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Abstract—Demand for autonomous protection in computing
devices can not go unnoticed with an enormous increase in cyber
attacks. Consequently, cybersecurity measures to continuously
monitor and analyze device critical activity, identify suspicious
behavior, and proactively mitigate security risks are highly
desirable. In this article, a concept of behavioral profiling is
described to distinguish between benign and malicious software by
observing a system’s internal resource usage on Windows devices.
We rely on the Windows built-in event tracing mechanism to log
processes’ critical interactions for a given amount of time that
are converted into structured data using a graph data structure.
After that, we extract features from the generated graphs to
analyze a process behavior using a deep neural network. Finally,
we evaluate our prototype on a collected dataset that contains
one thousand benign and malicious samples each and achieve an
accuracy of ≈ 90%.

Index Terms—Autonomous protection, intrusion detection,
behavioral profiling

I. INTRODUCTION

The new malware and malware variants pose a constant
threat to the security and safety of users computing devices
and data. Studies have shown that traditional malware detection
tools (e.g., signature-based detection, check-summing, and
application whitelisting) are not highly effective to protect our
digital assets [1], [2]. CryptoLocker, ILOVEYOU, Koobface,
Code Red, Melissa, Wannacry, Petya, Mirai, SpyEye, and
Stuxnet are just a few malware that notoriously crippled
millions of devices and caused colossal financial losses in
recent years [3].

By and large, both the static and dynamic analysis approaches
have been heavily investigated for malware detection [4], [5].
Static analysis involves examining the code or structure of a
file without executing it. It can be useful for identifying known
malware patterns and identifying code similarities with known
malware families. However, it can be less effective against
malware that employs code obfuscation techniques, as these
techniques can make it more difficult for static analysis tools to
recognize the malware’s malicious intent. Additionally, static
analysis can result in false positives, as benign code may be
incorrectly flagged as malicious.

Dynamic analysis involves executing a file in a controlled
environment and analyzing its behavior. It can be effective
at detecting new and unknown malware, as it can identify
behaviors that are characteristic of malware. However, dynamic
analysis can be more resource-intensive and time-consuming

than static analysis, as it requires the creation of a virtual
environment to execute the file safely. Dynamic analysis can
also be vulnerable to sandbox detection, as malware may
be programmed to detect when it is running in a sandbox
environment and change its behavior accordingly. Furthermore,
fileless attacks can be difficult to detect using both static and
dynamic analysis methods, as they do not involve writing files
to disk. This is a technique used by some malware to evade
detection by traditional anti-malware systems.

Nevertheless, considering the significant rise in remote work
trends and interconnectivity of computers in recent years, near
real-time device behavioral monitoring, anomaly detection, and
threat prevention mechanisms are highly desirable. Autonomous
protection can be a promising solution to detect and respond
to potential cyber-attacks that can operate independently
of human intervention or control. Inherently, autonomous
protection employs behavioral analysis and artificial intelligence
to continuously monitor and analyze device critical activity,
identify suspicious behavior, and proactively mitigate security
risks.

In this article, we introduce a concept of behavioral profiling
by using system logs and traces in Windows OS-based systems
for autonomous protection from malware. Event logs that are
the inventory of essential activities on a system can be a primary
source of digital evidence for forensic investigation [6]. We rely
on the Windows built-in instrumentation-free Event Tracing
for Windows (ETW) for log collection. We consider events
associated with an operating system, applications running on
devices, and network traffic with connected devices as part of
the trust computing base [7].

A. Contributions
• We design and develop a Behavioral Profiling Prototype

(BPP) for autonomous protection from malware. The design
of each module, i.e., Logs Collection Module, Graphs Gen-
eration Module, Features Extraction Module, and Behavioral
Analysis Module in BPP is delineated in-depth.

• We demonstrate the transformation of unstructured data to
structured data using a graph data structure.

• We elucidate mechanisms for feature generation from Win-
dows events using a built-in ETW logging facility for
Windows-based systems.

• We present a step-wise implementation of Deep Neural
Network (DNN) for behavioral analysis.
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• We collect a total of two thousand benign and malicious
samples for evaluating the prototype.

B. Article Structure
The rest of the article is structured as follows: Section II
presents the work related to behavioral-based malware detection
approaches. Section III describes the behavioral profiling
prototype. Section IV presents a detailed high-level design
of a behavioral profiling prototype. Section V provides the
experimental details including data generation, results, and
discussions. Section VI concludes the article together with
some insight about future work.

II. RELATED WORK

Behavioral-based approaches leverage various dynamic prop-
erties like file system activities, terminal commands, network
communication, and system calls to understand the run-time
behavior of malware during the execution [8]. Berlin et al. [9]
investigated the potential of Windows audit logs to augment
existing Windows enterprise management tools. The authors
presented the argument that audit logs can provide an effective,
low-cost alternative to deploying additional expensive agent-
based breach detection systems in many government and
industrial settings. The system used a linear classification model
and tested the model using a small subset of audit log features,
i.e., q continuous time-ordered sets of events that detected
83% percent of malware samples with a 0.1% false positive
rate. Aharoni et al. [10] proposed a mechanism that extracts
behavioral and statistical information from the events to build a
predictive model based on supervised learning. The mechanism
ranks the events for predicting malicious processes, which was
tested using VirusTotal and was able to detect more than two-
thirds of the malicious events with less than a 2% false positive
rate.

Rana et al. [11] proposed a framework for ETW to capture
kernel-level events and transform the logs in human-readable
JSON format. The authors also integrated the agent into the
cuckoo sandbox. The data captured by the Cuckoo included
signatures, networks, processes, files system, registry, API
calls, and some static information. And, the data captured by
their agent included process, files system, registry, page faults,
ALPC, DLLs imported, and some static information. Overall,
104 features are extracted from the data collected by Cuckoo,
and 58 features are extracted from the data collected by their
agent for behavior analysis. K-Nearest Neighbor, Multi-layer
Perceptron, Decision Tree, and Random Forest are used to
design a bimodal classification model. Random Forest classifier
performs the best on the combined (Cuckoo+ETW) data with
an accuracy of 99.68% and a false positive rate of 0.45%.

Ahmed et al. [12] proposed a ransomware detection system
that they called profiling kernel-Level events to detect ran-
somware (PEELER). The authors explain that the ransomware
typically disables real-time monitoring, archive scanning, or
even deletes its binary from the disk to achieve stealthiness
and remain undetected. Subsequently, they launch the attack by
encrypting files or locking the device screens and displaying

ransom payment notes. The PEELER system tracks ransomware
activities from a ransomware binary execution to a ransom
note display on the victim’s device, thus, based on the device’s
behavioral characteristics Peeler continuously monitors a target
system’s kernel events and detects ransomware attacks on the
system.

III. BEHAVIORAL PROFILING PROTOTYPE

The basic concept that we exploit to design our Behavioral
Profiling Prototype is inspired by a criminal profiling ideology,
i.e., “a creation of a psychological, behavioral, and demo-
graphics profile of the type of person likely to have committed
the crime” [13].

A. Definition

Behavioral profiling can be described as an act or process
of gathering information based on observed characteristics or
known patterns gathered from/about a system or device yielding
vital information that could aid to detect potential threats.

B. Pilot Study

Our pilot study targets Windows devices given the
widespread use of Microsoft Windows operating systems which
is about 30% of the global OS market share [14]. Studies have
reported that over 95% of all new malware threats surfaced
in 2022 targeted Windows devices [15]. Some of the malware
that Microsoft listed include Coin miners, Exploits and exploit
kits, Macro malware, Phishing, Ransomware, Rootkits, Supply
chain attacks, Tech support scams, Trojans, Unwanted software,
and Worms [16].

We create a Windows 10 virtual machine (VM) using
VirtualBox1 that is freely available as Open Source Software
under the terms of the GNU General Public License (GPL).
We use a virtual machine (VM) to emulate the behavior of
an executable code, JavaScript, website content, and other
potential ways that can be used to attack a system and collect
events log to record Windows events using a built-in ETW
logging facility for any Windows-based system.

The log collection process for generating benign and
malicious samples is explained in Section IV-A. ETW Logs can
be described as semi-structured texts that comprise a constant
part, i.e., log event, and a variable part, i.e., log parameter.
We preprocess the raw ETW logs by correlating their process
IDs and timestamps. Each sample consists of several log files
containing information about events (listed in Table I) for
three minutes triggered by various activities running on the
VM. Each set of log files is converted into directed acyclic
graphs that are described in Section IV-B for further analysis.
Section IV-C describes the features that we extracted from
each sample for behavioral analysis. Section IV-D explains the
methods investigated for the samples behavior analysis using
DNN.

1https://www.virtualbox.org
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IV. HIGH LEVEL DESIGN

We design and develop BPP targeting the devices running
on the windows operating system. Figure 1 illustrates the block
diagram of BPP consisting of four core modules, i.e., Logs
Collector, Graphs Generator, Features Extractor, and Behavior
Analyzer.

Logs 
Collector

Graphs 
Generator

Features 
Extractor

Behavior 
Analyzer

Fig. 1. The block diagram of Behavioral Profiling Prototype

A. Log Collection Module
Event Tracing for Windows provides a framework for tracing

and logging events that are raised by user-mode applications and
kernel-mode drivers [17]. We use APIs TraceLoggingRegister
and TraceLoggingWrite to register and write events triggered
for a given period, which is easily configured. The logging
mechanism utilizes per-processor buffers that are written to a
file by an asynchronous writer thread. ETW events are rich
metadata, localizable message strings, and schematized data
payloads for easy consumption of event data. High-level events
and kernel events logged information related to process and
thread creation events, file events, network events, and registry.

Table I lists the events that we registered to monitor a
device’s behavior [11]. File input/output event class can be
exploited for getting events related to the file system. Process
event class can be used to capture events related to processes.
The thread event class can be used to capture events related
to threads. Registry event class can be used to capture events
related to the registry. And, network event class can be used
to capture network-related events.

TABLE I
EVENTS FOR MONITORING A DEVICE’S BEHAVIOR

Class Event/Identifier Description
File
Input/Output

File Create (FILE CREATE) A file is created

File
Input/Output

File Delete (FILE DELETE) A file is deleted.

Process Process Start
(PROCESS START )

A process is started.

Thread Thread Start
(THREAT START )

A thread is started.

Registry Registry Set Value
(RIGISTRY SET )

A key is set.

Network TCP/IP Connect IPV4/IPV6
(TCP CONNECT )

A TCP connection is
establish.

Network UDP/IP Connect IPV4/IPV6
(UDP CONNECT )

A UDP connection is
establish.

B. Graphs Generation Module
All the event logs collected for a pre-configured time

interval are converted to directed acyclic graphs (DAGs) using
networkx library2 (refer Figure 2). We generate a DAG for
each process, where a root node is represented by the process
UID (unique identifier) and the children are represented by
UID.EV ENT ID, specifying the events (listed in Table I)
triggered by the root process or the spawned processes.

2https://networkx.org

01.0

01.1001

02.1003 02.1004 02.1005

01.1002

03.1006

Fig. 2. A typical DAG of a process

C. Features Extraction Module
Let G = (V,E,D) denote a DAG, where V = {vi|i ∈ N}

represents a set of N nodes and E = {evivj |vi, vj ∈ V }
refers to a set of directed edges connecting node vi to node
vj , and D = dvi |vi ∈ V denotes a set of dictionaries embed
in each node. The graph-level features are described below.
• Nodes Count: The total number of nodes in a graph.
• Leaf Nodes Count: The total number of nodes with a child.
• Graph Depth: The total number of edges from the root node

to a leaf node in the longest path.
• Node Degree Statistics: Univariate statistical information,

such as minimum, maximum, mean, and standard deviation
is computed from all the nodes’ degrees in the given graph.
Node degree is the total number of edges ingress and egress
a node.

• Events Count: The total count of each type of event described
in Table I.

D. Behavior Analysis Module
We implemented a densely connected feed-forward Neural

Network exploiting the TensorFlow library. The parameters
for the DNN architecture are empirically fine-tuned to obtain
optimal results. An input shape = (12, ) is passed as an
argument to the first layer that instructs Keras to insert an input
layer before it. Here, 12 is the total number of graph-level
features per observation described in Section IV-C. We rely on
ReLU as an activation function for the first and second layers
that can tackle the vanishing gradient problem and Sigmoid as
an activation function for the output layer that is effective for
classification problems.

However, we use different output units for the first and
second layers for optimizing the model. We compile the model
using binary crossentropy as a loss function, adam as an
optimizer, and accuracy as performance metrics. Binary cross
entropy compares each of the predicted probabilities to the
actual class output, i.e., 0 (malicious) or 1 (benign). The
loss functions compute the quantity that a model seeks to
minimize during training. Adam optimization is a stochastic
gradient descent method that applies adaptive estimation of first-
order and second-order moments to update network weights.
Finally, accuracy makes the evaluate function callable with
the signature result = fn(y true, y pred).

V. EXPERIMENTAL DETAILS

A. Dataset
A total of two thousand graphs are generated containing an

equal number of benign and malicious samples from the event
logs acquired from emulating benign and malicious activities
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on Windows 10 VM. Live malware samples can be downloaded
from websites listed in Table II as per the website guidelines.

TABLE II
WEBSITES TO GET MALWARE SAMPLES

1. http://www.vxvault.net/ViriList.php 5. https://urlhaus.abuse.ch
2. https://support.clean-mx.com/clean-mx/inde

x.php
6. https://tria.ge

3. https://virussign.com 7. https://malshare.com
4. https://vx-underground.org/malware.html 8. https://bazaar.abuse.ch

B. Results
We divide the dataset with graph-level features only into

three disjoint and non-overlapping subsets, i.e., a training set,
a validation set, and a test set. The test size parameter can
be between 0.0 and 1.0 defining the split ratio for the dataset.
We use 50% of the dataset for the training model and 25%
each for validation and testing of the model. The result is
reported in terms of Accuracy, that is the ratio of truly accepted
testing samples and the total number of testing samples, i.e.

TrueBenign+TrueMalicious
TrueBenign+TrueMalicious+FalseBenign+FalseMalicious .

We use the Keras fit API to train the model by slicing the
training samples into batches of size batch size and repeatedly
iterating over the entire dataset for a given number of epochs.
The initialize the model with default batch size, i.e., 32. The
selection of epochs depends on the inherent perplexity of data,
however, it is recommended to use three times the number of
features available in the dataset as an initial value for epochs
that can be fine-tuned by increasing or decreasing the epochs
based on the validation results. Table III presents the results
obtained using evaluate API using the testing dataset in ten
separate runs using different hyper-parameters values for tuning
the model.

TABLE III
MODEL RESULTS

Hyper-parameters Tuning Results
# Epochs Batch

Size
Output Units
in Layers

Model’s Accuracy (%) in 10
runs

1. 36 32 12 80.2, 78.0, 73.6, 74.6, 78.4, 78.0,
80.4, 77.8, 81.2, 77.4

2. 72 32 12 78.6, 80.0, 79.4, 80.0, 84.0, 74.8,
80.6, 77.6, 78.6, 79.8

3. 108 32 12 82.4, 80.4, 81.0, 80.0, 83.2, 86.4,
82.0, 81.80, 84.6, 84.2

4. 108 64 12 78.0, 77.8, 77.2, 80.8, 77.0, 80.2,
74.6, 80.0, 85.0, 78.0

5. 108 16 12 82.2, 76.4, 82.8, 87.4, 79.0, 79.2,
83.6, 76.4, 73.4, 82.8

6. 108 32 120 81.8, 83.8, 83.6, 90.6, 89.6, 82.4,
88.2, 85.4, 84.6, 87.2

7. 108 32 120, 240 89.8, 88.6, 88.8, 89.6, 90.4, 88.2,
86.6, 89.6, 87.4, 88.0

C. Discussions
Figure 3 depicts the model’s accuracy in ten individual

runs arranged in ascending with different hyper-parameter, i.e.,
Epochs, Batch Size, and Output Units values that we fine-tune
to optimize the model. The blue line presents the accuracy
obtained in the ten runs with Epochs = 108, Batch Size = 32,
and Units values (120, 240) showing a consistent result after
tuning the hyper-parameter.

2 4 6 8 10
70

80

90

100

Number of runs
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36,32,12
72,32,12
108,32,12
108,64,12
108,16,12
108,32,120
108,32,(120,240)

Fig. 3. Model’s Accuracy in ascending order with different hyper-parameter
(Epochs, Batch Size, Output Units) values

The training and validation accuracy plot for 108 epochs can
be observed in Figure 4. It is imperative to select the correct
batch size and epoch together with the suitable number of
training and validation data, which can heuristically optimize
the internal variables at each layer, to obtain the best-fit model.
A model can be prevented from over-fitting with the help of
different Regularizers per-layer basis penalizing the model
from obtaining large weights. L1 (Lasso) and L2 (Ridge) are
two popular Keras regularization parameters. Alternatively, the
dropout method can be applied for addressing DNN over-fitting.

Fig. 4. Training and validation accuracy

Overall, BPP aims to solve the problems encompassing the
representation and determination of applications or processes
behavior to detect previously seen or unseen threats in a
continuous manner.

VI. CONCLUSIONS AND FUTURE WORK

This article presented a behavioral profiling prototype for
autonomous protection against emerging threats, reducing the
risk of human error, and minimizing the impact of security
breaches. The BPP converts unstructured data (i.e, ETW
logs) into structured data (i.e., directed acyclic graphs) and
extracts graph-level features to distinguish between benign and
malicious activities on a Windows-based system using DNN.
The BPP obtains an accuracy of ≈ 90% on a collected dataset
of two thousand benign and malicious samples. In the future,
we will extend our malware dataset and include other OS as
well for behavioral profiling.
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