIN. MODIFICATION: NEEDS HEAVY BINARY RE-WRITING, ONLY SPECIFIC
SOFTWARE: CAN ONLY ATTEST/PROTECT SPECIFIC SOFTWARE, OR PRESENCE OF FEATURE: DEPENDS ON SPECIFIC HARDWARE FEATURES.

Assumptions Detection Capabilities
Complete Memory Custom Presence of Platform Heavy Bin. Only Specific Control-Flow Data-Only

Category Approach CFG Access Measurements HW Features Specific Modification SW Attack Attack

Security
Architecture

Smart [48] N.A. N.A. N.A. ✓ ✓ ✓ N.A. ✓ ✓ ×
Trustlite [49] N.A. ✓ N.A. ✓ ✓ ✓ N.A. × N.A. N.A.

Tytan [50] × ✓ ✓ ✓ ✓ ✓ × × ✓ ✓

Malware
Detection

Numchecker [54] × × ✓ × ✓ ✓ × ✓ ✓ ×
SWARM [51] × ✓ ✓ ✓ ✓ ✓ × × × ×
Att-auth [52] × ✓ ✓ ✓ ✓ ✓ × × × ×

Prom [53] × ✓ ✓ ✓ × ✓ × × × ×
CFI Cfimon [55] × × ✓ × ✓ ✓ × × ✓ ×

ML
Hu et al. [27] ✓ × ✓ × ✓ ✓ ✓ × ✓ ×
Ma et al. [28] ✓ × ✓ × × ✓ × ✓ × ×

Aman et al. [29] × ✓ ✓ × × × × × N.A. N.A.

CFA

C-Flat [13] ✓ × ✓ × ✓ ✓ ✓ ✓ ✓ ×
Atrium [14] ✓ × ✓ ✓ × ✓ × ✓ ✓ (✓)
Lo-fat [15] ✓ × ✓ ✓ × ✓ × ✓ ✓ (✓)

Litehax [16] ✓ ✓ ✓ ✓ × × × ✓ ✓ ✓
OAT [17] ✓ × ✓ × ✓ ✓ ✓ ✓ ✓ ×

Lambda [56] × × ✓ × ✓ ✓ × × (✓) ×
Recfa [18] ✓ ✓ ✓ × ✓ ✓ ✓ × ✓ ×

Tiny-CFA [20] ✓ ✓ × ✓ × × ✓ × ✓ ×
BLAST [19] ✓ × ✓ × ✓ × ✓ ✓ ✓ ×

RAGE × × × × ✓ × × × ✓ ✓

we are practically limiting the combinations of the input
set, which can be written as S ⊂ I where S is the limited
set of inputs, thus, limiting the attestation capability or the
facility of the system. Specifically, the system could be in a
benign state recognized as malicious as that specific input
was not initially in the set of inputs. Additionally, restricting
the system to specific inputs may hinder the system to
work correctly when faced with edge cases, specifically all
i /∈ S, where i is one input. Moreover, manual labeling and,
therefore, only attesting the critical paths of software may
not be sufficient, as DOP attacks may not be detected or
ROP attacks can, e.g., open a shell in a non-critical path.
Therefore, the attestation of the full software, including its
used libraries, is necessary.
By contrast, RAGE does not require such prior measure-
ments or critical path labeling, circumventing the above-
mentioned constraints. As we described in Definition 4, we
leverage a geometric deep learning model for extracting
latent features of execution traces that maintain a strict
correspondence between these data. This allows RAGE to
achieve attestation of the full software through the learning
of a benign behavior, overcoming the limitations of related
work.

10. Conclusion
In this paper, we present a new method for Control-Flow
Attestation (CFA) in embedded systems and IoT devices.
Our approach addresses the limitations of existing CFA
techniques that make them challenging to be implemented in
real-world scenarios. These limitations include the require-
ment of a large set of known-benign executions, access to a
complete Control-Flow Graph (CFG), and information about
the system’s internal state, which may not be feasible, partic-
ularly for IP-protected code. In contrast, RAGE detects Code

Reuse Attacks (CRAs) without requiring any information
except for the CPU’s program counter, is lightweight, and
therefore applicable to resource-constrained devices. RAGE
uses Unsupervised Graph Neural Networks (GNNs) to ana-
lyze the control flow trace of only one execution, allowing it
to detect both return-oriented programming (ROP) and data-
oriented programming (DOP) attacks. The results of our
experiments demonstrate the efficacy of RAGE in detecting
CRAs in real-world attacks in real-world scenarios, prov-
ing it suitable for resource-constrained embedded devices
running IP-protected code. RAGE can detect ROP and DOP
attacks with an F1-Score of on average 97.49% and 84.42%,
respectively, while also maintaining a low False-Positive
Rate of on average 5.47%, for OpenSSL. Similarly, RAGE
achieved on average 98.03% (ROP) and 91.01% (DOP)
F1-Score and 3.19% FPR for Embench. This makes our
approach a promising solution for protecting the integrity
and authenticity of embedded systems and IoT devices.

Acknowledgements.
Our research work was partially funded by Deutsche Forschungsgemein-
schaft (DFG) – SFB 1119 – 236615297, the European Union under Horizon
Europe Programme – Grant Agreement 101070537 – CrossCon.

References
[1] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “Swatt:

Software-based attestation for embedded devices,” in IEEE Sympo-
sium on Security and Privacy, 2004. Proceedings. 2004. IEEE, 2004,
pp. 272–282.

[2] A. Seshadri, M. Luk, A. Perrig, L. Van Doorn, and P. Khosla, “Scuba:
Secure code update by attestation in sensor networks,” in Proceedings
of the 5th ACM workshop on Wireless security, 2006, pp. 85–94.

[3] B. Chen, X. Dong, G. Bai, S. Jauhar, and Y. Cheng, “Secure and
efficient software-based attestation for industrial control devices with
arm processors,” in Proceedings of the 33rd Annual Computer Secu-
rity Applications Conference, 2017, pp. 425–436.

[4] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and P. Khosla,
“Pioneer: verifying code integrity and enforcing untampered code
execution on legacy systems,” in Proceedings of the twentieth ACM
symposium on Operating systems principles, 2005, pp. 1–16.

[5] Y. Li, J. M. McCune, and A. Perrig, “Viper: Verifying the integrity of
peripherals’ firmware,” in Proceedings of the 18th ACM conference
on Computer and communications security, 2011, pp. 3–16.

[6] A. Seshadri, M. Luk, and A. Perrig, “Sake: Software attestation for
key establishment in sensor networks,” in International Conference
on Distributed Computing in Sensor Systems. Springer, 2008, pp.
372–385.

[7] C. Krauß, F. Stumpf, and C. Eckert, “Detecting node compromise
in hybrid wireless sensor networks using attestation techniques,” in
European Workshop on Security in Ad-hoc and Sensor Networks.
Springer, 2007, pp. 203–217.

[8] S. Agrawal, M. L. Das, A. Mathuria, and S. Srivastava, “Program
integrity verification for detecting node capture attack in wireless
sensor network,” in International Conference on Information Systems
Security. Springer, 2015, pp. 419–440.

[9] T. Post, “Belkin iot smart plug flaw allows remote
code execution in smart homes,” https://threatpost.com/
belkin-iot-smart-plug-flaw-allows-remote-code-execution-in-smart-homes/
136732/, 2018.

[10] Arstechnica, “Exploit that gives remote ac-
cess affects 200 million cable modems,” https:
//arstechnica.com/information-technology/2020/01/
exploit-that-gives-remote-access-affects-200-million-cable-modems/,
2020.

[11] Zd Net, “Nasty linux netfilter firewall secu-
rity hole found,” https://www.zdnet.com/article/
nasty-linux-netfilter-firewall-security-hole-found/, 2022.

[12] Bleepingcomputer, “Cisa warns of samsung aslr bypass flaw ex-
ploited in attacks,” https://www.bleepingcomputer.com/news/security/
cisa-warns-of-samsung-aslr-bypass-flaw-exploited-in-attacks/, 2023.

[13] N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R.
Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for embed-
ded systems software,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp.
743–754.

[14] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin,
and A.-R. Sadeghi, “Atrium: Runtime attestation resilient under
memory attacks,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2017, pp. 384–391.

[15] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A.-R. Sadeghi, “Lo-fat: Low-overhead control flow
attestation in hardware,” in Proceedings of the 54th Annual Design
Automation Conference 2017, 2017, pp. 1–6.

[16] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax:
lightweight hardware-assisted attestation of program execution,” in
2018 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD). IEEE, 2018, pp. 1–8.

[17] Z. Sun, B. Feng, L. Lu, and S. Jha, “Oat: Attesting operation integrity
of embedded devices,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 1433–1449.

[18] Y. Zhang, X. Liu, C. Sun, D. Zeng, G. Tan, X. Kan, and S. Ma,
“Recfa: Resilient control-flow attestation,” in Annual Computer Se-
curity Applications Conference, 2021, pp. 311–322.

[19] N. Yadav and V. Ganapthy, “Whole-program control-flow path attesta-
tion,” in 30th ACM conference on Computer and Communications Se-
curity, 2023, early available at: https://www.csa.iisc.ac.in/∼vg/papers/
ccs2023/.

[20] I. D. O. Nunes, S. Jakkamsetti, and G. Tsudik, “Tiny-cfa: Minimal-
istic control-flow attestation using verified proofs of execution,” in
2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2021, pp. 641–646.

[21] G. K. Conrado, A. Goharshady, and C. K. Lam, “The bounded
pathwidth of control-flow graphs,” in ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2023, 2023.

[22] T. Frassetto, P. Jauernig, D. Koisser, and A.-R. Sadeghi, “Cfinsight:
A comprehensive metric for cfi policies,” in 29th Annual Network
and Distributed System Security Symposium. NDSS, 2022.

[23] H. Theiling, “Control flow graphs for real-time systems analysis:
reconstruction from binary executables and usage in ilp-based path
analysis,” PhD thesis, Saarland University, 2002.

[24] D. Van Horn and H. G. Mairson, “Relating complexity and precision
in control flow analysis,” ACM SIGPLAN Notices, vol. 42, no. 9, pp.
85–96, 2007.

[25] L. Xu, F. Sun, and Z. Su, “Constructing precise control flow graphs
from binaries,” University of California, Davis, Tech. Rep, pp. 14–23,
2009.

[26] K. Zhu, Y. Lu, H. Huang, L. Yu, and J. Zhao, “Constructing more
complete control flow graphs utilizing directed gray-box fuzzing,”
Applied Sciences, vol. 11, no. 3, p. 1351, 2021.

[27] J. Hu, D. Huo, M. Wang, Y. Wang, Y. Zhang, and Y. Li, “A probability
prediction based mutable control-flow attestation scheme on embed-
ded platforms,” in 2019 18th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications/13th
IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). IEEE, 2019, pp. 530–537.

[28] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A combination method for
android malware detection based on control flow graphs and machine
learning algorithms,” IEEE access, vol. 7, pp. 21 235–21 245, 2019.

[29] M. N. Aman, H. Basheer, J. W. Wong, J. Xu, H. W. Lim, and
B. Sikdar, “Machine learning based attestation for the internet of
things using memory traces,” IEEE Internet of Things Journal, 2022.

[30] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
“RIPE: Runtime intrusion prevention evaluator,” in In Proceedings of
the 27th Annual Computer Security Applications Conference, ACSAC.
ACM, 2011.

[31] J. Bennett, P. Dabbelt, C. Garlati, G. Madhusudan, T. Mudge, and
D. Patterson, “Embench: An evolving benchmark suite for embedded
iot computers from an academic-industrial cooperative,” 2022.

[32] A. M. Turing et al., “On computable numbers, with an application
to the entscheidungsproblem,” J. of Math, vol. 58, no. 345-363, p. 5,
1936.

[33] D. Granata, R. Cerulli, M. G. Scutella, A. Raiconi et al., “Maximum
flow problems and an np-complete variant on edge-labeled graphs,”
Handbook of combinatorial optimization, pp. 1913–1948, 2013.

[34] A. Rimsa, J. Nelson Amaral, and F. M. Pereira, “Practical dynamic
reconstruction of control flow graphs,” Software: Practice and Expe-
rience, vol. 51, no. 2, pp. 353–384, 2021.

[35] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM conference on Computer and communications security,
2007, pp. 552–561.

https://threatpost.com/belkin-iot-smart-plug-flaw-allows-remote-code-execution-in-smart-homes/136732/
https://threatpost.com/belkin-iot-smart-plug-flaw-allows-remote-code-execution-in-smart-homes/136732/
https://threatpost.com/belkin-iot-smart-plug-flaw-allows-remote-code-execution-in-smart-homes/136732/
https://arstechnica.com/information-technology/2020/01/exploit-that-gives-remote-access-affects-200-million-cable-modems/
https://arstechnica.com/information-technology/2020/01/exploit-that-gives-remote-access-affects-200-million-cable-modems/
https://arstechnica.com/information-technology/2020/01/exploit-that-gives-remote-access-affects-200-million-cable-modems/
https://www.zdnet.com/article/nasty-linux-netfilter-firewall-security-hole-found/
https://www.zdnet.com/article/nasty-linux-netfilter-firewall-security-hole-found/
https://www.bleepingcomputer.com/news/security/cisa-warns-of-samsung-aslr-bypass-flaw-exploited-in-attacks/
https://www.bleepingcomputer.com/news/security/cisa-warns-of-samsung-aslr-bypass-flaw-exploited-in-attacks/
https://www.csa.iisc.ac.in/~vg/papers/ccs2023/
https://www.csa.iisc.ac.in/~vg/papers/ccs2023/

[36] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, 2011, pp. 30–40.

[37] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM conference on Computer and commu-
nications security, 2010, pp. 559–572.

[38] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block
oriented programming: Automating data-only attacks,” in Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018, pp. 1868–1882.

[39] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control
data attacks,” in 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 2016, pp. 969–986.

[40] A. Sperduti and A. Starita, “Supervised neural networks for the
classification of structures,” IEEE Transactions on Neural Networks,
vol. 8, no. 3, pp. 714–735, 1997.

[41] M. Welling and T. N. Kipf, “Semi-supervised classification with graph
convolutional networks,” in J. International Conference on Learning
Representations (ICLR 2017), 2016.

[42] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

[43] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[44] M. Xu, “Understanding graph embedding methods and their applica-
tions,” SIAM Review, vol. 63, no. 4, pp. 825–853, 2021.

[45] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The program
counter security model: Automatic detection and removal of control-
flow side channel attacks,” in Information Security and Cryptology-
ICISC 2005: 8th International Conference, Seoul, Korea, December
1-2, 2005, Revised Selected Papers 8. Springer, 2006, pp. 156–168.

[46] F. Hausdorff, Grundzüge der mengenlehre. von Veit, 1914, vol. 7.

[47] D. Bruening and S. Amarasinghe, “Efficient, transparent, and com-
prehensive runtime code manipulation,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, Department of Electrical Engi-
neering, 2004.

[48] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: secure
and minimal architecture for (establishing dynamic) root of trust.” in
Ndss, vol. 12, 2012, pp. 1–15.

[49] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite:
A security architecture for tiny embedded devices,” in Proceedings
of the Ninth European Conference on Computer Systems, 2014, pp.
1–14.

[50] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and
P. Koeberl, “Tytan: Tiny trust anchor for tiny devices,” in Proceedings
of the 52nd annual design automation conference, 2015, pp. 1–6.

[51] X. Carpent, N. Rattanavipanon, and G. Tsudik, “Remote attestation
of iot devices via smarm: Shuffled measurements against roving mal-
ware,” in 2018 IEEE international symposium on hardware oriented
security and trust (HOST). IEEE, 2018, pp. 9–16.

[52] M. N. Aman and B. Sikdar, “Att-auth: A hybrid protocol for industrial
iot attestation with authentication,” IEEE Internet of Things Journal,
vol. 5, no. 6, pp. 5119–5131, 2018.

[53] M. N. Aman, M. H. Basheer, S. Dash, A. Sancheti, J. W. Wong, J. Xu,
H. W. Lim, and B. Sikdar, “Prom: Passive remote attestation against
roving malware in multicore iot devices,” IEEE Systems Journal,
vol. 16, no. 1, pp. 789–800, 2021.

[54] X. Wang and R. Karri, “Numchecker: Detecting kernel control-
flow modifying rootkits by using hardware performance counters,”
in Proceedings of the 50th Annual Design Automation Conference,
2013, pp. 1–7.

[55] Y. Xia, Y. Liu, H. Chen, and B. Zang, “Cfimon: Detecting violation
of control flow integrity using performance counters,” in IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012). IEEE, 2012, pp. 1–12.

[56] S. P. Kadiyala, M. Alam, Y. Shrivastava, S. Patranabis, M. F. B. Ab-
bas, A. K. Biswas, D. Mukhopadhyay, and T. Srikanthan, “Lambda:
Lightweight assessment of malware for embedded architectures,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 19,
no. 4, pp. 1–31, 2020.

Appendix
Appendix A.
Features Extracted
In Table 4 we report the features we extract while preprocessing an
execution into a graph.

TABLE 4. FOR EACH EXTRACTED FEATURE, WE HAVE SPECIFIED THE
SPECIFIC DETECTION PURPOSE FOR WHICH IT IS INTENDED.

Feature Use
1 Vertex degree ROP
2 Number of visits ROP & DOP
3 First visit ROP & DOP
4 Last visit ROP & DOP
5 Incoming edges ROP
6 Outgoing edges ROP
7 Frequency of visits ROP & DOP
8 Time of use ROP & DOP
9 Std visits ROP & DOP
10 Mean dist. visits ROP & DOP
11 Mean visits ROP & DOP
12 Mean N. visits. In. Neigh. ROP & DOP
13 Mean N. visits. Out. Neigh. ROP & DOP
14 Mean last visit In. Neigh. ROP & DOP
15 Mean last visit Out. Neigh. ROP & DOP

Appendix B.
Evaluation Results
In Figure 4 and Figure 5 we report the evaluation results in a graphic
manner for the cryptographic dataset.

Appendix C.
Real-World Attacks Results
In Figure 6 we report the evaluation of real-world attacks obtained through
the use of the framework RIPE. The details of each attack are reported in
Table 5.

Appendix D.
Threshold Ablation Study
Figure 7 reports the performance of RAGE in terms of the false-positive-rate
when considering a different amount of traces for computing the attestation
threshold. In Table 6 and Table 6 we report the detailed results for three
different amounts of used traces.

Appendix E.
Runtime Overhead
We evaluate RAGE’s runtime overhead generated by the system, in terms
of storage and computation times for the phases of preprocessing, training
and inference. In Table 7 we report the results. We perform this analysis
on a Raspberry Pi 4B 2GB. However, in a real-world scenario, the verifier
is a server with high computational power.
Note that the preprocessing phase can already take place while the software
is running, as the graph can be built at runtime as soon as every execution
step of the current execution is collected, drastically reducing the impact
on the system. Moreover, from the preprocessing timings, it can be seen
how this phase scales linearly to the trace length (cf., Section 5.3).
The evaluation shows that even on resource-constrained devices, the train-
ing and inference phase are extremely efficient (i.e., less than 5 minutes
and less than 0.15 seconds, respectively) thanks to RAGE’s lightweight
model allowing a swift attestation. Further, storage-efficiency-wise dealing
with structured data (i.e., graphs) allows the system to reduce the stor-
age/communication overhead significantly, achieving a compression of up
to 276.90 times compared to a raw trace. Moreover, the runtime memory
footprint shows the applicability of our approach to resource-constrained

TABLE 5. REAL-WORLD ATTACKS DETAILS. ROP* INDICATES THAT
THE ROP ATTACK SETTING DESCRIBED IN THE TABLE ARE VALID FOR
THE 5 ROP ATTACK PERFORMED WITH DIFFERENT CHAIN LENGTHS.

Bin. # Attack Type Overflow Type Attack Location Target Code Ptr. Function Exploited
1 r2libc direct stack funcptrstackvar strcpy
2 r2libc direct stack funcptrstackvar strncpy
3 r2libc direct stack funcptrstackvar sprintf
4 r2libc direct stack funcptrstackvar strcat
5 r2libc direct stack funcptrstackvar strncat
6 r2libc direct stack funcptrstackvar sscanf
7 r2libc direct stack funcptrstackvar fscanf
8 r2libc direct stack funcptrstackvar homebrew
9 r2libc direct stack structfuncptrstack memcpy

10 r2libc direct stack structfuncptrstack strcpy
11 r2libc direct stack structfuncptrstack strncpy
12 r2libc direct stack structfuncptrstack sprintf
13 r2libc direct stack structfuncptrstack snprintf
14 r2libc direct stack structfuncptrstack strcat
15 r2libc direct stack structfuncptrstack strncat
16 r2libc direct stack structfuncptrstack sscanf
17 r2libc direct stack structfuncptrstack fscanf
18 r2libc direct stack structfuncptrstack homebrew
19 r2libc direct heap funcptrheap memcpy
20 r2libc direct heap funcptrheap strcpy
21 r2libc direct heap funcptrheap strncpy
22 r2libc direct heap funcptrheap sprintf
23 r2libc direct heap funcptrheap snprintf
24 r2libc direct heap funcptrheap strcat
25 r2libc direct heap funcptrheap strncat
26 r2libc direct heap funcptrheap sscanf
27 r2libc direct heap funcptrheap fscanf
28 r2libc direct heap funcptrheap homebrew
29 r2libc direct heap structfuncptrheap memcpy
30 r2libc direct heap structfuncptrheap strcpy
31 r2libc direct heap structfuncptrheap strncpy
32 r2libc direct heap structfuncptrheap sprintf
33 r2libc direct heap structfuncptrheap snprintf
34 r2libc direct heap structfuncptrheap strcat
35 r2libc direct heap structfuncptrheap strncat
36 ROP* indirect stack baseptr memcpy

devices as the model occupies in average around 70.10KB, while the graph
data around 0.73KB.

TABLE 7. RUNTIME MEASUREMENTS FOR EACH DATASET. WE REPORT
THE TIMINGS FOR PREPROCESSING, TRAINING TIME AND INFERENCE.

FURTHER, WE REPORT THE COMPRESSION OBTAINED WHEN CHANGING
THE REPRESENTATION OF A TRACE TO GRAPH. ALL THE EXPERIMENTS

ARE EXECUTED ON A RASPBERRY PI 4B 2GB.

Dataset Trace Size Graph Size Preprocessing Training time Inference
(MB) (MB)(Compression) (s) (s) (s)

DH 2.46 0.24 (10.35×) 2.59 53.16 0.04
AES 27.86 0.89 (31.38×) 17.55 215.70 0.13

GOST 23.37 0.90 (26.05×) 14.99 352.50 0.10
DES 247.71 0.89 (276.90×) 149.00 245.00 0.13

DESX 252.77 0.92 (275.00×) 151.00 313.20 0.11
aha-mont64 6.84 0.19 (36.05×) 4.00 31.59 0.06

crc32 9.26 0.19 (49.64×) 5.22 51.97 0.05
cubic 2.75 0.23 (11.85×) 1.98 57.74 0.06
edn 6.60 0.20 (33.79×) 3.75 62.48 0.04

huffbench 8.81 0.20 (43.55×) 4.91 36.06 0.04
matmult-int 7.21 0.19 (37.49×) 4.06 35.37 0.06

md5sum 5.87 0.25 (23.82×) 3.70 67.57 0.06
minver 1.92 0.19 (9.96×) 1.42 101.00 0.06

nettle-aes 1.54 0.19 (8.00×) 1.17 68.18 0.06
nsichneu 13.52 0.26 (51.14×) 8.20 81.98 0.06
picojpeg 7.55 0.22 (33.86×) 4.49 62.49 0.05

primecount 30.53 0.19 (161.70×) 16.78 76.18 0.05
qrduino 8.12 0.23 (34.60×) 4.93 84.61 0.05

sglib-combined 11.29 0.22 (51.85×) 6.64 58.27 0.06
slre 10.94 0.20 (54.12×) 6.56 68.16 0.06

statemate 2.50 0.19 (12.88×) 1.79 55.22 0.04
tarfind 2.91 0.19 (15.33×) 1.87 36.64 0.05

wikisort 3.89 0.21 (18.77×) 2.42 37.30 0.06

0 200 400 600 800 1000

Executions

100

101

D
is

ta
nc

e
to

 tr
ac

e 0

ROP 5
ROP 10
ROP 15
Benign
Threshold

(a) Diffie-Hellman

0 50 100 150 200 250

Executions

10 1

100

101

D
is

ta
nc

e
to

 tr
ac

e 0

ROP 5
ROP 10
ROP 15
Benign
Threshold

(b) DES

0 50 100 150 200 250

Executions

100

101

102

D
is

ta
nc

e
to

 tr
ac

e 0

ROP 5
ROP 10
ROP 15
Benign
Threshold

(c) DESX

0 50 100 150 200 250

Executions

10 1

100

101

D
is

ta
nc

e
to

 tr
ac

e 0

ROP 5
ROP 10
ROP 15
Benign
Threshold

(d) GOST

0 50 100 150 200 250

Executions

100

101

D
is

ta
nc

e
to

 tr
ac

e 0

ROP 5
ROP 10
ROP 15
Benign
Threshold

(e) AES

Figure 4. Evaluation of ROP attacks. In the label “ROP x”, x indicates the length of the ROP attack in the trace. Each data point represents the mean of
50 evaluated ROP traces of the same kind. For better readability, the presented data points are capped at 15, as higher data points are naturally detected
as malicious.

0 200 400 600 800 1000

Executions

100

101

D
is

ta
nc

e
to

 tr
ac

e 0

DOP
Benign
Threshold

(a) Diffie-Hellman

0 50 100 150 200 250

Executions

10 1

100

101

D
is

ta
nc

e
to

 tr
ac

e 0

DOP
Benign
Threshold

(b) DES

0 50 100 150 200 250

Executions

100

101

102

D
is

ta
nc

e
to

 tr
ac

e 0

DOP
Benign
Threshold

(c) DESX

0 50 100 150 200 250

Executions

10 1

100

101

D
is

ta
nc

e
to

 tr
ac

e 0

DOP
Benign
Threshold

(d) GOST

0 50 100 150 200 250

Executions

100

D
is

ta
nc

e
to

 tr
ac

e 0

DOP
Benign
Threshold

(e) AES

Figure 5. Evaluation of DOP attacks. For each software, 100 different DOP attack traces have been generated, except for AES, where we generated 53
attacks.

D
is
ta
nc
e

Executions

D
is
ta
nc
e

Executions

Figure 6. Evaluation of real-world attacks performed on the picojpg binary of Embench. The blue and red dots represent, respectively, the benign executions
and the performed attack. In each title is specified the kind of attack and the methodology. When the attack is a ROP attack, it is reported the attack chain
length as ”ROP x”, where x is the length. The x-axis enumerates the executions, the y-axis represents the distance to the training trace. All the details on
the attacks are reported in Table 5

2 3 4 5 6 7 8 9 10

N traces Valset

0

5

10

15

20

FP
R

 %

AES
DES
DESX

DH
GOST

(a) Cryptographic Dataset

2 3 4 5 6 7 8 9 10

N traces Valset

0

5

10

15

20

25

FP
R

 %

aha-mont64
crc32
cubic
edn
huffbench
matmult-int

md5sum
minver
nettle-aes
nsichneu
picojpeg
primecount

qrduino
sglib-combined
slre
statemate
tarfind
wikisort

(b) Embench Dataset

Figure 7. Ablation study of the number of traces used for computing the attestation threshold, we observe the change of False-Positive-Rate. The experiments
are repeated 100 times.

TABLE 6. ABLATION STUDY OF THE NUMBER OF TRACES USED FOR COMPUTING THE ATTESTATION THRESHOLD. THE RESULTS ARE ABOUT THE
DETECTION OF ROP AND DOP ATTACKS. THE EXPERIMENTS ARE REPEATED 100 TIMES. FOR BREVITY, WE REPORT ONLY THE SELECTION 2, 5 AND

10 TRACES. ALL THE VALUES ARE IN PERCENTAGES.

ROP DOP
n=2 n=5 n=10 n=2 n=5 n=10

FPR Re. Pr. F1-Score FPR Re. Pr. F1-Score FPR Re. Pr. F1-Score Re. Pr. F1-Score Re. Pr. F1-Score Re. Pr. F1-Score
DH 21.81 97.18 79.06 85.8 12.32 96.28 85.78 89.98 7.12 95.44 90.59 92.58 90.37 46.77 54.47 87.48 55.68 61.87 86.03 62.51 69.22
AES 17.2 99.55 94.17 96.63 3.139 99.22 98.84 99.01 0.78 99.06 99.69 99.37 85.79 67.35 70.85 80.25 89.43 83.47 78.92 95.88 86.41
DES 23.02 99.86 92.15 95.7 11.76 99.75 95.72 97.64 9.10 99.7 96.58 98.09 100.0 69.78 80.31 100.0 80.43 88.21 100.0 82.79 90.1
DESX 21.69 99.45 92.47 95.71 12.58 99.37 95.4 97.29 8.82 99.3 96.66 97.95 97.92 70.01 79.78 98.56 78.99 86.70 98.89 82.98 89.81
GOST 18.66 99.78 93.84 96.53 5.34 99.63 98.1 98.81 1.51 99.57 99.4 99.48 91.12 72.95 75.84 85.09 88.08 83.93 82.81 93.49 86.60
aha-mont64 16.69 100.0 97.68 98.8 1.38 100.0 99.8 99.90 0.19 100.0 99.97 99.99 100.0 67.10 73.69 100.0 95.20 96.80 100.0 98.5 99.18
crc32 24.23 99.00 96.14 97.27 7.58 89.37 98.91 89.17 7.23 96.28 98.93 96.51 88.58 53.23 62.93 79.63 70.58 70.49 85.00 70.07 75.94
cubic 20.02 100.0 97.21 98.57 12.06 100.0 98.29 99.13 6.563 100.0 99.05 99.52 99.56 85.99 91.72 99.72 90.85 94.77 99.72 94.52 96.93
edn 12.21 99.87 98.27 99.05 4.38 99.75 99.36 99.55 3.25 99.72 99.52 99.62 99.15 78.13 86.30 99.03 89.89 93.9 99.27 91.89 95.29
huffbench 20.76 99.00 96.62 97.51 9.38 95.35 98.66 96.29 6.48 99.48 99.06 99.26 99.00 85.01 90.67 90.00 87.48 85.92 94.12 94.06 92.01
matmult-int 13.69 98.70 98.11 98.37 2.76 97.72 99.61 98.64 0.28 97.02 99.96 98.47 98.58 88.43 92.27 98.07 97.10 97.39 96.72 99.65 98.12
md5sum 19.24 99.86 97.35 98.56 3.72 99.87 99.45 99.66 3.84 99.99 99.44 99.71 98.26 87.08 91.45 99.11 96.57 97.78 99.47 96.44 97.92
minver 12.8 100.0 98.25 99.09 1.90 100.0 99.73 99.86 0.00 100.0 100.0 100.0 100.0 91.86 95.13 99.96 98.63 99.2 99.97 100.0 99.98
nettle-aes 14.33 100.0 98.02 98.98 3.83 100.0 99.44 99.72 2.96 100.0 99.57 99.78 99.91 90.14 94.26 99.57 96.62 98.03 99.51 97.23 98.35
nsichneu 12.77 97.29 98.21 97.65 5.33 93.06 99.21 95.93 2.90 89.9 99.53 94.43 100.0 51.30 64.80 100.0 65.01 77.12 100.0 68.90 81.41
picojpeg 11.53 100.0 98.38 99.17 1.97 100.0 99.72 99.86 0.08 100.0 99.99 99.99 100.0 91.88 95.34 100.0 98.48 99.16 100.0 99.92 99.96
primecount 21.05 72.00 96.05 82.27 8.07 72.00 98.41 83.15 3.69 72.00 99.26 83.46 53.00 77.99 62.10 53.00 88.89 66.14 53.00 94.19 67.76
qrduino 21.98 98.43 96.45 97.03 7.43 95.21 98.93 95.65 2.57 92.42 99.60 95.16 98.00 83.45 89.26 92.00 87.99 88.76 78.00 75.94 76.95
sglib-combined 13.56 100.0 98.15 99.04 0.53 100.0 99.92 99.96 0.00 100.0 100.0 100.0 100.0 91.24 94.80 100.0 99.57 99.77 100.0 100.0 100.0
slre 24.57 100.0 96.62 98.25 10.65 100.0 98.48 99.23 8.06 100.0 98.84 99.41 100.0 83.66 90.41 100.0 91.62 95.42 100.0 93.23 96.40
statemate 16.45 99.98 97.72 98.82 5.40 99.99 99.22 99.6 1.68 100.0 99.75 99.87 100.0 88.63 93.44 100.0 95.59 97.62 100.0 98.44 99.21
tarfind 10.59 100.0 98.52 99.24 2.71 100.0 99.61 99.80 1.08 100.0 99.84 99.92 99.67 92.68 95.6 99.01 97.87 98.34 98.57 98.97 98.75
wikisort 19.65 100.0 97.26 98.59 9.43 99.98 98.65 99.31 6.50 99.97 99.05 99.51 99.96 86.16 92.04 99.9 92.47 95.85 99.83 94.29 96.93

	Introduction
	Background
	Control-Flow Graph
	Control-Flow Attestation
	Code Reuse Attacks
	Graph Neural Networks
	Variational Graph Autoencoders (VGAEs)
	Graph Embeddings

	System and Threat Model
	RAGE Design
	Geometric Deep Learning Model
	Graph Encodings Distance

	Implementation
	Tracing and Data Collection
	Datasets
	Embedded Platforms Dataset
	Cryptographic Dataset
	Real-World Attack Traces
	Synthetic Trace Generation

	Data Preprocessing
	Feature Extraction

	Model Training
	Attestation Threshold

	Evaluation
	Evaluation Metrics
	Results
	ROP
	DOP

	Runtime Overhead

	Security Considerations
	CFG Completeness
	CRA Detection

	Related Work
	Static Attestation
	Control-Flow Attestation (CFA)
	ML-based Attestation

	Discussion: Real-World Applicability
	Conclusion
	References
	Appendix
	Appendix A: Features Extracted
	Appendix B: Evaluation Results
	Appendix C: Real-World Attacks Results
	Appendix D: Threshold Ablation Study
	Appendix E: Runtime Overhead

