
WhisperFuzz: White-Box Fuzzing for
Detecting and Locating Timing Vulnerabilities in Processors

Pallavi Borkar§,∗, Chen Chen†,∗, Mohamadreza Rostami‡, Nikhilesh Singh§, Rahul Kande†,
Ahmad-Reza Sadeghi‡, Chester Rebeiro§, and Jeyavijayan (JV) Rajendran†

§Indian Institute of Technology Madras, India, †Texas A&M University, USA,
‡Technische Universität Darmstadt, Germany

§{cs20d202, nik, chester}@cse.iitm.ac.in,
†{chenc, rahulkande, jv.rajendran}@tamu.edu,

‡{mohamadreza.rostami, ahmad.sadeghi}@trust.tu-darmstadt.de

Abstract
Timing vulnerabilities in processors have emerged as a po-
tent threat. As processors are the foundation of any comput-
ing system, identifying these flaws is imperative. Recently
fuzzing techniques, traditionally used for detecting software
vulnerabilities, have shown promising results for uncover-
ing vulnerabilities in large-scale hardware designs, such as
processors. Researchers have adapted black-box or grey-box
fuzzing to detect timing vulnerabilities in processors. How-
ever, they cannot identify the locations or root causes of these
timing vulnerabilities, nor do they provide coverage feedback
to enable the designer’s confidence in the processor’s security.

To address the deficiencies of the existing fuzzers, we
present WhisperFuzz—the first white-box fuzzer with static
analysis —aiming to detect and locate timing vulnerabilities
in processors and evaluate the coverage of microarchitectural
timing behaviors. WhisperFuzz uses the fundamental nature
of processors’ timing behaviors, microarchitectural state tran-
sitions, to localize timing vulnerabilities. WhisperFuzz auto-
matically extracts microarchitectural state transitions from a
processor design at the register-transfer level (RTL) and instru-
ments the design to monitor the state transitions as coverage.
Moreover, WhisperFuzz measures the time a design-under-test
(DUT) takes to process tests, identifying any minor, abnormal
variations that may hint at a timing vulnerability. Whisper-
Fuzz detects 12 new timing vulnerabilities across advanced
open-sourced RISC-V processors: BOOM, Rocket Core, and
CVA6. Eight of these violate the zero latency requirements of
the Zkt extension and are considered serious security vulnera-
bilities. Moreover, WhisperFuzz also pinpoints the locations
of the new and the existing vulnerabilities.

1 Introduction

The evolution in computer architecture has significantly am-
plified the complexity of hardware design, especially in mod-
ern processors, which are the foundation of today’s comput-

∗These authors contributed equally to this work.

ing systems. As technology advances, designers integrate
more functionalities into hardware, leading to more intri-
cate architectural and microarchitectural features in proces-
sors. However, as the complexity of the design increases,
so does the number of design regions to verify and pro-
tect. Traditional techniques to verify modern processors can-
not scale with the number of (new) hardware vulnerabili-
ties discovered. For example, the number of newly detected
hardware common vulnerabilities in the National Vulnerabil-
ity Database (NVD) increased from three in 2012 to 92 in
2022 [5]. Further, as of 2023, MITRE reported 117 hardware-
related vulnerability types, known as Common Weakness
Enumerations (CWEs) [41]. These rapidly increasing vulner-
abilities threaten the security of the expanding digital land-
scape across different domains necessitating efficient detec-
tion strategies [13, 15, 21, 44, 45].

Timing vulnerabilities are of particular concern as they
can leak sensitive information, undermining the entire sys-
tem’s security. Well-known attacks such as Spectre [38],
Meltdown [40], Foreshadow [61], LVI [62], RIDL [63], Zom-
bieLoad [54], CrossTalk [50], Zenbleed [4], and Retbleed [68]
exploit timing vulnerabilities present in a wide range of com-
mercial processors. Multiple variants of these attacks have
been shown to subvert security countermeasures implemented
to prevent such attacks. Unlike functional vulnerabilities, tim-
ing vulnerabilities can manifest in a logically correct imple-
mentation, making them hard to detect. Timing vulnerabilities
rely on the difference in execution time of the hardware com-
ponents to leak sensitive information. These vulnerabilities
underscore the need for rigorous security analysis in modern
processors. Moreover, unlike software flaws, which can be
patched post-deployment, fixing hardware vulnerabilities af-
ter manufacturing is difficult, as they are physically ingrained
into the Silicon. Therefore, detecting vulnerabilities at the
pre-Silicon stage is imperative for secure hardware.
Existing timing vulnerability detection strategies for pro-
cessors use formal methods or fuzzing. Formal methods,
such as theorem proving [20], model checking [18], assertion
proving [70], and information-flow tracking [33] explore de-

ar
X

iv
:2

40
2.

03
70

4v
2

 [
cs

.C
R

]
 1

4
M

ar
 2

02
4

sign spaces exhaustively and prove security assertions about
hardware. Thus, detecting timing vulnerabilities using for-
mal methods is a rigorous approach to ensure design secu-
rity [22, 59]. However, these methods are limited by the state
explosion problem [10, 17–19]; exhaustively exploring the
complex modern hardware is computationally hard [16, 31].
Some approaches aim to handle this scalability issue by mod-
eling hardware at the higher abstraction level and approximat-
ing its timing behavior [59]. However, abstracting hardware
can lead to over-optimistic results or false positives [16]. Fur-
thermore, these formal approaches require a comprehensive
understanding of the designs’ security specifications and man-
ually defining properties, an error-prone process [46].

Alternatively, hardware fuzzing has shown its effective-
ness in detecting vulnerabilities in large-scale designs [14,
16, 34, 37, 39, 71]. Using fuzzing, Google detected the re-
cent vulnerability on AMD Zen2 processors, Zenbleed [4], a
speculative execution vulnerability that allows attackers to ex-
tract sensitive information through software exploitation [47].
Black-box fuzzing [35, 67] and grey-box fuzzing [51] have
been applied to detect timing vulnerabilities in processors.
They explore the design spaces by generating different combi-
nations of instructions as inputs and use performance counters
to identify potential timing vulnerabilities [35, 51, 67]. While
these techniques overcome the scalability issue of formal
verification, they suffer from two critical limitations. First,
although they successfully find instructions that cause timing
vulnerabilities, they rely on confirmation from designers to
identify and pinpoint the root cause (locations) [35, 51, 67].
Second, they lack the adequate coverage metric to capture the
timing behaviors of the processor. Designers rely on cover-
age metrics to obtain the necessary confidence before tape-
out [27, 36, 58]. Therefore, introducing such metrics to evalu-
ate the progress of fuzzing is typical [69]. We will elaborate
on these shortcomings in Section 5.
Our Goals and Contributions. We enhance existing fuzzing
strategies to address their limitations by integrating static
analysis. This allows us to automatically pinpoint the sources
of timing vulnerabilities and compute the coverage of timing
behaviors in processor designs. Our fuzzer efficiently explores
the design space, detecting timing vulnerabilities, while our
novel static approach identifies the root causes and provides
timing behavior coverage.

Locating the root cause of timing vulnerabilities and com-
puting timing coverage is non-trivial and poses several chal-
lenges: (i) expressing the timing behaviors of processor mod-
ules formally is complex, as they do not operate in isolation
and can influence each other; (ii) finer measurement of mod-
ule timing behaviors is needed, which is time-consuming for
modern processors with numerous modules [73,74]; (iii) trac-
ing vulnerabilities to their root causes within the design space
is intricate; and (iv) traditional mutation algorithms used in
fuzzers are insufficient for detecting timing vulnerabilities
due to their reliance on microarchitectural state transitions.

To address these challenges, (i) We have developed the
Micro-Event Graph, a static program analysis technique that
formally expresses module timing behaviors in a processor
by extracting microarchitectural state transitions of a design-
under-test (DUT) at the register-transfer level (RTL). To effi-
ciently cover the extensive design space, we tailor the tech-
nique to generate individual graphs for each RTL module (cf.
Section 3.5). (ii) We analyze each RTL module’s simulation
trace to measure its timing behaviors precisely. To streamline
our analysis efforts, we devise a hierarchical strategy based
on the characteristics of timing vulnerabilities to prioritize
modules for examination (cf. Section 3.6). (iii) We pinpoint
the root causes of detected timing vulnerabilities utilizing
static analysis techniques and properties of the Micro-Event
Graph, employing a module-wise strategy to navigate the
complex design space. (iv) We have adapted traditional hard-
ware fuzzing methods to efficiently explore a DUT’s design
spaces and crafted a specialized mutation engine to exploit
timing vulnerabilities. Furthermore, we have instrumented
graphs into the DUT to monitor module state transitions based
on the input (cf. Section 3.8).
In summary, our contributions are:

• We present a novel white-box fuzzer with static analysis,
WhisperFuzz, for timing vulnerability detection in proces-
sors at the RTL. WhisperFuzz extracts and monitors mi-
croarchitectural state transitions at RTL and measures the
timing behaviors of each RTL module to identify timing
vulnerabilities. Hardware fuzzing enables WhisperFuzz to
explore the microarchitectural state space efficiently.

• With static analysis, WhisperFuzz will identify the location-
s/root causes of timing vulnerabilities. Moreover, Whisper-
Fuzz introduces a timing coverage metric to help designers
evaluate the timing behaviors explored.

• We evaluate the effectiveness of WhisperFuzz on three real-
world, open-sourced processors from RISC-V instruction
set architecture (ISA) – BOOM [74], Rocket Core [9], and
CVA6 [73], which are widely used as benchmarks in the
hardware security community.

• WhisperFuzz finds 12 new timing vulnerabilities across
all three benchmarks. Eight of them pose serious security
vulnerabilities, according to the RISC-V Zkt contract [43].
WhisperFuzz also pinpoints the locations of all existing and
new vulnerabilities.

2 Background

In this section, we provide a succinct background on hardware
fuzzing and microarchitectural timing side channels, which
form the basis of WhisperFuzz.

2.1 Hardware Fuzzing

Hardware fuzzing is a dynamic verification technique that
iteratively generates testing inputs called tests to verify target
hardware [16, 34, 39]. A coverage-feedback fuzzer starts by
generating an initial set of tests, called seeds, randomly using
a seed generator. When fuzzing processors, these seeds are
executable programs with a sequence of instructions [16, 37].
The fuzzer simulates the target hardware with these tests using
open-source or commercial hardware simulation tools such
as Verilator [56] and Synopsys VCS [3].

During simulation, the fuzzer collects coverage informa-
tion that quantifies the activities caused by the test in the
hardware. For instance, the coverage information can be rep-
resented as transitions of finite-state machines (FSMs) [37].
Fuzzers either instrument the hardware to add activity mon-
itors [34, 39], or use the existing coverage monitors of the
simulation tools [16, 37] to collect this coverage informa-
tion. Next, it generates new tests automatically by performing
bit manipulation operations, called mutations on the current
tests, increasing coverage. The fuzzer iterates over this cycle
of test generation and simulation to verify target hardware till
desired coverage is achieved.

Fuzzers use a vulnerability detector to detect vulnerabilities
using differential testing or hardware assertions. In differential
testing, the fuzzer runs a golden reference model along with
the target hardware and compares its outputs to detect vulner-
abilities [34, 37]. Alternatively, some fuzzers insert hardware
assertions, i.e., rules describing the expected behavior, in the
target hardware and detect vulnerabilities as violations of
these assertions [42]. While existing black-box [35, 67] and
grey-box [51] fuzzers can detect timing vulnerabilities in pro-
cessors, these approaches fail to locate the root causes of these
vulnerabilities. Further, these techniques can not evaluate the
explored timing behaviors. These limitations delay the miti-
gation process and hamper the designer’s confidence due to
absence of a coverage metric.

2.2 Timing Side-Channel Attacks

Timing side-channel attacks exploit measurable variations
in the execution time of instructions to glean secret infor-
mation from victim applications. These timing variations
arise from interactions of different operands with the micro-
architecture. For instance, [11] proposed a timing attack to
recover AES keys by measuring the cache accesses during
encryption across different keys.

Over the years, multiple techniques to perform tim-
ing attacks have developed such as PRIME+PROBE [48],
EVICT+TIME [48], and FLUSH+RELOAD [30]. The key idea
of all these attacks is to target a specific shared resource, such
as the cache memory, and exploit its data-dependent timing
behavior. Such attacks consist of a sequence of instructions
which when executed with different data take different exe-

Listing 1: A pair of instruction sequences that have identical
instructions but operate on different data. The instruction
sequence is a timing vulnerability if the execution times differ.
1 LI t6, 0x81321 LI t6, 0x11235
2 LI a7, 0xFEEEE LI a7, 0xFFFFF
3 LD t4, 0(a7) LD t4, 0(a7)
4 ADDI a9, a5, t4 ADDI a9, a5, t4
5 LD t5, 0(t6) LD t5, 0(t6)

cution times. For example, consider the pair of instruction
sequences in Listing 1. The two sequences are identical but
differ in the data they operate upon. The sequence can be
considered a timing vulnerability if the execution of the two
sequences results in different execution times.

The objective of our work is to develop WhisperFuzz, which
identifies such instruction sequences and pairs of input data
that result in different execution times. Furthermore, Whisper-
Fuzz localizes the root cause for the differing execution times,
thereby assisting in mitigation.

3 Methodology

In this section, we first explain the relationship between tim-
ing behaviors and transitions of a digital circuit. We introduce
the Micro-Event Graph that helps capture the microarchitec-
tural transitions at a fine granularity. We use this graph to
identify the location of timing vulnerabilities and monitor
the timing behaviors covered. Further, we discuss the chal-
lenges of extracting the Micro-Event Graph from a processor
design. Finally, we give an overview of our solutions to these
challenges and elaborate on each solution.

3.1 Microarchitectural Transitions and Tim-
ing Behaviors

A finite-state machine (FSM) can model a sequential digital
circuit. Given an input, the circuit transitions through various
states in the FSM to produce the output. Assuming each state
in the FSM takes constant time, the sequence of state tran-
sitions to generate the output determines the execution time
of the circuit for a given input. Thus, we claim: two different
inputs resulting in the same state transition sequences will
take the same execution time.

Consider the case study of a cache composed of multiple
cache sets. Each cache set can be represented as an FSM with
five states: LookUp, FreeBlock, Replace, Wait, and Ready,
as shown in Figure 1. When a program accesses data, the
cache first performs a look-up for the associated memory ad-
dress in the LookUp state. If the data is found in the cache
(cache hit), it will be directly transferred to the Ready state,
and the processor can access the data without going to the
main memory. Thus, an input address that is already present in
the cache set causes transitions {LookUp → Ready} taking

~1 cycle~2 cycles

LookUp Free
Block

Wait

Miss

Hit Request

Request

Response

~15 cycles

~4 cycles

~1 cycle

Ready

Full

Replace

Figure 1: A finite-state machine (FSM) representation of the
cache set protocol. Each state is assumed to take a constant
time as shown at each node.

three clock cycles in its corresponding implementation. How-
ever, if the data is not found (cache miss), the cache set will
transfer to the FreeBlock state to look for a free cache block
to store the data. If a free block exists, the cache will transition
to the Wait state and request the memory for the correspond-
ing data. In case the cache does not have a free block, it will
transfer to the Replace state, select a block for eviction based
on the replacement policy, and then transfer to the Wait state.
The cache waits in this state until it receives data from mem-
ory. It then transitions to the Ready state. Thus, if an input ad-
dress is not present in the cache set, two FSM state transition
sequences (and execution times) are possible: (i) {LookUp →
FreeBlock → Wait → Ready}, taking 19 clock cycles if
the cache has a free block or (ii) {LookUp → FreeBlock
→ Replace → Wait → Ready}, taking 23 cycles if the
cache does not have a free block. Assuming each state in
the FSM takes a constant execution time, a difference in the
execution time of two inputs implies a difference in the se-
quence of state transitions followed in the FSM. However, in
practice, FSM states do not always take a constant execution
time. Moreover, an FSM model is abstract and cannot effec-
tively represent complex microarchitectural details in digital
circuits. Thus, an FSM representation fails to uncover timing
differences arising at the microarchitectural level. Further,
it makes localizing the source of timing difference difficult,
delaying the mitigation process.

We introduce Micro-Event Graphs (MEGs) to overcome
these drawbacks. A MEG models a given digital circuit using
the register-transfer level (RTL) as a set of events, which we
call microarchitectural events. Each microarchitectural event
affects the contents of at least one element, such as a wire or
a register in the digital circuit. A MEG models a given digital
circuit as possible events and dependencies between these
events. Each node in the MEG represents an element while
a directed edge from a parent node to a child node indicates
that an event on the parent element can potentially trigger an
event on the child element.

Figure 2 shows a high-level representation of the MEG
corresponding to the cache set protocol. The MEG consists of

L9

F13

W14

L8

L7

L4

F11

W15

P3

P1

P12

P2

L6
P5

R10

Figure 2: A high level representation of Micro-Event
Graph (MEG) for cache set protocol represented as an FSM
in Figure 1.

15 nodes and 115 edges. Each state in the corresponding FSM
(refer Figure 1) maps to one or more nodes in the MEG. For
example, nodes colored in green (node labels starting with L)
correspond to state LookUp and those colored in yellow (node
labels starting with P) correspond to state Replace. Each
execution of the cache set protocol can be mapped to at least
one path in the MEG shown. Similar to the state transitions
in the FSM, but at the finest granularity, an input triggers a
sequence of microarchitectural events in the MEG during its
execution, each taking a constant time. Thus, one can have
the following observations:

P1. If two inputs to the microarchitecture result in the same
event transitions in the MEG, then the execution time
for the two inputs is the same.

P2. If there is a difference in the execution time of the two
inputs, then the sequence of microarchitectural events
followed is different for the two executions.

P3. If two inputs to the microarchitecture result in different
event transitions in the MEG, then the execution time
for the two inputs may differ.

3.2 Detecting and Localizing Timing Vul-
nerabilities in Processors: A High-Level
Overview

The goal of WhisperFuzz is to detect and localize timing vul-
nerabilities in a processor design-under-test (DUT). To detect
timing vulnerabilities, we leverage the strength of hardware
fuzzing. The fuzzer generates an instruction sequence and
at least two corresponding data inputs of the form shown in
Listing 1, that take different execution times when applied
to the sequence. For each pair of instruction sequences and
inputs, we trace the path of events in the MEG. For example,
in Figure 2, each path represents an execution corresponding
to different addresses given to a load instruction. These paths

are then used to localize the root cause of the vulnerability.
The root cause is the event prior to the first bifurcation in
these two paths.

For example, consider the two highlighted paths in Fig-
ure 2. One path traces event sequence { L6, L7, R10}, while
the other traces {L6, L7, L9, W15, W14, R10}. Each path
corresponds to a different address given to a load instruc-
tion. Since the two paths are different, they may take different
execution times due to P3 (See Section 3.1), resulting in a
timing vulnerability. These paths trace the same events until
L7, after which they bifurcate. Hence, an event on node L7
will likely be the vulnerability’s root cause. The number of
paths covered in the MEG gives a notion of the coverage of
timing behaviors of the DUT.

3.3 Challenges

Developing WhisperFuzz involves the following challenges.

C1. Generating the MEG. The MEG must capture all pos-
sible events and event transitions in a given processor DUT.
This is specifically challenging in modern microprocessors
due to their complexity and large code bases. We develop an
automated strategy to address this challenge that extracts the
MEG given the DUT’s source code in RTL form. Section 3.5
elaborates on this strategy.
C2. Characterizing timing behavior of each processor
module. One way to determine timing behaviors is to input
instruction sequences to the DUT and measure the execution
time. However, a complete processor design contains thou-
sands of signals, complicating the localization of the vulnera-
bility. An alternate bottom-up approach is to isolate each mod-
ule in the processor, provide inputs, and measure the timing
behavior of the module. However, timing differences detected
may not be observable when the module is integrated into the
complete processor. Therefore, we follow a two-pronged ap-
proach where we first generate instruction sequences for the
complete processor to detect timing differences and localize
at a module level. We present a hierarchical analysis strategy
to prioritize the modules to be analyzed, thereby detecting
vulnerabilities faster, as discussed in Section 3.6.
C3. Localizing the source of timing vulnerability. The large
code space of the processor’s DUT makes it challenging to
locate the source of a timing vulnerability. It necessitates
manual effort and a detailed understanding of the processor’s
microarchitecture. To address this challenge, we introduce
an automated static analysis strategy on the MEG that can
identify the root cause of the timing vulnerability within a
few seconds. Section 3.7 elaborates on the strategy.
C4. Fuzzing the microarchitectural state space and de-
termining coverage. Hardware fuzzing has shown its effec-
tiveness in detecting vulnerabilities in large-scale designs,
such as processors. However, the existing grey-box proces-
sor fuzzers [51] are not compatible with timing vulnerability

detection. Their mutation algorithms are designed to accel-
erate coverage increment, but timing vulnerability detection
requires sequences of data-dependent instructions that change
processors’ timing behaviors as seen in Listing 1. Moreover,
existing fuzzers lack coverage feedback to demonstrate the
timing behaviors covered. Providing such metrics can help
designers decide to tape out. To address this challenge, we
develop a specialized mutation algorithm that generates data-
dependent instructions. We then use paths of each module’s
MEG as the timing coverage metric and instrument the DUT
to provide coverage feedback.

3.4 The WhisperFuzz Framework
To address the challenges discussed in Section 3.3, we de-
velop WhisperFuzz that comprises of three major modules:
Seed Generation, Vulnerability Detection, and Vulnerability
Localization, as shown in Figure 3.

Seed Generation. WhisperFuzz first uses the Seed Generation
module that contains a coverage-feedback fuzzer [14, 16, 34,
37,39] to explore design spaces guided by the fuzzer’s internal
code-coverage metric. The fuzzer utilizes the Input Generator
to generate input instructions, which are then simulated in the
fuzzer’s internal DUT Simulation unit. The Feedback Engine
calculates the code-coverage metric of this input. Based on
this metric, the Code Coverage Mutator mutates the input
instructions to improve the coverage. The Input Database
records various fuzzer-generated inputs and the corresponding
code-space covered.

Vulnerability Detection. Based on the Feedback Engine,
WhisperFuzz identifies a sequence of instructions that explore
new design spaces as seeds and sends them to the Vulnerabil-
ity Detection module. The Operands mutator in the Vulnera-
bility Detection module mutates the data in the instruction se-
quence to trigger varying timing behaviors (See Section 3.8).
These mutated instruction sequences are simulated in the
DUT Simulation unit of the Vulnerability Detection module.
The Leakage analyzer then compares simulation traces and
detects timing vulnerabilities (See Section 3.6).

Vulnerability Localization. WhisperFuzz invokes the Prepro-
cessor in Vulnerability Localization to extract Micro-Event
Graph of modules (See Section 3.5) and instruments poten-
tial timing behaviors based on the Micro-Event Graph. For
the timing vulnerabilities identified by the Leakage analyzer,
WhisperFuzz invokes the Diagnozer to pinpoint the cause
of these timing vulnerabilities (See Section 3.7). The Cov-
erage analyzer collects simulation traces of all inputs from
the Vulnerability Detection module and calculates the timing
behaviors covered.

The WhisperFuzz framework repeats these steps until there
is a timeout, or the fuzzer and Operand mutator completely
cover the timing behaviors of the DUT.

FEEDBACK ENGINE

bez x4,34
add x3,x5
. . .

bltz x4,34
add x3,x5
. . .

bez x4,44
add x6,x5
. . .

...

bez x4,34
add x3,x5
. . .

bez x4,34
add x3,x5
. . .

INPUT GENERATOR

CODE COVERAGE MUTATOR

DUT Simulation

Input Database

bez x4,34
add x3,x5
. . .

bez x4,34
add x3,x5
. . .

bez x4,34
add x3,x5
. . .

------------------------ ------------

bez x4,34
add x3,x5
. . .

bez x4,34
add x3,x5
. . .

bez x4,34
add x3,x5
. . .

bez x4,34
add x3,x5
. . .

bez x4,34
add x3,x5
. . .

bez x4,74
add x3,x5
. . .

bez x4,34
add x3,x5
. . .

bez x4,34
add x3,x5
. . . bez x4,34

add x3,x5
. . .

bez x4,64
add x3,x5
. . . bez x4,34

add x3,x5
. . .

bez x4,74
add x3,x5
. . .

...

bez x4,34
add x3,x5
. . .

bez x4,54
add x3,x5
. . .

bez x4,64
add x3,x5
. . .

...

bez x4,34
add x3,x5
. . .

bez x4,54
add x3,x5
. . .

bez x4,74
add x3,x5
. . .

...
...

PREPROCESSOR

COVERAGE
ANALYZER

DIAGNOZER

DUT
Simulation

Timing
vulnerabilities

bez x4,34
add x3,x5
. . .

bez x4,34
add x3,x5
. . .

bez x4,34
add x3,x5
. . .

LEAKAGE ANALYZER

OPERAND MUTATOR

DUT

SE
E

D
 G

E
N

E
R

AT
IO

N
V

U
L

N
E

R
A

B
IL

IT
Y

D
E

T
E

C
T

IO
N

Coverage

report

Timing
vulnerabilities
with locations

V
U

L
N

E
R

A
B

IL
IT

Y
L

O
C

A
L

IZ
AT

IO
N

tag_
addr

comp
lete

fetch mem_
call

hit

addr

way

tag_
addr

comp
lete

fetch mem_
call

hit

addr

way

tag_
addr

comp
lete

fetch mem_
call

hit

addr

way

M
i
c
r
o
-
E
v
e
n
t

G
r
a
p
h
s

Inputs

...

Figure 3: The WhisperFuzz framework. It includes three key modules. First, the Seed Generation module internally utilizes a
coverage-feedback fuzzer to explore the design space. The generated inputs are recorded in a database. Mutations are performed
to improve code coverage. Second, the Vulnerability Detection module uses the generated seed, mutates the instruction operands,
and identifies the timing vulnerabilities based on DUT simulations. Finally, the Vulnerability Localization module pinpoints the
locations of uncovered vulnerabilities.

3.5 Extracting Micro State Transitions
In this section, we elaborate on the MEG used to address chal-
lenge C1. Using a Preprocessor, WhisperFuzz parses the RTL
code of a given design to generate its MEG representation.
Each node in the MEG represents an event corresponding
to an element in the RTL, while an edge indicates that there
exists an event on the parent node that can trigger a change
in the value of the child node. Edges between nodes are also
annotated with conditions required to trigger the event and
the RTL line number which causes the dependency between
the event. Nodes in the MEG can be categorized into se-
quential nodes or combinational nodes corresponding to the
sequential or combinational nature of the hardware element it
represents [29]. Formally, we define a MEG as:

Definition 1 Given the RTL of a module D in a DUT, the
corresponding micro-event graph is defined as G(D) = (S,Σ),
where the nodes are denoted by S = {s1,s2, · · · ,sn}= {Sq∪
Sc ∪ SI ∪ I ∪O} and include all elements in D; Sq and Sc
represent the sequential and combinational elements respec-
tively; SI represent external modules instantiated in D; I and
O are the set of inputs and outputs respectively to the module
D. The set Σ represents the edges in the graph, G, such that
(si,s j) ∈ Σ if a change in si may trigger a change in s j as per
the RTL. Each edge is annotated with the condition required
for the change to occur.

Listing 2: Simplified Verilog code of cache set protocol (refer
Figure 1).
1 input addr; output way;
2 reg hit, full, valid, fetch;
3 wire tag_addr, complete;
4 assign tag_addr = addr[tag_bits];
5 always@(posedge clock) begin
6 if tag_addr == tag
7 way <= index; hit <= 1;
8 if hit == 0 && full != 1 && valid == 1 begin
9 fetch <= 1; temp_way <= index;

10 if fetch == 1:
11 // Call mem_call for fetching block from next level.
12 // Sub-instance sets complete signal
13 mem_call(addr, complete);
14 if complete:
15 way <= temp_way;
16 end

Consider the cache set protocol example given in Sec-
tion 3.1, with its corresponding simplified Verilog code as
in Listing 2. A sub-graph of its MEG is shown in Figure 4,
denoting input node addr with an incoming edge. Due to
the assign statement on Line 4, a transition in the value of
addr triggers a change in the value of tag_addr. To de-
note this dependency, the graph contains a directed edge
from the node addr to tag_addr. Similarly, the value of
tag_address can influence the value of way and hit if the
condition (tag_address == tag) on Line 6 holds. Hence,
the edges from tag_address to way and hit are annotated
with the condition. The sub-instance call on Line 13 corre-

tag_
addr

tag_addr=
=

tag

tag_addr == tag

comp
lete

complete==1

hit == 0 &&
full == 0 &&
valid == 1

way
fetch == 1

fetch mem_
call

hit

addr

Figure 4: Sub-graph extracted from Micro-Event Graph in
Figure 2 of the cache set protocol case study. The L6, L7, L9,
W15, W14 and R10 nodes from Figure 2 correspond to addr,
tag_addr, hit, mem_call, complete, way respectively.

sponds to the dashed node mem_call in the MEG. The accept
state from node way indicates that it references an output
signal. Appendix A provides a further discussion on the im-
plementation details of MEG.

The Preprocessor parses the RTL description of the design,
translating it into the corresponding graphical representation
using Algorithm 1. Given an RTL module D, the Prepro-
cessor first extracts into G(D).X where X = I,O,S,Σ,or SI
corresponds to the set of inputs, outputs, nodes, edges, and
sub-instance nodes respectively (Lines 3 and 4). Finally, the
Preprocessor iterates over each line in the RTL, identifies
destination signals (Line 6) and operand signals (Line 7), and
adds an edge between each operand signal and the destination
signal (Line 9). The Diagnozer (Section 3.7) and Coverage
Analyzer (Section 3.8) of WhisperFuzz utilize this MEG for
further analysis. WhisperFuzz generates Micro-Event Graph
for each module individually to counteract the vast design
complexity of processors. The comparitively reduced permod-
ule complexity consumes a reasonable computation cost and
resource utilization as shown in Table 3.

Micro-Event Path. We define a Micro-Event Path (MEP)
as a path that starts at the input node and traces connected
nodes until it reaches the output node. Given an input, this
path traces the sequence of events triggered in the module.
Formally,

Definition 2 A sequence of directed edges, P =
⟨(s1,s2),(s2,s3), · · · ,(sn−1,sn)⟩ where (si,s j) ∈ Σ,∀(i, j) and
s1 ∈ I and sn ∈ O, is a Micro-Event Path in G(D).

Figure 4 notes two different MEPs from the input node
addr to the output node way. Each path can be mapped to a
path in the FSM in Figure 1, but at a finer granularity. In case
of a cache hit, the module follows the FSM path {LookUp →
Ready} mapped to MEP {addr → tag_addr → way}. In
case of a cache miss, if the cache set has a free cache line, the

Algorithm 1: Preprocessor in Vulnerability Localiza-
tion module of WhisperFuzz.

Input : D // RTL code of module
Output : G // MEG of module

1 G(D).I← φ; G(D).SI ← φ; G(D).O← φ

2 G(D).S← φ; G(D).Σ← φ

3 G(D).I, G(D).SI , G(D).O← GETINOUTPUTS(D)
4 G(D).S← GETSIGNALS(D)
/* Iterate RTL code */

5 for line ∈ D do
// Get an operand set that can change

the value of destination signal
6 s2← GETDESTINATION(line)
7 s1← GETOPERANDS(line)
8 for s1 ∈ S1 do

// Add an edge between each operand
and the destination signal

9 G(D).Σ←G(D).Σ∪{s1,s2, line_no}

10 return G

module follows the FSM path {LookUp → FreeBlock →
Wait → Ready} mapped to {addr → tag_addr → hit
→ fetch → mem_call → complete → way}. A com-
parison of these two differing MEPs indicates the RTL wire
tag_addr as the hardware element responsible for the diver-
gence in the two paths. WhisperFuzz utilizes this information
to trace the root cause of the vulnerability, as elaborated in
Section 3.7.

3.6 Characterizing Timing Behaviors

Existing hardware fuzzers detect timing vulnerabilities by
measuring the execution time of an entire processor through
performance counters [35, 51, 66, 67]. WhisperFuzz, however,
requires finer information to localize the timing vulnerabil-
ities. Therefore, WhisperFuzz computes the execution time
taken by each module within the processor. For this purpose,
we use simulation of inputs generated by the Seed Generation
and mutated by the Operand Mutator.

For each simulation of the DUT, the Simulator generates a
set of simulation traces corresponding to each signal within
the DUT. A simulation trace is a time series that records
all transitions of a signal during an execution. The Leakage
Analyzer then selects the subset of interesting traces that can
lead to a vulnerability. These traces are snipped at the last
clock cycle at which any signal within a selected module
instance toggles. The duration of this constrained trace is
then computed as the execution time of the module instance.
The Leakage analyzer analyses the timing behaviors of each
module instance in a DUT to identify the module instance
with timing vulnerabilities.

Hierarchical leakage analysis. Modern processors, however,
consist of hundreds of module instances with various inter-
module dependencies [9, 73, 74]. Analyzing all their timing
behaviors is time-consuming and computationally expensive.
Hence, we require a staggered approach for leakage analysis,
which prioritizes modules based on their dependencies. A
different module-specific execution time indicates that the
source of the vulnerability either originates in the current
module or a module lower in the hierarchy. For example, the
memory control unit (MCU) controls the data accesses in
the cache. Upon storing the data at a memory address, the
cache sends the Ready signal to the MCU. Thus, if a timing
difference is in the cache delaying the Ready signal, the MCU
will also observe the timing difference.

The Leakage Analyzer implements a hierarchical method
taking a bottom-up approach. In this approach, we map the
dependencies between modules and place these modules into
various hierarchical levels such that the lower-level modules
are sub-instances of a higher-level module. The hierarchi-
cal leakage analysis is then carried out incrementally from
the lowest module to the highest module. For example, in
BOOM [74] there are 431 module instances, when placed hi-
erarchically they constitute 10 levels. Thus, BOOM analysis
starts from the tenth level and moves upwards until the top
module. This approach also ensures the detection of timing
vulnerabilities in all lower levels before detection in a higher
level module instance.

Once the Leakage analyzer identifies a module instance
with execution time differences caused by a pair of inputs,
it sends the module instance and the corresponding simula-
tion traces to Diagnozer to pinpoint the location of timing
differences further.

3.7 Localizing the Source of Timing Vulnera-
bilities

For a pair of inputs exhibiting a difference in execution time
in a particular module instance, the Diagnozer localizes the
source of the timing difference within the design RTL. The
Diagnozer takes as input two sets of simulation traces, each
corresponding to an execution of the DUT with different data
inputs. It operates in two phases: (i) identifying the element
causing the divergence and (ii) mapping the cause in the RTL
source code of the processor.

Identifying the element causing the divergence. For the
given pair of inputs, the Leakage Analyzer generates a set of
simulation traces corresponding to each input, ST1 and ST2 for
the module under examination, D. If each trace in the two sets
are exactly identical, then the execution time for the two inputs
are equal. On the other hand, if the execution time of the two
inputs are different, there exists a subset of the traces within
the two sets that differ. In this subset of simulation traces, the
trace which first deviates, corresponds to the combinational

Algorithm 2: The Diagnozer in WhisperFuzz to locate
the timing vulnerabilities in the DUT.

Input : (ST1,ST2) // Pair of simulation
traces

1 G(D) // MEG of module under examination
Output : (Vs,L) // Set of signals identified

as the cause of the timing difference
and corresponding line numbers in RTL,

2 Vs← φ; temp_Vs← φ; L← φ

/* Phase 1 */
3 for every clock cycle (clk) in ST1 do
4 for s ∈G(D) ·S do
5 if s ∈ ST1[clk] ̸= s ∈ ST2[clk] then
6 temp_Vs← temp_Vs∪{s}

7 if temp_Vs is not empty then
8 break

/* Phase 2 */
9 for temp_Vs is not empty do

10 new_Vs← φ

11 for s ∈ temp_Vs do
12 for (s,schild) ∈G(D) ·Σ do
13 if schild is sequential then
14 Vs←Vs∪{schild}
15 L← L∪{line_no}// RTL line

number

16 else
17 new_Vs← new_Vs∪{schild}

18 temp_Vs = new_Vs

19 return (Vs,L)

element that instigates the timing difference. Algorithm 2
shows the process of the Diagnozer. In the first phase, the
Diagnozer iterates through every clock cycle of simulation
traces and finds the first signals which differ in the two sets of
traces (Lines 6,7). It creates the list of signals temp_Vs whose
traces first differ between ST1 and ST2.

Mapping the cause in the source code. In a module, a timing
difference occurs because some hardware elements take vary-
ing clock cycles based on the input. The Sequential element
influences the number of clock pulses for execution. Hence,
to trace the source of the timing difference within the module,
the Diagnozer traces dependencies from the identified combi-
national signals to the sequential nodes in the MEG.
In Algorithm 2, this tracing is done by a Breadth First Search
to identify the subsequent sequential elements which origi-
nate from each signal in temp_Vs. This is stored in the list Vs
along with line numbers where the corresponding event on
the sequential element is found in the RTL of D.

3.8 Fuzzing Microarchitectural State Space

WhisperFuzz introduces two components Operand mutator
and Coverage analyzer to generate inputs for timing vulnera-
bility detection and to monitor timing behaviors explored.

Operand mutator consists of specialized mutation algo-
rithms to generate inputs for detecting timing vulnerabilities
in processors. Detecting vulnerabilities requires changing the
DUT’s timing behaviors by triggering different microarchi-
tectural state transitions [35, 51, 67]. Moreover, a valid timing
side-channel is data/memory-dependent [8, 24, 48, 64, 72].
Therefore, we constrain Operand mutator to mutate only the
segments of a test that will change the memory or data values.

Processor fuzzers use sequences of instructions to ver-
ify DUTs, as mentioned in Section 2.1. An instruction con-
tains opcode and operand fields [32, 52]; both of which
cause the microarchitectural state transitions. The opcode
fields determine the instruction’s operation. Meanwhile, the
operand fields provide the source and destination regis-
ters (i.e., general-purpose registers (GPRs) and control and
status registers (CSRs)) and immediate values/memory ad-
dresses. Some instructions contain immediate memory ad-
dresses only (e.g., branch operation instructions). To generate
data/memory-dependent inputs, we constrain Operand muta-
tor to mutate only the immediate values/memory addresses of
instructions uniformly at random [32, 55]. To further increase
the mutation space, we assign random values to GPRs and
valid memory addresses during the processor’s initialization.

However, replacing the original mutation algorithms, Cov-
erage Mutator, with Operand mutator reduces the fuzzer’s
efficiency in exploring the design space for timing vulnerabil-
ities. This is because the mutator will not change the opcode
and register-operands of instructions. Therefore, to maintain
the efficacy of design space exploration and guarantee the ef-
fectiveness of timing vulnerability detection simultaneously,
we use Coverage mutator to explore design spaces and use
Operand mutator to exploit time side-channels near the design
spaces explored. Any tests achieving new code coverage will
be identified as seeds for Operand mutator. For each seed, the
Operand mutator will generate multiple data-dependent in-
puts, aiming to trigger the microarchitectural state transitions
that will cause timing differences compared to the seed.

Coverage analyzer monitors timing behaviors covered by
mapping microarchitectural state transitions to executed paths.
For a given DUT, various paths exist between the input nodes
and output nodes of the corresponding MEG. For an input
value to the DUT, tracing the execution path followed and
mapping it to the MEP poses a challenge.

To address this challenge, we utilize SystemVerilog Asser-
tion (SVA) properties known as cover properties [29]. If an
cover property evaluates to true for a given input, the DUT
enters a stage during simulation when the property holds.
Each graphical path is converted to a cover property using
the annotated edge conditions and the timing behavior of the

Algorithm 3: Coverage analyzer

Input : P // Micro-Event Path
1 G(D) // MEG of module D

Output : Condition // Assertion Property
corresponding to Micro-Event Path P

2 Condition← ⟨⟩ // Empty Sequence
3 for (si1,si2) ∈ P do
4 if (si1,si2) has branch then
5 Condition←Condition||⟨branch⟩
6 if si2 ∈ Sq then
7 Condition←Condition||⟨1 cycle⟩
8 if ssi1 ∈ SI then
9 Condition←Condition||⟨eventually⟩

10 return Condition

node. The timing behavior of a node depends upon the type
of node defined. Algorithm 3 shows the process of generat-
ing the conditions of a MEP, P ∈ G(D), as the expression
of a cover property. As combinational nodes are modeled
after combinational logic, events occurring on these nodes
complete instantaneously (line 4), while those occurring on
sequential nodes complete on the next clock edge (line 6). If
the value of a signal is from other modules, including input
signals and signals connected with subinstances, we assume
the events will eventually happen (line 8). Appendix B shows
the cover properties for MEPs in the example cache set.

Properties representing all possible paths in the MEG cor-
responding to the module are instrumented in the RTL. The
DUT Simulation unit of the Vulnerability Detection module
takes as input this modified RTL. The Coverage Analyzer uti-
lizes the results of the resultant assertion report for calculating
the coverage of the various graphical paths.

4 Evaluation

We evaluate WhisperFuzz on three most advanced open-
sourced processors based on RISC-V [52] instruction set
architecture (ISA). We first demonstrate the new vulnerabili-
ties detected by WhisperFuzz and provide statistical analysis
to prove the existence of the timing side channels. We then
leverage the power of Micro-Event Graph of WhisperFuzz to
identify the root causes of these vulnerabilities and evaluate
the efficiency of our framework, as shown in Table 2. Finally,
we evaluate the timing behaviors covered by fuzzing.

4.1 Evaluation Setup
Benchmark selection. Most commercial processors are pro-
tected intellectual properties without available source code.
Thus, we pick the three large (in terms of the number of gates)
and widely-used open-sourced processors: Rocket Core [9],

BOOM [74], and CVA6 [73] from the RISC-V ISA. Most re-
cent hardware security tools are evaluated using these pro-
cessors [16, 34, 37]. The CVA6 and BOOM are more complex
compared to the Rocket Core. They possess advanced micro-
architectural features such as out-of-order execution and sup-
port single instruction-multiple data (SIMD) execution.
Evaluation environment. We use the industry-standard tool,
Synopsys VCS [3] for DUT simulation. We convert timing be-
haviors of RTL modules into SystemVerilog Assertion (SVA)
cover properties and instrument them into DUTs. We use
Chipyard [7] environment for the processors. We collect the
coverage report and simulation traces from VCS to analyze
the timing coverage and timing behaviors, respectively.
Fuzzing setup. We use HyPFuzz [16] to generate the seeds
for Operand mutator. Other processor fuzzers that gener-
ate sequences of instructions as inputs are also compati-
ble [14, 26, 34, 37, 39, 57, 71]. HyPFuzz is a state-of-the-art
hardware fuzzer that combines fuzzing and formal tools to
maximize coverage and speed up design exploration. HyP-
Fuzz is also compatible with various coverage metrics. We use
a combination of branch, condition, and FSM metrics for code
coverage. Branch and condition metrics monitor the combina-
tional logic of DUTs. The FSM metric monitors the sequential
logic of DUTs [3, 16, 37]. Therefore, any new points covered
by inputs represent at least one new microarchitectural state
transition triggered. We collect these inputs as seeds and use
the Operand mutator to generate 200 data-dependent inputs
for each seed. We ran the entire fuzzing process for 72 hours,
and repeated it thrice to collect coverage results.

4.2 Detecting Novel Side Channels

This section will discuss 12 new timing vulnerabilities found
by WhisperFuzz. Furthermore, Appendix C contains the proof
of concept code for mentioned vulnerabilities.
DIVUW + REM in BOOM [74]. The side channel under consid-
eration pertains to the consecutive execution of the DIVUW and
REM instructions. In Figure 5d, the operational characteristics
of this side channel are graphically depicted across various
operand executions. Our analysis revealed median discrepan-
cies of 48 cycles, 35 cycles, and 83 cycles between the divisor
equal to 0, 1, and greater than 1 distributions respectively,
with a maximum deviation of 101 cycles observed when de-
liberately selecting operands to maximize the disparity. Es-
tablishing a threshold for the median separation facilitates a
successful discrimination rate of 100% when distinguishing
between binary states 0 and 1.
DIVUW in CVA6 [73]. The side channel pertains to the execu-
tion of DIVUW instruction. Figure 5a illustrates the operational
characteristics of this side channel across multiple operand
executions. Notably, our analysis has unveiled median dis-
crepancies of 14 cycles, 39 cycles, and 54 cycles among the
divisor equal to 0, 1, and greater than 1 distributions respec-
tively. Furthermore, we have observed a maximum deviation

of 56 cycles when deliberately selecting divide by zero to max-
imize the disparity. Establishing a threshold for the median
separation enables the successful discrimination of binary
states 0 and 1 with a 100% accuracy rate. However, our find-
ings indicate that attackers leverage this channel to transmit
three states rather than the intended two states by defining
two thresholds, achieving a success rate of 91%.
REMW in CVA6 [73]. WhisperFuzz detected this novel side
channel when fuzzing CVA6 with REMW instruction. Figure
5b shows the operational characteristics of this side channel
across multiple instances of operand executions. We demon-
strate a median difference of 54 cycles between the divisor
equal to 0 and greater than 0 timing behavior distributions.
Additionally, when we select zero as a divisor in the REMW
instruction to maximize the timing difference, the maximum
deviation is 56 cycles. Attackers can use this channel by es-
tablishing a threshold for the median separation to transmit
binary states 0 and 1 with 100% accuracy.
C.ADD[W], C.SUB[W], C.AND, C.OR, C.XOR,
and [C].MV in CVA6 [73]. WhisperFuzz detected multiple
novel side channels that occur when executing compressed
RISC-V instructions, i.e. C.ADD[W], C.SUB[W], C.AND,
C.OR, C.XOR, and [C.]MV. RISC-V Zkt contract has
classified these instructions as serious security vulnerabilities
if the instructions are data dependent [2]. The MV instruction
has the same timing behavior as its compressed version,
i.e., C.MV and causes a timing channel. Figures 5e, 5f,
and 5c, show the operational characteristics of these side
channels across multiple instances of operand executions.
We demonstrate a median difference of 12 cycles between
the second operand equal to 0 and greater than 0 timing
behavior distributions. Selecting a specific value of zero
as the operands of these instructions results in 12 more
cycles compared to any other operand values. Establishing a
threshold for the median separation allows for the successful
discrimination between binary states 0 and 1 with an accuracy
rate of 100%.

4.3 Redetecting Known Side Channels

DIV in BOOM [74]. WhisperFuzz successfully generated test
cases that exposed timing side-channel vulnerabilities related
to division instructions (DIV), a vulnerability disclosed in
SIGFuzz [51] for the BOOM processor. WhisperFuzz gener-
ated multiple test cases featuring the DIV instruction, and by
systematically mutating the input values during the fuzzing
process, it revealed variations in the number of clock cycles
required for the DIV instruction to complete its operation. Fur-
ther investigation elucidated that when the divisor was bigger
than the dividend, the division unit necessitated more time to
conclude the division process.
SC in Rocket Core [9] and BOOM [74]. WhisperFuzz
also identified a timing side-channel associated with Store-
Conditional operations, effectively diagnosing timing dispari-

40 50 60 70 80 90
Execution Duration(clock)

0.0

0.1

0.2

0.3

Di
st

rib
ut

io
n

14
40

54
D0 D1 D2

(a) CVA6 [73]: DIVUW

40 50 60 70 80 90
Execution Duration(clock)

0.0

0.1

0.2

0.3

Di
st

rib
ut

io
n

54

D0 D1

(b) CVA6 [73]: REMW

24.5 26.7 28.9 31.1 33.3 35.5
Execution Duration(clock)

0.00

0.25

0.50

0.75

Di
st

rib
ut

io
n

12

D0 D1

(c) CVA6 [73]: C.MV,MV

40 60 80 100 120 140
Execution Duration(clock)

0.00

0.03

0.06

0.09

Di
st

rib
ut

io
n

48

35

83

D0 D1 D2

(d) BOOM [74]: DIVUW + REM

24.5 26.7 28.9 31.1 33.3 35.5
Execution Duration(clock)

0.00

0.25

0.50

0.75

Di
st

rib
ut

io
n

12

D0 D1

(e) CVA6 [73]: C.ADD[W],C.SUB[W]

24.5 26.7 28.9 31.1 33.3 35.5
Execution Duration(clock)

0.00

0.25

0.50

0.75

Di
st

rib
ut

io
n

12

D0 D1

(f) CVA6 [73]: C.AND,C.OR,C.XOR

Figure 5: Timing behaviour of detected novel side-channels.

Listing 3: Source location of DIVUW in CVA6 [73].
13512 state_q <= state_d;

13513 op_a_q <= op_a_d;

13514 op_b_q <= op_b_d;
13515 res_q <= res_d;
13516 cnt_q <= cnt_d;

13517 id_q <= id_d;
13518 rem_sel_q <= rem_sel_d;
13519 comp_inv_q <= comp_inv_d;
13520 res_inv_q <= res_inv_d;
13521 op_b_zero_q <= op_b_zero_d;

13522 div_res_zero_q <= div_res_zero_d;

ties resulting from the presence of the dirty bit in the data
cache implementation. The vulnerability was discovered in
SIGFuzz [51] for the Rocket Core and BOOM processors. The
test cases feature a SC instruction containing at least one sub-
sequent load instruction. Through the mutation of these test
cases, we were able to detect timing discrepancies when the
load/store module attempted to access an address not present
in the cache. Subsequently, the Diagnozer of WhisperFuzz
pinpointed the root cause of this timing difference, attribut-
ing it to the dirty bit that was set by the Store-Conditional
instruction for a cache line.

4.4 Pinpointing the Locations of Side Channels
We apply Diagnozer (See Section 3.7) to identify the
root causes of detected timing vulnerabilities (See Sec-
tions 4.3, 4.2). We describe, in detail, the Diagnozer results
for two novel and two known vulnerabilities. The results for
all detected vulnerabilities are summarized in Table 2.
DIVUW in CVA6 [73]. In CVA6, given the instruction sequence
in Listing 7, the Diagnozer identifies the source of the vulner-

ability in module serdiv in the lines highlighted in Listing 3.
The first phase of the Diagnozer identifies 27 signals as the in-
stigating signals, while the second phase pinpoints that these
signals change the values of 8 sequential signals.
Compressed Instructions in CVA6 [73]. Given two trace
files corresponding to the instruction sequence in Listing 9
the first phase of the Diagnozer identifies the sources of these
vulnerabilities in the ALU module. The exact RTL lines are
as highlighted in Listing 14. Though the ALU module does
not have a sequential component, the effects of its outputs
are propagated to the inputs of the other modules thereby
influencing further execution.

DIVUW + REM in BOOM [74] and Rocket Core [9]. Given
two trace files corresponding to the instruction sequence in
Listing 6, the Diagnozer identifies the source of this vulnera-
bility in BOOM [74] and Rocket Core [9] at different lines in
module MulDiv. The vulnerability is localized to the sequen-
tial elements divisor, state, negout in both processors
(refer Table 2).
Division by zero in BOOM [74], Rocket Core [9], CVA6 [73].
Given two trace files corresponding to the instruction se-
quence in Listing 6 with the divisor set to 0, the Diagnozer
identifies the sources of this vulnerability in BOOM, Rocket
Core, CVA6 as shown in Table 2. Though the root cause is
localized to the same module in Rocket Core and BOOM, the
pinpointed lines differ. While in CVA6, the divide by zero
vulnerability is localized to module serdiv.

Hence, though the same timing vulnerability can affect
multiple DUTs, due to the differences within the microarchi-
tectural design, the source of the vulnerability in the RTL
code differs. Furthermore, consider the two division-related

vulnerabilities detected in CVA6 [73]. Although these vul-
nerabilities affect the same module (serdiv), the source of
the vulnerabilities within the module differs. Hence, the au-
tomated localization of vulnerability sources performed by
WhisperFuzz is beneficial and efficient.

4.5 Coverage Analysis
We use Coverage analyzer to monitor timing behaviors ex-
plored by inputs from Operand mutator. Coverage analyzer
converts paths of Micro-Event Graph of an RTL module
into cover properties and instrument these properties in to
DUT. After simulation, Coverage analyzer collects assertion
results to calculate the timing behaviors covered (See Sec-
tion 3.8). Figure 6 shows the coverage achieved in various
modules of the three benchmarks. Due to the space limitation,
we only show the coverage of 10 modules with the highest
total number of timing coverage points. On average, Whis-
perFuzz achieves 39.57%, 33.16%, and 20.20% coverage on
CVA6 [73], Rocket Core [9], and BOOM [74], respectively.

Since we emphasize covering timing behaviors, our
Operand mutator generates 200 inputs for each seed gen-
erated by the coverage-feedback fuzzer. The overall coverage
of WhisperFuzz can be increased by using more seeds from
coverage-feedback fuzzer and running the fuzzer for more
time. Also, many coverage points are left uncovered due to
the multiple configurations of DUT. For example, CVA6 has
parameters to configure its float-point unit to support oper-
ations from 8-bit to 128-bit [73]. WhisperFuzz fuzzes CVA6
in its default configuration where CVA6 uses 64-bit opera-
tions. Hence, all other operations’ timing behaviors are un-
coverable. Rocket Core’s floating-point unit [9] and BOOM’s
branch predictor [74] have similar configurations. Therefore,
these configurations reduce the overall coverage.

4.6 Exploitability of Detected Vulnerabilities
In this section, we discuss the potential exploitations of the
vulnerabilities detected by WhisperFuzz as presented in Sec-
tion 4. Such vulnerabilities can be exploited for information
leakage across diverse scenarios as described below.
Covert Channels. A timing covert channel breaks the process
isolation guarantees provided by the hardware. A sender pro-
cess can perform operations influencing the execution time
of a receiver process, which infers a bit value based on this
observed timing. For instance, the DIVUW-based vulnerabil-
ity detected by WhisperFuzz in CVA6 [73] can be employed
to design a covert channel based on the timing differences.
However, realizing such a covert channel requires the com-
municating processes to execute on the physical core using
hyperthreading features which are unavailable on our evalua-
tion processors [9, 73, 74].
Speculative Execution Attacks. Such attacks happen in out-
of-order processors when, during the rolled back of specula-

Table 1: Comparison with prior works on timing vulnerability
detection on processors with WhisperFuzz. (N.A.: Not appli-
cable, TSC: Timing side channel.)

Pa
pe

r

M
an

ua
l

ef
fo

rt

Sc
al

ab
le

D
es

ig
n

so
ur

ce

Ti
m

in
g

vu
ln

er
ab

ili
ty

C
ov

er
ag

e

R
oo

tc
au

se
an

al
ys

is

UPEC [23] RTL Covert Channels N.A.
Fadiheh et

al. [22] RTL Covert Channels N.A.

Checkmate [59] N.A. Abstract
model

Cache TSC N.A.

Osiris [67] Black-box Eviction-based
TSC

N.A.

ABSynthe [28] Black-box Contention-based
TSC

N.A.

PLUMBER [35] Black-box Variants of cache
TSC

N.A.

SIGFuzz [51] RTL TSC
WhisperFuzz RTL TSC

tively executed instructions, processor leave their footprints
on the micro-architectural components such as the cache. This
has been exploited in several popular attacks [1, 38, 40, 51].
An attacker can formulate a similar attack with the vulnera-
bilities found by WhisperFuzz. For instance, with speculative
execution support on CVA6, a combination of the load and
time-dependent instructions(any instruction that is detected
by WhisperFuzz, See Section 4.2) can utilized to encode sensi-
tive data into the cache, which a cache timing attack can then
glean. However, the current state of the evaluated processors
is limited to non-speculative execution.
Attacking Library Implementations. An adversary can ex-
ploit the timing differences based on the operand values dis-
covered by WhisperFuzz to glean sensitive information from
popular libraries in cryptography or machine learning do-
mains. For such an attack, the library implementation is re-
quired to have the same instruction flow, e.g., DIVUW followed
by REM for BOOM [74] or C.ADD for CVA6 [73] with the operand
dependent on a secret value.

5 Related Work

Existing state-of-the-art techniques for timing side-channel
vulnerability detection primarily employ formal approaches
[22, 23, 25, 59, 65] and fuzzing [28, 35, 51, 67] techniques.
However, these approaches still exhibit critical shortcomings.
In contrast to WhisperFuzz, these approaches fail to pinpoint
the root causes of the detected timing vulnerabilities without
manual efforts that take a long time. Thus, the mitigation
based on these techniques is coarse-grained rendering them
inefficient in terms of the computational resources in DUT.
Further, the coverage metrics used by these solutions, such as
hardware performance counters or code coverage [35, 51, 67]
do not capture the timing behaviors of the DUT, resulting in
uncertainty prior to tape-out [27, 36, 58]. In this section, we

IBuf ShiftQue
ICache

FPToFP
FPUFMA

FPToInt
IntToFP

FPUFMAPipe

MARFNPipe

DivSqrtRaw
RTL module

0
20
40
60
80

100

%
 C

ov
er

ag
e

(a) Rocket Core [9]

wt_dc_misunt

fp_divsqt_mul

prep_mvp
fp_fma

fp_cst_mul

mmu
csr_reg

ctl_mvp
load_unit

ptw

RTL module

0
20
40
60
80

100

%
 C

ov
er

ag
e

(b) CVA6 [73]

MaxPFibLFSR1

BoomIOMSHR

Arb4 FtchBuf
BrnchKillQ2

ICache
TLXbar7

BrnchKillQ
BoomRAS

Q35

RTL module

0
20
40
60
80

100

%
 C

ov
er

ag
e

(c) BOOM [74]

Figure 6: Timing coverage of RTL modules in CVA6 [73], Rocket Core [9], and BOOM [74]. The black line indicates the variation
in coverage offered.

discuss these perform a comparative analysis with Whisper-
Fuzz, as illustrated in Table 1.
Formal approaches for timing vulnerability detection.
UPEC [22,23] is a white-box approach to detect side channels
in RISC-V RTL designs using SAT-based bounded model-
checking. However, such an approach is not scalable to com-
plex processor designs. Alternatively, Checkmate [59] em-
ploys micro-happens-before graphs to analyze transient ex-
ecution vulnerabilities and timing side channels. It detects
patterns within these graphs to assess the susceptibility of ar-
chitectural models to timing side-channel threats. In contrast
to our methodology, Checkmate relies on matching patterns
of vulnerable instructions, while WhisperFuzz is semantically
oriented and automatic.
Fuzzing-based approaches for timing vulnerability detec-
tion. Osiris [67] is a black-box fuzzer that identifies timing
vulnerabilities in commercial processors by brute-forcing dif-
ferent combinations of instruction sequences. However, to
reduce the search space, it limits the instruction sequence
length to one, leaving vulnerabilities requiring multiple in-
structions [49] or specific operands [48] to trigger undetected.
ABSynthe [28] and PLUMBER [35] identify combinations
of instructions that trigger microarchitectural timing side-
channel leakages by deriving a leakage template. However,
PLUMBER requires manual efforts to specify mutation al-
gorithms and potential behaviors of a DUT to generate this
template. Further, it is limited to the existing cache module
and cannot locate them in the DUT.
SIGFuzz [51] is a grey-box fuzzer that detects the existence
of timing vulnerabilities in processors at the RTL. It gener-
ates combinations of instructions to identify cycle-accurate
microarchitectural timing side-channels. However, replacing
instructions can create additional architectural differences,
such as differences in general-purpose registers, resulting in a
high rate of false positives. Further, SIGFuzz suffers from lim-
itations in pinpointing vulnerability locations and coverage
metrics as the black-box approaches.

WhisperFuzz addresses these limitations of existing works
by providing a novel white-box fuzzer with static analysis
to detect and pinpoint timing vulnerabilities in executed test-
cases in processors enabling fine-grained mitigations. Whis-
perFuzz is scalable to complex designs and end-to-end auto-

mated with a specialized coverage metric for timing behav-
iors.

6 Discussion

Use of Code coverage mutator and Operand mutator. Whis-
perFuzz employs both the Code coverage mutator and the
Operand mutator to explore the design space and generate
data-dependent inputs, respectively. In our experiments, we
set up the use of these two mutators heuristically. The deter-
mination of their utilization is an optimization problem that
can aid the efficacy of vulnerability detection. We can model
the probability of Operand mutator covering a timing behav-
ior [53,75]. When this probability falls below a threshold, the
Code coverage mutator can be called to generate new seeds.
However, such an analysis is beyond the scope of this paper.
Port scanning vulnerabilities. Contention for a port in the
architecture can cause execution delays, enabling attackers
to create a high-resolution time side-channel by scanning for
port contention [6, 12]. However, these attacks depend on
the high bandwidth of shared resources and, primarily, the
simultaneous multithreading architecture [6, 12, 60]. The cur-
rent open-sourced benchmarks lack such advanced architec-
tures [9, 73, 74], and hence detecting port scanning is outside
the scope of WhisperFuzz.

7 Conclusion

Recent hardware fuzzers have showcased their potential to
identify timing vulnerabilities in intricate designs, such as pro-
cessors. However, the existing black-box or grey-box fuzzing
approaches fall short in pinpointing the precise location or
root cause of timing vulnerabilities. Further, these approaches
lack the necessary coverage feedback mechanisms for the
exploration of timing behaviors. Addressing these gaps, we
develop WhisperFuzz, the first approach that combines white-
box fuzzing with static analysis. Its primary objectives are not
only to accurately determine the locations of timing vulnera-
bilities but also to evaluate the timing behaviors. WhisperFuzz
has successfully detected 12 new timing vulnerabilities and
all previously known ones in open-source processors. More-
over, it pinpoints the root causes of these vulnerabilities. This

opens up novel avenues in vulnerability detection and timely
mitigation in processors.

8 Acknowledgement

Our research work was partially funded by Intel’s Scalable As-
surance Program, Deutsche Forschungsgemeinschaft (DFG)
– SFB 1119 – 236615297, the European Union under Hori-
zon Europe Programme – Grant Agreement 101070537 –
CrossCon, the European Research Council under the ERC
Programme - Grant 101055025 - HYDRANOS, the US Of-
fice of Naval Research (ONR Award #N00014-18-1-2058),
the Lockheed Martin Corporation, and the Centre for Hard-
ware Security Entrepreneurship Research and Development
(C-HERD) project, Ministry of Electronics and Information
Technology (MEiTY), Government of India. This work does
not in any way constitute an Intel endorsement of a product
or supplier. Any opinions, findings, conclusions, or recom-
mendations expressed herein are those of the authors and do
not necessarily reflect those of Intel, the European Union, the
European Research Council, Lockheed Martin Corporation,
the US Government, or the Indian Government.

References

[1] BOOM Speculative Attacks. https://github.com/r
iscv-boom/boom-attacks, 2019. Last accessed on
10/01/2023.

[2] Zkt "Constant Time" Instruction List. https://gith
ub.com/rvkrypto/riscv-zkt-list/blob/main/
zkt-list.adoc, 2021. Last accessed on 10/01/2023.

[3] Synopsys VCS. https://www.synopsys.com/verif
ication/simulation/vcs.html, 2022. Last accessed
on 10/01/2023.

[4] Cross-Process Information Leak. https://www.am
d.com/en/resources/product-security/bull
etin/amd-sb-7008.html, 2023. Last accessed on
09/28/2023.

[5] National Vulnerability Database. https://nvd.ni
st.gov/vuln/search, 2023. Last accessed on
09/28/2023.

[6] A. C. Aldaya, B. B. Brumley, et al. Port Contention
for Fun and Profit. IEEE Symposium on Security and
Privacy, 2019.

[7] A. Amid, D. Biancolin, et al. Chipyard: Integrated De-
sign, Simulation, and Implementation Framework for
Custom SoCs. IEEE Micro, 40(4):10–21, 2020.

[8] M. Andrysco, D. Kohlbrenner, et al. On Subnormal
Floating Point and Abnormal Timing. IEEE Symposium
on Security and Privacy, 2015.

[9] K. Asanović, R. Avizienis, et al. The Rocket Chip Gen-
erator. (UCB/EECS-2016-17), Apr 2016.

[10] C. Baier and J.-P. Katoen. Principles of Model Checking.
2008.

[11] D. J. Bernstein. Cache-timing attacks on AES. 2005.

[12] A. Bhattacharyya, A. Sandulescu, et al. Smotherspectre:
Exploiting Speculative Execution Through Port Con-
tention. ACM SIGSAC Conference on Computer and
Communications Security, 2019.

[13] R. Bloem, B. Gigerl, et al. Power Contracts: Provably
Complete Power Leakage Models for Processors. ACM
SIGSAC Conference on Computer and Communications
Security, pages 381–395, 2022.

[14] C. Chen, V. Gohil, et al. PSOFuzz: Fuzzing Proces-
sors with Particle Swarm Optimization. arXiv preprint
arXiv:2307.14480, 2023.

[15] C. Chen, R. Kande, et al. Trusting the Trust Anchor: To-
wards Detecting Cross-Layer Vulnerabilities with Hard-
ware Fuzzing. pages 1379–1383, 2022.

[16] C. Chen, R. Kande, et al. HyPFuzz: Formal-Assisted
Processor Fuzzing. USENIX Security Symposium, pages
1361–1378, August 2023.

[17] E. Clarke, O. Grumberg, et al. Progress on the State
Explosion Problem in Model Checking. Informatics,
pages 176–194, 2001.

[18] E. M. Clarke, T. A. Henzinger, et al. Handbook of Model
Checking. 10, 2018.

[19] E. M. Clarke, W. Klieber, et al. Model Checking and
the State Explosion Problem. LASER Summer School
on Software Engineering, pages 1–30, 2011.

[20] D. Cyrluk, S. Rajan, et al. Effective Theorem Proving
for Hardware Verification. International Conference on
Theorem Provers in Circuit Design, 1994.

[21] G. Dessouky, D. Gens, et al. HardFails: Insights into
Software-Exploitable Hardware Bugs. USENIX Security
Symposium, pages 213–230, 2019.

[22] M. R. Fadiheh, J. Müller, et al. A Formal Approach
for Detecting Vulnerabilities to Transient Execution At-
tacks in Out-of-Order Processors. ACM/IEEE Design
Automation Conference, pages 1–6, 2020.

[23] M. R. Fadiheh, D. Stoffel, et al. Processor Hardware
Security Vulnerabilities and Their Detection by Unique
Program Execution Checking. IEEE Design, Automa-
tion & Test in Europe Conference & Exhibition, 2019.

https://github.com/riscv-boom/boom-attacks
https://github.com/riscv-boom/boom-attacks
https://github.com/rvkrypto/riscv-zkt-list/blob/main/zkt-list.adoc
https://github.com/rvkrypto/riscv-zkt-list/blob/main/zkt-list.adoc
https://github.com/rvkrypto/riscv-zkt-list/blob/main/zkt-list.adoc
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7008.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7008.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7008.html
https://nvd.nist.gov/vuln/search
https://nvd.nist.gov/vuln/search

[24] Q. Ge, Y. Yarom, et al. A Survey of Microarchitectural
Timing Attacks and Countermeasures on Contemporary
Hardware. Journal of Cryptographic Engineering, 2018.

[25] K. v. Gleissenthall, R. G. Kıcı, et al. IODINE: Verify-
ing Constant-Time Execution of Hardware. USENIX
Security Symposium, pages 1411–1428, 2019.

[26] V. Gohil, R. Kande, et al. MABFuzz: Multi-Armed Ban-
dit Algorithms for Fuzzing Processors. arXiv preprint
arXiv:2311.14594, 2023.

[27] R. Gopinath, C. Jensen, et al. Code Coverage for
Suite Evaluation by Developers. ACM/IEEE Interna-
tional Conference on Software Engineering, pages 72–
82, 2014.

[28] B. Gras, C. Giuffrida, et al. ABSynthe: Automatic Black-
box Side-channel Synthesis on Commodity Microarchi-
tectures. NDSS, 2020.

[29] S. L. W. Group. IEEE Standard for SystemVerilog–
Unified Hardware Design, Specification, and Verifica-
tion Language. IEEE Std 1800-2017, 2018.

[30] D. Gruss, C. Maurice, et al. Flush+ Flush: a fast and
stealthy cache attack. Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 279–299,
2016.

[31] X. Guo, R. G. Dutta, et al. Scalable SoC Trust Veri-
fication using Integrated Theorem Proving and Model
Checking. pages 124–129, 2016.

[32] J. L. Hennessy and D. A. Patterson. Computer Archi-
tecture: A Quantitative Approach. 2011.

[33] W. Hu, A. Ardeshiricham, et al. Hardware Information
Flow Tracking. ACM Computing Surveys, 2021.

[34] J. Hur, S. Song, et al. DIFUZZRTL: Differential Fuzz
Testing to Find CPU Bugs. IEEE Symposium on Security
and Privacy, pages 1286–1303, 2021.

[35] A. Ibrahim, H. Nemati, et al. Microarchitectural Leak-
age Templates and Their Application to Cache-Based
Side Channels. ACM SIGSAC Conference on Computer
and Communications Security, 2022.

[36] M. Ivanković, G. Petrović, et al. Code Coverage at
Google. ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pages 955–963, 2019.

[37] R. Kande, A. Crump, et al. TheHuzz: Instruction
Fuzzing of Processors Using Golden-Reference Mod-
els for Finding Software-Exploitable Vulnerabilities.
USENIX Security Symposium, pages 3219–3236, 2022.

[38] P. Kocher, J. Horn, et al. Spectre attacks: Exploiting
speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[39] K. Laeufer, J. Koenig, et al. RFUZZ: Coverage-Directed
Fuzz Testing of RTL on FPGAs. IEEE International
Conference on Computer-Aided Design, 2018.

[40] M. Lipp, M. Schwarz, et al. Meltdown: Reading Kernel
Memory from User Space. USENIX Security, 2018.

[41] MITRE. CWE VIEW: Hardware Design. https://cw
e.mitre.org/data/definitions/1194.html, 2019.
Last accessed on 09/28/2023.

[42] S. K. Muduli, G. Takhar, et al. HyperFuzzing for SoC
Security Validation. ACM/IEEE International Confer-
ence on Computer-Aided Design, pages 1–9, 2020.

[43] M.-J. O. Saarinen. riscv-zkt-list. https://github.c
om/rvkrypto/riscv-zkt-list, 2021. Last accessed
on 10/16/2023.

[44] O. Oleksenko, C. Fetzer, et al. Revizor: Testing Black-
Box CPUs Against Speculation Contracts. ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
226–239, 2022.

[45] O. Oleksenko, M. Guarnieri, et al. Hide and Seek with
Spectres: Efficient Discovery of Speculative Information
Leaks with Random Testing. pages 1737–1752, 2023.

[46] M. Orenes-Vera, A. Manocha, et al. AutoSVA: Democ-
ratizing Formal Verification of RTL Module Interactions.
ACM/IEEE Design Automation Conference, pages 535–
540, 2021.

[47] T. Ormandy and D. Moghimi. Downfall and Zenbleed:
Googlers helping secure the ecosystem. https://se
curity.googleblog.com/2023/08/downfall-and
-zenbleed-googlers-helping.html, 2023. Last
accessed on 09/28/2023.

[48] D. A. Osvik, A. Shamir, et al. Cache Attacks and Coun-
termeasures: The Case of AES. The Cryptographers’
Track at the RSA Conference., 2006.

[49] C. Percival. Cache Missing for Fun and Profit, 2005.

[50] H. Ragab, A. Milburn, et al. Crosstalk: Speculative Data
Leaks Across Cores Are Real. IEEE Symposium on
Security and Privacy, 2021.

[51] C. Rajapaksha, L. Delshadtehrani, et al. SIGFuzz: A
Framework for Discovering Microarchitectural Timing
Side Channels. In 2023 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1–6.
IEEE, 2023.

https://cwe.mitre.org/data/definitions/1194.html
https://cwe.mitre.org/data/definitions/1194.html
https://github.com/rvkrypto/riscv-zkt-list
https://github.com/rvkrypto/riscv-zkt-list
https://security.googleblog.com/2023/08/downfall-and-zenbleed-googlers-helping.html
https://security.googleblog.com/2023/08/downfall-and-zenbleed-googlers-helping.html
https://security.googleblog.com/2023/08/downfall-and-zenbleed-googlers-helping.html

[52] RISC-V. RISC-V Webpage. https://riscv.org/,
2023. Last accessed on 10/01/2023.

[53] C. P. Robert. Monte Carlo Methods in Statistics.
arXiv:0909.0389, 2009.

[54] M. Schwarz, M. Lipp, et al. ZombieLoad: Cross-
privilege-boundary data sampling. ACM SIGSAC Con-
ference on Computer and Communications Security,
2019.

[55] J. P. Shen and M. H. Lipasti. Modern Processor Design:
Fundamentals of Superscalar Processors. 2013.

[56] W. Snyder. Verilator. https://www.veripool.org/w
iki/verilator, 2023. Last accessed on 10/01/2023.

[57] F. Solt, K. Ceesay-Seitz, et al. Cascade: CPU Fuzzing
via Intricate Program Generation. USENIX Security
Symposium, 2024.

[58] Synopsys. Accelerating Verification Shift Left with
Intelligent Coverage Optimization. https://www.sy
nopsys.com/cgi-bin/verification/dsdla/pdfr
1.cgi?file=ico-wp.pdf, 2022. Last accessed on
02/18/2023.

[59] C. Trippel, D. Lustig, et al. Checkmate: Automated Syn-
thesis of Hardware Exploits and Security Litmus Tests.
IEEE International Symposium on Microarchitecture,
2018.

[60] D. M. Tullsen, S. J. Eggers, et al. Simultaneous Multi-
threading: Maximizing On-Chip Parallelism. ACM In-
ternational Symposium on Computer Architecture, 1995.

[61] J. Van Bulck, M. Minkin, et al. Foreshadow: Extract-
ing the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. USENIX Security Symposium,
2018.

[62] J. Van Bulck, D. Moghimi, et al. LVI: Hijacking Tran-
sient Execution through Microarchitectural Load Value
Injection. IEEE Symposium on Security and Privacy,
2020.

[63] S. van Schaik, A. Milburn, et al. RIDL: Rogue in-flight
data load. IEEE Symposium on Security and Privacy,
2019.

[64] Y. Wang, A. Ferraiuolo, et al. Timing Channel Protection
for a Shared Memory Controller. 2014.

[65] Z. Wang, G. Mohr, et al. Specification and Verification
of Side-Channel Security for Open-Source Processors
via Leakage Contracts. ACM SIGSAC Conference on
Computer and Communications Security, pages 2128–
2142, 2023.

[66] V. M. Weaver, D. Terpstra, et al. Non-Determinism and
Overcount on Modern Hardware Performance Counter
Implementations. IEEE International Symposium on
Performance Analysis of Systems and Software, pages
215–224, 2013.

[67] D. Weber, A. Ibrahim, et al. Osiris: Automated Discov-
ery of Microarchitectural Side Channels. 30th USENIX
Security Symposium, pages 1–18, 2021.

[68] J. Wikner and K. Razavi. RETBLEED: Arbitrary specu-
lative code execution with return instructions. USENIX
Security Symposium, 2022.

[69] B. Wile, J. Goss, et al. Comprehensive Functional Veri-
fication: The Complete Industry Cycle. 2005.

[70] H. Witharana, Y. Lyu, et al. A Survey on Assertion-
based Hardware Verification. ACM Computing Surveys,
2022.

[71] J. Xu, Y. Liu, et al. MorFuzz: Fuzzing Processor via
Runtime Instruction Morphing enhanced Synchroniz-
able Co-simulation. 2023.

[72] T. Yavuz, F. Fowze, et al. Encider: detecting timing and
cache side channels in sgx enclaves and cryptographic
apis. IEEE Transactions on Dependable and Secure
Computing, 20(2):1577–1595, 2022.

[73] F. Zaruba and L. Benini. The Cost of Application-
Class Processing: Energy and Performance Analysis
of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-
nm FDSOI Technology. IEEE Transactions on Very
Large Scale Integration Systems, 2019.

[74] J. Zhao, B. Korpan, et al. SonicBOOM: The 3rd Gen-
eration Berkeley Out-of-Order Machine. 4th Workshop
on Computer Architecture Research with RISC-V, 2020.

[75] L. Zhao, Y. Duan, et al. Send Hardest Problems My
Way: Probabilistic path prioritization for hybrid fuzzing.
NDSS, 2019.

https://riscv.org/
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
https://www.synopsys.com/cgi-bin/verification/dsdla/pdfr1.cgi?file=ico-wp.pdf
https://www.synopsys.com/cgi-bin/verification/dsdla/pdfr1.cgi?file=ico-wp.pdf
https://www.synopsys.com/cgi-bin/verification/dsdla/pdfr1.cgi?file=ico-wp.pdf

Listing 4: Verilog code of multi-ways cache set protocol.
1 input addr; output way;
2 reg hit, full, valid[cache_ways], fetch;
3 wire tag_addr, complete;
4 assign tag_addr = addr[tag_bits];
5 always@(posedge clock) begin
6 if tag_addr == tag[0]
7 way <= index[0], hit <= 1;
8 else if tag_addr == tag[1]
9 way <= index[1], hit <= 1;

10 if hit == 0 && full != 1 begin
11 if valid[0] == 1
12 fetch <= 1; temp_way <= index;
13 ...
14 end
15 if fetch == 1
16 // Call mem_call for fetching block from next level.
17 // Sub-instance sets complete signal
18 mem_call(addr, complete);
19 if complete:
20 way <= temp_way
21 end

Appendix

A Implementation details of Micro-Event
Graph

Section 3.5 explains the concept of a Micro-Event Graph
(MEG). However, when implementing the strategy for real
RTL designs, the syntaxes of hardware description lan-
guages (HDLs), such as Verilog and SystemVerilog [29], intro-
duce more implementation challenges. Based on the example
shown in Listing 2, we created a more complicated cache set
with multiple ways as shown in Listing 4. We use the cache
set as a case study to explain the implementation details of
MEGs. Figure 7 shows the sub-graph of the protocol.

tag_
addr tag_addr=

=
tag[0] ||

tag_addr=
=

tag[1]

tag_addr == tag[0] ||
tag_addr == tag[1]

comp
lete

com
plete==1

hit == 0 &&
full == 0 &&
valid == 1

way
fetch == 1

fetch mem_
call

hit

addr

Figure 7: Sub-graph extracted from Micro-Event Graph in
Listing 4 of the multi-ways cache set protocol.

Nested branch statements. Except for the fundamental
branch statements of HDLs, such as if/else and ternary (?),
a register-transfer level (RTL) module also contains nested
branch statements. Since all branch statements must be sat-
isfied to trigger the operations under the most nested branch
statement, we annotate an edge from each signal in those

branch statements to the destination signals of the operations.
For example, from line 10 to 12, nested branch statements
hit == 0 && full ̸= 1 and valid[0] == 1 drive the
assignments of the fetch signal. Therefore, in Figure 7, the
condition on the edge (hit,fetch) is the conjunction of hit
== 0 && full ̸= 1 and valid[0] == 1.

Path Explosion: In certain cases, an event on one com-
ponent is capable of triggering an event on another compo-
nent under multiple different conditions. For example, from
line 6 to 9, since the cache set has multiple ways, both con-
dition tag_address == tag[0] and tag_addr = tag[1]
can represent a cache hit. This results in the existence of
four edges from node tag_addr to hit and way. Each is
annotated with one condition between the two nodes. The
existence of multiple edges between the same pair of nodes
causes a path explosion during timing coverage instrumenta-
tion as mentioned in Section 3.8. Consequently, the number of
SystemVerilog Assertion (SVA) cover properties in the mod-
ule increases exponentially. To solve this challenge, we create
a disjunction for different conditions on edges joining the
same pair of nodes in a path. Figure 7 shows the disjunction
on edge (tag_addr,hit) and (tag_addr,way).

B SVA cover properties for case study

Listing 5 shows the cover property for the graphical paths
in the Micro-Event Graph of the cache case study as shown
in Listing 2. Section 3.5 mentions two Micro-Event Paths
from its input addr to its output way: {addr → tag_addr
→ way} and {addr → tag_addr → hit → fetch →
mem_call → complete → way} Among these paths, hit,
full, fetch, way are sequential nodes; the events occurring
on these nodes complete on the next clock edge. The value of
the complete signal is driven by mem_call, a subinstance.

Listing 5: SVA cover properties for case study.
1 property p1; //{addr, tag_addr, way}
2 @(posedge clock) (tag_address == tag);
3 endproperty
4
5 property p2; //{addr, tag_addr, hit, fetch, mem_call,

↪→ complete, way}
6 @(posedge clock) !(tag_address == tag) ##1 (hit == 0 &&

↪→ full != 1 && valid[0] == 1) |-> s_eventually (
↪→ complete == 1);

7 endproperty

C Proof of concept codes for triggering de-
tected vulnerabilities

This section shows the proof of concept code snippets on
triggering various timing vulnerabilities in different RISC-
V processors. Listing 6 shows the code snippets of DIVUW +
REM side-channel on BOOM [74]. Listing 7 shows the code snip-
pets of DIVUW side-channel on CVA6 [73]. Listing 8 shows the

Table 2: Summary of results generated by WhisperFuzz across different processors. Along with the detected vulnerability, we
identify the specific lines in the RTL and trace the signals. We also note the time taken for detecting the various vulnerabilities.

Processor Vulnerability Source Module RTL Lines Phase 1 Results Phase 2 Results Seed gener-
ation(s)

Input generation
(∗103 s)

Leakage
Analyzer
(∗104s)

CVA6 DIVUW serdiv
230115, 230117, 230166,

230169, 230173 Multiple signals Multiple Signals 54.00 10.70 13.19

CVA6
Divide by

zero
serdiv 13522, 13514, 13512 Multiple signals

div_res_zero_q,
op_b_q,

state_q, cnt_q
3.67 0.61 2.00

BOOM
Divide by

zero
MulDiv

230134, 230136, 230148,
230175 Multiple Signals

neg_out, count,
state,

remainder
3.67 0.66 2.27

Rocket
Core

Divide by
zero

MulDiv
209671, 209673, 209703,

209725
io_req_bits_in2,

_divisor_T
neg_out,

divisor, state
3.67 0.63 1.65

Rocket
Core

DIVUW MulDiv
230115, 230117, 230166,

230173
io_req_bits_in2,

_divisor_T
_divisor_T,
divisor

3.67 0.53 1.71

BOOM DIVUW MulDiv
230115, 230117, 230166,

230173
io_req_bits_in2,

_divisor_T
_divisor_T,
divisor

3.67 0.53 2.34

BOOM SC BoomWritebackUnit
180738, 180747, 180756,
180765, 180774, 180783,

180792, 180801
io_data_resp All wb_buffer 146.00 29.15 34.10

CVA6
Compressed
Instructions

ALU 3757 adder_z_flag Multiple Signals 124 24.77 1.77

code snippets of REMW side-channel on CVA6 [73]. Listing 9
shows the code snippets of compressed instruction-based side-
channels on CVA6 [73].

Listing 6: DIVUW + REM side-channel proof of concept code
snippets on BOOM [74].
1 LI a3, 291
2 LI a7, -1954
3 LI s10 , 201
4 LI t6, 477
5 // If t6=477, a7=-1954, s10=256, a3=291 takes

↪→ 42ns
6 // If t6=1 , a7=-1954, s10=201, a3=291 takes

↪→ 143ns
7 DIVUW t5, a7, t6
8 REM t3, s10, a3

Listing 7: DIVUW side-channel proof of concept code snippets
on CVA6 [73].
1 LI a4, 3
2 // If a4=0 takes 92ns
3 // If a4=3 takes 36ns
4 LI a7, 1333
5 // If a4=33 a7=-1333 takes 54ns
6 DIVUW t3, a7, a4

Listing 8: REMW side-channel proof of concept code snippets
on CVA6 [73].
1 LI a4, 3
2 // If a4=0 takes 92ns
3 // Else on average takes 37ns
4 LI a7, 1333
5 REMW t3, a7, a4

Listing 9: C.ADD[W], C.SUB[W], C.AND, C.OR, C.XOR,
and [C.]MV side-channel proof of concept code snippets on
CVA6 [73].
1 LI a3, 0
2 // If a3=0 \& a4=0 takes 36 cycles
3 // Else on takes 24 cycles
4 LI a4, 1023
5 MV a3, a4
6 // Same for C.ADD[W], C.SUB[W], C.AND, C.OR, C

↪→ .XOR, and C.MV

D Locations of side channels

This section shows the locations of timing vulnerabilities
identified by the Diagnozer (See Section 3.7). Listing 10
shows the location of Division by zero in BOOM [74]. List-
ing 11 shows the location of Division by zero in Rocket
Core [9]. Listing 12 shows the location of Division by zero
in CVA6 [73]. Listing 13 shows the location of DIVUW+REM in
BOOM. Listing 14 shows the location of compressed instruc-
tions and MV in CVA6; nine vulnerabilities share the same root
cause. The results show that the Diagnozer of WhisperFuzz
can successfully identify the location of timing vulnerabilities
in processors.

Listing 10: Source location of Division by zero in BOOM [74].
230133 if (eOut_1 == 1) begin // @[Multiplier.scala 153:19]

230134 count <= {{1'd0}, eOutPos};
230135 end else begin
230136 count <= _count_T_1; // @[Multiplier.scala 143:11]
230137 end
230138 ...
230139 if (divby0 & _eOut_T_4) begin
230140 neg_out <= 1'h0; // @[Multiplier.scala 158:38]

. . . end
230147 ...
230148 end else if (state == 3'h3) begin
230149 remainder <= {{1'd0}, _GEN_16};
230150 end

Listing 11: Source location of Division by zero in Rocket
Core [9].
209670 end else if (lhs_sign |rhs_sign) begin // @[Multiplier.

↪→ scala 164:36]

209671 state <= 3'h1;
209672 end else begin
209673 state <= 3'h3;
209674 end

.
209702 end else begin
209703 neg_out <= lhs_sign != rhs_sign;

.
209724 if (_T_38) begin // @[Multiplier.scala 163:24]

209725 divisor <= _divisor_T; // @[Multiplier.scala 169:13]

Listing 12: Source location of Division by zero in CVA6 [73].
13512 state_q <= state_d;
13513 op_a_q <= op_a_d;
13514 op_b_q <= op_b_d;
13515 res_q <= res_d;
13516 cnt_q <= cnt_d;
13517 id_q <= id_d;
13518 rem_sel_q <= rem_sel_d;
13519 comp_inv_q <= comp_inv_d;
13520 res_inv_q <= res_inv_d;
13521 op_b_zero_q <= op_b_zero_d;
13522 div_res_zero_q <= div_res_zero_d;

Listing 13: Source location of DIVUW+REM in BOOM [74].
230112 if (cmdMul) begin // @[Multiplier.scala 164:17]
230113 state <= 3'h2;
230114 end else if (lhs_sign |rhs_sign) begin // @[Multiplier.

↪→ scala 164:36]

230115 state <= 3'h1;
230116 end else begin
230117 state <= 3'h3;

.
230165 if (_T_38) begin // @[Multiplier.scala 163:24]

230166 divisor <= _divisor_T; // @[Multiplier.scala 169:13]
230167 end else if (state == 3'h1) begin // @[Multiplier.scala

↪→ 91:57]
230168 if (divisor[63]) begin // @[Multiplier.scala 95:25]
230169 divisor <= subtractor; // @[Multiplier.scala 96:15]
230170 end
230171 end
230172 if (_T_38) begin // @[Multiplier.scala 163:24]

230173 remainder <= {{66'd0}, lhs_in}; // @[Multiplier.scala
↪→ 170:15]

Listing 14: Source location of compressed instructions and
MV in CVA6 [73].

3754 assign adder_z_flag = ∼|adder_result;
3755
3756 // get the right branch comparison result
3757 always_comb begin :branch_resolve

5 // set comparison by default
6 alu_branch_res_o = 1'b1;
7 case (fu_data_i.operator)
8 EQ: alu_branch_res_o = adder_z_flag;

Table 3: MEG and SVA overhead statistics for BOOM [74].

Module MEG
SVA

coverage
points

Time
taken(s)

Space con-
sumed(kB)

(per
module)

MaxPFibLFSR1 0.32 5.2 302
BoomIOMSHR 0.34 23.1 157
BoomWbUnit 0.32 20.6 3372
FetchBuffer 0.52 403.2 1458
BrnchKillQ2 0.35 22.7 1066

ICache 0.13 14.9 3869
TLXbar_7 0.32 13.1 187

BrnchKillQ 0.49 106.1 2777
BoomRAS 0.35 17.0 125
Queue_35 0.36 20.7 124

	Introduction
	Background
	Hardware Fuzzing
	Timing Side-Channel Attacks

	Methodology
	Microarchitectural Transitions and Timing Behaviors
	Detecting and Localizing Timing Vulnerabilities in Processors: A High-Level Overview
	Challenges
	The WhisperFuzz Framework
	Extracting Micro State Transitions
	Characterizing Timing Behaviors
	Localizing the Source of Timing Vulnerabilities
	Fuzzing Microarchitectural State Space

	Evaluation
	Evaluation Setup
	Detecting Novel Side Channels
	Redetecting Known Side Channels
	Pinpointing the Locations of Side Channels
	Coverage Analysis
	Exploitability of Detected Vulnerabilities

	Related Work
	Discussion
	Conclusion
	Acknowledgement
	Implementation details of Micro-Event Graph
	SVA cover properties for case study
	Proof of concept codes for triggering detected vulnerabilities
	Locations of side channels

