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Abstract—Modern computing systems heavily rely on hardware
as the root of trust. However, their increasing complexity has
given rise to security-critical vulnerabilities that cross-layer at-
tacks can exploit. Traditional hardware vulnerability detection
methods, such as random regression and formal verification, have
limitations. Random regression, while scalable, is slow in exploring
hardware, and formal verification techniques are often concerned
with manual effort and state explosions.
Hardware fuzzing has emerged as an effective approach to explor-
ing and detecting security vulnerabilities in large-scale designs
like modern processors. They outperform traditional methods
regarding coverage, scalability, and efficiency. However, state-of-
the-art fuzzers struggle to achieve comprehensive coverage of intri-
cate hardware designs within a practical timeframe, often falling
short of a 70% coverage threshold. To address this challenge,
we propose a novel ML-based hardware fuzzer, ChatFuzz. Our
approach leverages large language models (LLMs) to understand
processor language and generate data/control flow entangled yet
random machine code sequences. Reinforcement learning (RL) is
integrated to guide the input generation process by rewarding the
inputs using code coverage metrics.
Utilizing the open-source RISC-V-based RocketCore and BOOM
cores as our testbed, ChatFuzz achieves 75% condition coverage
in RocketCore in just 52 minutes. This contrasts with state-of-the-
art fuzzers, which demand a 30-hour timeframe for comparable
condition coverage. Notably, our fuzzer can reach a 79.14% con-
dition coverage rate in RocketCore by conducting approximately
199k test cases.
In the case of BOOM, ChatFuzz accomplishes a remarkable
97.02% condition coverage in 49 minutes. Our analysis identified
all detected bugs by TheHuzz, including two new bugs in the
RocketCore and discrepancies from the RISC-V ISA Simulator.

I. INTRODUCTION

Traditional hardware verification techniques are crucial for
ensuring the reliability and correctness of a hardware design,
the design under test (DUT), before fabrication. Among these
techniques, random regression and formal verification methods
are commonly employed. Despite its capacity to accommo-
date extensive hardware designs, random regression presents
a notable efficiency problem as it tends to slow down when
exploring the intricacies of a hardware design. Consequently, it
encounters difficulties uncovering vulnerabilities within hard-
to-reach critical components [6]. On the other hand, formal
verification, which aims to ascertain whether a DUT complies
with specified/predefined properties [14], is often regarded as
an efficient approach for verifying the correctness of hard-
to-reach hardware components. However, formal techniques
rely heavily on manual effort from domain experts to define
the required properties, which can be error-prone and time-
consuming. Furthermore, formal verification frequently results
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in state explosion, rendering it impractical to verify the entire
DUT comprehensively [5]. Hardware fuzzing has emerged as
a promising approach for not only broadening the exploration
of design space but also for revealing security vulnerabilities
within intricate designs, including complex processors [3],
[8], [9], [13]. To bolster their effectiveness, hardware fuzzers
harness coverage data, such as branch conditions, statements,
and multiplexers’ control registers or signals, for generating test
cases and probing diverse hardware behaviors [8]–[11]. When
compared to traditional hardware verification techniques, hard-
ware fuzzers have demonstrated broader coverage, enhanced
scalability, and efficiency in identifying real-world vulnerabil-
ities that have been associated with privilege escalation and
arbitrary code execution attacks [3], [8], [9]. Nonetheless, state-
of-the-art fuzzers struggle to achieve comprehensive coverage
of intricate hardware designs within a practical timeframe, often
falling short of a 70% coverage threshold in complex hardware
such as a RISC-V RocketCore processor [1].
Our Contributions. In this paper, we introduce ChatFuzz, the
first processor fuzzer that leverages machine learning for input
generation and improvement with the help of coverage metrics,
addressing a critical challenge in the field of processor fuzzing,
namely, generating interdependent data/control flow entangled
yet random instructions.
Three-Step ML-Based Input Generation. We present a three-
step training process, including unsupervised learning to un-
derstand machine language structures, reinforcement learning
with a disassembler for valid instruction generation, and further
reinforcement learning using RTL simulation as a reward agent
to improve the coverage.
Significant Speed Enhancement. ChatFuzz demonstrably ex-
pedites enhancing condition coverage, attaining a coverage
level of 74.96% within less than one hour. In contrast, the
current leading hardware fuzzer, TheHuzz [9], requires a much
longer period of roughly 30 hours to achieve the same coverage,
i.e., 34.6× faster. In the case of BOOM, ChatFuzz accomplishes
a remarkable 97.02% condition coverage in 49 minutes. It is
worth noting that TheHuzz exhibits greater efficiency compared
to random regression techniques and is approximately 3.33×
swifter than DifuzzRTL [8].
Findings. During fuzzing, ChatFuzz detects approximately 6K
mismatches and identifies more than 100 unique mismatches
after automated analysis. These findings include all bugs that
were detected by TheHuzz [9] and two new bugs, namely
the cache coherency management issue (CWE-1202) and the
execution tracing (CWE-440). Moreover, ChatFuzz exposes
deviations in the behavior of the RocketCore compared to the

ar
X

iv
:2

40
4.

06
85

6v
1 

 [
cs

.S
E

] 
 1

0 
A

pr
 2

02
4



specifications in the RISC-V ISA. This showcases ChatFuzz’s
efficiency in delving into the processor search space, thoroughly
investigating even the most detailed corner cases specified in
the RISC-V ISA specification.

II. BACKGROUND & RELATED WORK

A. Fuzzing

Fuzzing provisions a large number of inputs to the program un-
der test to uncover faults, bugs, or vulnerabilities that traditional
testing methods may miss [7]. The fuzzer may generate random,
malformed, or unusual inputs to test how the program handles
them. The initial set of test inputs, also known as seeds, can
be automatically generated or manually crafted by verification
engineers. During each fuzzing round, the fuzzer manipulates
the best test inputs from the preceding round using mutation
operations like bit/byte flipping, swapping, deleting, or cloning
to generate new inputs. In recent years, fuzzing has gained
significant attention from the hardware security community due
to its numerous advantages over existing verification methods.
In particular, fuzzing is highly automatable, cost-effective, scal-
able to real-world applications, and comprehensively covers the
tested application. These factors have contributed to its growing
popularity and adoption among researchers and practitioners in
the field of software as well as hardware security [2], [8]–[10].
1) Processor Fuzzers: Traditional processor fuzzers such as
DifuzzRTL [8] and TheHuzz [9] use code coverage and control
register coverage as feedback to guide the mutation process.
These fuzzers generate seeds through random generation of
instructions and mutate the instructions in the current input
to generate new inputs. Recent research also led to hybrid
hardware fuzzers such as HyPFuzz [3] and PSOFuzz [4] that
combine the capabilities of fuzzers with formal tools and
optimization algorithms to improve the coverage achieved.
However, these hybrid fuzzers also use the seed generation and
mutation engines inherited from traditional processor fuzzers
such as TheHuzz [9]. While the seed generator and mutation
engine in these fuzzers can identify valid instructions from
the ISA, they do not have well-defined feedback to determine
a meaningful sequence of instructions that will lead to deep
design regions.

B. Machine Learning

1) Reinforcement Learning (RL): RL is a branch of machine
learning that studies how agents can learn from their actions and
environment feedback to achieve a goal. RL differs from other
forms of machine learning, such as supervised and unsuper-
vised learning, in that the agent does not have access to labeled
data or explicit rules but must discover the optimal behavior
through trial and error. The agent’s objective is to find a policy,
a function that maps each state to an action that maximizes
the expected cumulative reward over time. This is achieved
using various algorithms, such as policy-based or actor-critic
methods. Proximal Policy Optimization (PPO) is a family of
model-free RL algorithms. PPO updates policy parameters for
higher expected rewards based on policy gradient methods.
Unlike traditional policy gradient methods, PPO employs a

clipped surrogate objective function to control policy updates
and prevent large deviations from the previous policy, ensuring
stability and efficiency. PPO algorithms have been successfully
applied to various domains, e.g., natural language generation.
2) Large Language Models (LLMs): LLMs are large ML mod-
els for processing and generating natural language text. They
leverage neural networks (NN), often using the transformer
architecture, to learn from sequential data and capture long de-
pendencies. LLMs can contain billions of parameters (weights),
dictating how the model handles input and generates output.
LLMs are trained using different learning paradigms, from self-
supervised to reinforcement learning, which means that they
do not require labeled data or explicit rules but learn from
the patterns and structures inherent in the text corpus. LLMs
can perform various natural language processing (NLP) tasks,
such as recognition, summarization, translation, prediction, and
generation. LLMs are general-purpose models that can adapt to
different domains and applications with minimal fine-tuning or
prompt engineering. In a concurrent work, LLMs have been
utilized in software fuzzing [12]. The proposed method creates
test cases, particularly for fuzzing compilers, by training a
large language model on a task that relies on human-defined
prompts to generate and modify test cases. In contrast, our
approach does not rely on human interaction during training
and is additionally steered by coverage metrics.

III. ChatFuzz

Utilizing recent advancements in LLMs, we propose ChatFuzz
as an innovative approach for enhancing hardware security.
ChatFuzz involves training LLMs using machine language
(specifically, machine codes) and employing the trained model
to generate sequences of pseudo-random yet interconnected
instructions for hardware fuzzing. Unlike existing methods, our
approach prioritizes creating interdependent data/control flow
entangled instruction sequences.
ChatFuzz, illustrated in Figure 1a, comprises several compo-
nents. The LLM-based Input Generator generates instruction
sequences for fuzzing the targeted CPU. Details about this com-
ponent are discussed in subsection III-A and subsection III-B.
The RTL and ISA Simulators execute the given inputs on
the targeted CPU and its golden model, respectively, while
recording execution traces. For each test input the RTL Sim-
ulator reports coverage information, which is utilized by the
LLM-based Input Generator to optimize the input generation
process. The Mismatch Detector compares execution traces
to identify mismatches or potential bugs, which are manually
inspected for confirmation as elaborated in subsection III-C. In
the following, we elucidate the fundamental components of our
approach, encompassing A) the acquisition of a training dataset
for instructing the LLM model, B) the training process of the
LLM model to grasp machine language intricacies, and C) the
execution of hardware fuzzing and bug detection procedures.

A. Machine Language Dataset

A major challenge in training LLMs is the need for an extensive
training dataset. While collecting data for natural languages like
English is relatively easy, it becomes much more complicated



RTL Simulator

DUT

ISA Simulator

LLM-based
Input Generator

Mismatch 
Detector

Coverage
Calculator

3a7f 0e19
5aa0 c401
5bbf 6e70
aa8b 00d8

1cc0

Trace.DUT

Trace.ISA

Manual Bug 
Detection

Mismatch.list

Coverage Report

Feedback

(a) Overview of ChatFuzz

(1) Initial Training (2) Model Cleanup Training (3) Model Optimization

4118,419c, …

Tokenizer

[32,53,524, …]

[32,53,524, …, 
272,28,293, …]

GPT2 Model

Generator* Generator

PPO

Reward Computation

O
pt

im
iza

tio
n

ISA Disassembler RTL Simulator 

Generator* Generator

PPO

Reward Computation

O
pt

im
iza

tio
n

(b) ChatFuzz’s training steps
Fig. 1: ChatFuzz’s final model results from three consequent training steps: (1) Unsupervised training based on the GPT2 model
to learn the inner structure of the machine language; (2) Utilizing a disassembler as a scoring agent during PPO-based RL
training, the initial model is refined by cleaning up the learned language and removing bad combinations of instructions; (3)
Improving the coverage with a PPO-based RL process where the refined generator is trained through a reward function based
on coverage information attained through RTL simulation.

for machine languages. To explore this issue, we will investi-
gate two key questions: How do we collect a machine language
dataset? And how do we represent the machine language data
set for LLMs?
1) Training Data Collection: We have two options for col-
lecting a machine language dataset. i) Dynamic data collec-
tion. Recording instructions as a program runs is convenient;
however, it faces challenges that disrupt data inter-dependency,
such as context switches and kernel-related instructions. Rarely
executed code sections may also be missing due to conditional
constraints, affecting data completeness and interdependence.
These issues are more pronounced when collecting data from
complex programs, e.g., the Linux kernel, where repetitive
instructions and infrequent execution of critical sections add
complexity to data collection and interdependence. ii) Static
data collection directly gathers training data from fixed sources
like GUI-compiled code, avoiding dynamic program execution
complexities such as context switches and kernel-related in-
structions. This approach keeps the collected data isolated from
OS concurrent tasks’ interference, preserving intrinsic data
relationships as coded in the source. Static data collection also
comprehensively captures all code segments, including rarely
executed blocks, without relying on their activation during
program runtime.
In this work, we opted for static data collection as it effec-
tively overcomes the challenges posed by instruction inter-
dependency and code block rarity encountered in dynamic data
collection.
2) Training Data Representation: This step is challenging due
to several factors, including the presence of metadata (such
as headers and linking information) within machine codes
resulting from program compilation. Metadata can introduce
complexity and ambiguity, potentially hindering the LLM
model’s ability to learn the language effectively and maintain
the meaningfulness and interdependence of the training dataset.
To address this challenge, as illustrated in subsection III-B,
we disassemble the binaries generated from program compila-
tion and automatically identify the start and end locations of

functions within the disassembled files. We then include the
machine code of each function as an individual entry in the
training dataset designed for our LLM model. This approach
ensures that each function, being associated with a distinct
responsibility and meaning, contributes to the creation of a
training set characterized by a high degree of inter-dependency
among the instructions and their sequencing.

B. Training of LLM Model

Figure 1b depicts the ML subsystem. Our approach involves a
structured three-step pipeline, each phase dedicated to training
the language model, advancing steadily towards our ultimate
objective.
1) Initial Training: In this step, the model is initialized and
trained using the collected dataset. This step aims to learn the
language utilized by the CPU. For this purpose, we train a
tokenizer on the full ISA. The tokenizer then prepares the inputs
for the model as shown in Figure 1b(1).
2) Model Language Cleanup: Once the initial training is
completed, the model can commit numerous errors in the text
generation (e.g., wrong/illegal combinations of instructions).
Therefore, a refinement phase is crucial. Hence, at this stage
of the pipeline, Figure 1b(2), our goal is to clean up the gen-
erations of the trained model, enforcing the correct instruction
associations to minimize the number of ineffective generations.
For this purpose, we designed an RL process that leverages, as
a reward agent, the ISA disassembler (cf., subsection III-A). We
avoid using, as commonly done, a probabilistic scorer, such as
a neural network, for the rewarding task to prevent uncertainty
and reduce errors. Employing a deterministic reward agent,
we can provide the model with more precise guidance during
the training, leading to better optimization policies and more
precise model updates. This step helps avoid unnecessary CPU
simulation of bad/malformed data and thus improves the overall
performance of our fuzzer.
3) Model Optimization: Finally, we aim to improve the training
of our LLM to achieve our goal, which is generating sequences
of pseudo-random yet interconnected instructions that lead to



better CPU coverage. To do so, we employed another RL-based
training step, utilizing a deterministic reward agent similar to
the previous step. In this case, the reward function embeds the
scores provided as fuzzing loop feedback comprising hardware
coverage information collected during the simulation of the
generated data on the targeted CPU as shown in Figure 1b(3).
We performed the previous steps for RISC-V ISA. However, it
is worth noting that the approach described above is general-
izable to any CPU architecture.

C. Hardware Fuzzing and Bug Detection

After training the LLM model (cf., subsection III-B), we initiate
the fuzzing loop. As delineated in Figure 1a, the LLM model
generates a batch of test inputs, where each entry represents
a list of instructions. These entries are then executed on the
golden model and the targeted CPU using the ISA and RTL
Simulators, respectively. The resulting two execution traces of
each entry are analyzed by the Mismatch Detector to identify
traces’ discrepancies, which are documented for subsequent
manual inspection as part of the bug detection process.
Additionally, the RTL Simulator reports hardware coverage
metrics to the Coverage Calculator, which computes standalone,
overall, and incremental coverage values for each entry as
described in section IV. These values are then used to score
each entry generated by the LLM model, leading to a precise
evaluation of the entries and guiding the LLM model to
generate further inputs that have the potential to enhance the
coverage.

IV. IMPLEMENTATION

In this section, we will provide details on the implementation
of ChatFuzz components. We deployed Synopsys VCS and the
Spike simulator for RTL and RISC-V ISA, i.e., the golden
model, simulations. Additionally, we developed custom com-
ponents for Mismatch Detection and Coverage Calculation.

A. Mismatch Detection

This component uses differential testing to flag potential vul-
nerabilities in the targeted CPU. It compares the architectural
state changes between the targeted CPU and its golden model
when both run the same input and compiles a report with
uniquely identified discrepancies. Thus, effectively reducing the
manual workload for verification engineers. This is particularly
advantageous when multiple instances of the same bug generate
numerous mismatches. Further, verification engineers can add
filters to the Mismatch Detector in the form of architectural
state values that will allow filtering out most of the false
positive mismatches and accelerate vulnerability detection.

B. Coverage Calculation

This component is responsible for receiving the coverage
reports from the RTL simulator, i.e., Synopsys VCS in our
implementation. Subsequently, the coverage reports undergo
parsing, facilitating the calculation of three key values: stand-
alone coverage, incremental coverage, and total coverage, for
each coverage metric. Stand-alone coverage indicates the num-
ber of coverage points attained by the input under consideration.

Incremental coverage gauges the quantity of newly achieved
coverage points by the current input compared to the total
coverage points recorded in the previous batch. Meanwhile,
total coverage encapsulates the cumulative tally of coverage
points attained thus far, incorporating the contributions of
all inputs generated by the LLM model. These values are
deployed in the calculation of scores assigned to each test
input generated by the LLM-based input generator, thereby
facilitating a comprehensive evaluation of the generated inputs,
i.e., test inputs, with respect to their coverage effectiveness.

C. LLM-based Input Generation

The ML part of ChatFuzz was fully implemented in Python
with the use of the frameworks Pytorch (www.pytorch.org) and
Huggingface (www.huggingface.co). The use of Huggingface
is considered the standard for NLP-related tasks. Specifically,
we leveraged its implementations of the tokenizer, the large
language model (more precisely, of GPT2 family), and the
PPO algorithm for the RL pipeline. All the experiments were
conducted on a high-performance server. In the following,
we describe the main steps designed for achieving our goal,
principally depicted in Figure 1b.
1) Initial Training: The initial step in designing an NLP
pipeline is defining the dictionary and its corresponding tok-
enizer. The tokenizer translates words (i.e., instructions) into
tokens by encoding input text into an array of dictionary word
indices, always serving as an intermediary step between the
dataset and the language model. Decoding, on the other hand,
translates an array of tokens back into text (i.e., sequence of
instructions). Next, we trained the selected model to understand
the inner workings of the machine language, including grammar
and instructions relationships. During the training, the model
receives an input fragment of valid test vectors from our
collected dataset, resembling ∼ 500K test vectors extracted by
compiling the Linux Kernel, and learns how to complete it.
2) Model Language Cleanup: After the initial training, the
model is able to utilize the CPU’s language. However, having
the full ISA available as a dictionary, the model will easily
commit errors, generating illegal associations of instructions
that a disassembler can easily detect. To overcome this limita-
tion, which would significantly impact the quality of the end
generations, we decided to perform training through a PPO-
based RL, where the scoring agent is the RISC-V disassembler.
The reward function is designed in such a way that correct
generations are incentivized, and generations with illegal in-
structions are as penalized as many invalid instructions are
present in the generated test vector:

f(GenTexti) = Ni − 5 ∗ Invalidi (1)
where Ni is the number of instructions generated at time i
for GenTexti, and Invalidi is the number of invalid instructions
present in GenTexti.
For the training, we utilized a dataset of 51.2K samples
extracted from the larger main dataset. For each sample, we
randomly selected the initial 2 to 5 instructions as input for
the LLM. The model then completes the test vectors using its
learned logic.

www.pytorch.org
www.huggingface.co


The training consists of 30 epochs. We monitored the PPO
algorithm’s loss, the Kullback-Leibler divergence between op-
timization policies, and the mean rewards assigned at each step
to assess the training progress.
3) Model Optimization: Once the model went through two
steps of training and the number of errors in the generations was
sensibly reduced, we proceeded with the final training, where
we wanted to carefully drive the model towards the exploration
of the targeted CPU (i.e., increasing the reference coverage)
through a PPO-based RL process. In this case, the reward
function, based on the values reported by the Coverage Calcu-
lator, takes into account the overall knowledge of architecture
until the i-th step, the incremental coverage (i.e., whether
there was an improvement), and stand-alone coverage (i.e.,
coverage of the i-th sample). In practice, the reward function
guides the search direction toward generations that increase the
coverage by giving a bonus and penalizing (i.e., assigning a
negative reward) those that do not produce any improvement.
This reward function, ultimately, pushes the model to explore
more in the direction of interesting generations. Moreover,
analogously to the previous step, this training takes place with
the same strategy. We utilize the same sampled dataset of 51.2K
samples as input. In this case, the training is designed to last
at most 15 epochs, during which the values reported by the
coverage calculator are used for the reward computation.

V. EVALUATION

We used ten instances of Synopsys VCS as a simulator and
measured the effectiveness of our solution using the condition
coverage metric provided by Synopsys VCS. It is imperative
that this feedback captures new hardware behavior and func-
tionalities during fuzzing. Condition coverage aligns with this
goal, correlating the satisfaction of hardware design conditions
with realizing new functional behaviors. An exemplary instance
is fulfilling conditions leading to privilege-level transitions,
such as shifting from the user to the supervisory level. We
have chosen the widely utilized RISC-V RocketCore and Boom
processors, renowned as preeminent open-source processors
within the RISC-V ecosystem. In evaluating RISC-V proces-
sors, we employed the Chipyard simulation environment, which
facilitates the assessment of diverse processors and ensures a
uniform testing arena. Each experiment was executed over 24
hours and repeated three times to underscore the robustness and
consistency of our findings.

A. Design Coverage

Our analysis revealed that both ChatFuzz and TheHuzz incur
similar runtime overhead. Nevertheless, when considering an
equivalent number of generated tests (1.8K) with same number
of instructions, ChatFuzz achieved a condition coverage of
74.96%, while TheHuzz reached 67.4%. Remarkably, TheHuzz
required around 30 hours to reach a 75% coverage rate, i.e.,
ChatFuzz achieved the same amount of coverage 34.6× faster.
Ultimately, ChatFuzz achieved a condition coverage rate of
79.14% by generating 199k test cases, while TheHuzz [9]
attained a condition coverage rate of 76.7% for the same
number of test cases. Furthermore, ChatFuzz accomplishes a
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Fig. 2: Coverage analysis of TheHuzz [9] and ChatFuzz over
time for RocketCore.

remarkable 97.02% condition coverage in 49 minutes while
running experiments on the Boom processor. Figure 2 provides
visual representation of the condition coverage for ChatFuzz
and TheHuzz during 24 hours of RocketCore fuzzing.

B. Findings

In the initial stage of our mismatch detection processChatFuzz
effectively identified 5,866 instances of disparities within the
execution traces originating from the RISC-V ISA simulator
and the RocketCore. Subsequently, these identified mismatches
underwent a secondary filtration process, separating more than
100 unique mismatches. This filtration process was executed
in an automated fashion. Following this, we embarked on
a detailed manual analysis of these unique mismatches, the
summaries of which are presented below.
1) Bug1: According to the RISC-V specification [15], when
there are modifications made to the instruction memory, it is
imperative for the software to manage cache coherency through
the utilization of the FENCE.I instruction. Neglecting this
cache coherency management can lead to unforeseeable con-
sequences, wherein processors may rely on outdated data and
execute instructions incorrectly. During testing with a generated
input program by our fuzzing tool that modified the instruction
memory but did not incorporate the FENCE.I instruction, an
inconsistency was identified in the trace logs of the RocketCore
processor and Spike. This disparity could have been prevented
if the RISC-V specification or the RocketCore processor could
detect violations of cache coherency at the hardware level. This
bug has the potential to introduce cache coherency problems in
software executed on the RocketCore processor, which might
go unnoticed if the FENCE.I instruction is misused, ultimately
resulting in a memory and storage vulnerability identified as
CWE-1202.
2) Bug2: RISC-V specification consists of arithmetic instruc-
tions such as multiply and divide [15] that compute a value
using the operand registers and update the result in the desti-
nation register. The RocketCore processor and ISA simulator
behave accordingly when executing the multiply and divide
instructions. However, the tracer module in RocketCore is not
outputting the write to the destination register in RocketCore’s
trace output, resulting in Bug2. This bug may not have security
consequences as it is present in the debug components of



RocketCore. However, bugs like this can mask other security
vulnerabilities that can otherwise be detected with the correct
trace output information (CWE-440).
3) Other Findings: In conjunction with its capacity for vul-
nerability detection, our tool has brought to light compelling
disparities between the target processor and Spike. While these
disparities do not signify security vulnerabilities, they highlight
the tool’s capabilities in comprehensively examining the tar-
get processor. These discrepancies represent exceptional cases
within the RISC-V specification and highlight the effectiveness
of our approach in exploring the DUT search space. This is
achieved by generating interdependent and data/control flow
entangled instructions, as opposed to the conventional use
of random instructions employed by state-of-the-art hardware
fuzzers. We will elucidate the three most significant ones below.
Finding1. In line with the RISC-V specification [15], when
an instruction triggers multiple synchronous exceptions, the
higher-priority exception is logged in the mcause regis-
ter. The priority hierarchy established in the RISC-V privi-
lege specification places the Load/store/AMO address
misaligned exception above the Load/store/AMO
access fault exception. In our fuzz testing using Chat-
Fuzz, two test cases emerged. In the first, both Load access
fault and Load address misaligned exceptions were simultane-
ously raised. In contrast, the second test case triggered both
Store access fault and Store address misaligned exceptions
concurrently. Notably, Spike responded with the Load/Store
address misaligned exception, while RocketCore issued
the Load/Store address fault exception.
Finding2. In another example, ChatFuzz generated a pair of
atomic instructions, such as AMOOR.D, in which it employed
R0 as a temporary location for loading data from memory,
designated as rd. Interestingly, our tool observed that this
atomic instruction appeared to function as expected, with R0
receiving data—a behavior seemingly at odds with the RISC-
V specification [15]. Upon further investigation, we realized
that this behavior represents a corner case within the RISC-V
specification [15]. It is conceivable that developers, in pursuit of
optimization, could implement the AMOOR.D operation within
the memory controller. Consequently, if a user specifies R0 as
the destination register (rd) for this instruction, the memory
controller may perform the atomic operation as intended.
Finding3. Another notable scenario relates to the behavior of
the RocketCore processor, particularly in its treatment of the
R0 register, compared to the Spike ISA simulator. According to
the RISC-V ISA specifications, the R0 register is expected to
maintain a constant value of zero, implying immunity to write
operations. However, our analysis unveiled that in the execution
traces generated by the RocketCore, there are occurrences of
attempted writes to the R0 register within specific sequences
of instructions. It is important to note that this discrepancy is
solely observed in the output traces and does not affect the
functionality of RocketCore.

VI. CONCLUSION

We introduced ChatFuzz, a novel hardware fuzzer that utilizes
large language models to learn machine language and gener-

ate complex, interdependent, data/control flow entangled and
pseudo-random test cases. Our approach significantly improves
condition coverage, reaching 74.96% in less than an hour,
compared to the 30 hours required by leading hardware fuzzers,
i.e., ChatFuzz achieved the same amount of coverage 34.6×
faster. Also, in the case of Boom, ChatFuzz accomplishes a re-
markable 97.02% condition coverage in 49 minutes. ChatFuzz
has successfully identified more than 100 unique mismatches,
revealed two novel bugs, and exposed deviations in RocketCore
behavior compared to the golden model, even in intricate corner
cases specified in the RISC-V ISA specification. These results
highlight ChatFuzz’s effectiveness in exploring processor vul-
nerabilities, offering a faster and more comprehensive approach
to hardware security and testing.
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