
AppBox: A Black-Box Application Sandboxing
Technique for Mobile App Management Solutions
Maqsood Ahmad
Univ. di Trento, IT

Francesco Bergadano
Univ. di Torino, IT

Valerio Costamagna
Univ. di Torino, IT

Bruno Crispo
Univ. di Trento, IT

Giovanni Russello
Univ. of Auckland, NZ

Abstract— Several Mobile Device Management (MDM) and
Mobile Application Management (MAM) services have been
launched on the market. However, these services suffer from
two important limitations: reduced granularity and need for app
developers to include third party SDKs. We present AppBox , a
novel black-box app-sandboxing solution for app customisation
for stock Android devices. AppBox enables enterprises to select
any app, even highly-obfuscated, from any market and perform
a set of target customisations by means of fine-grained security
policies. We have implemented and tested AppBox on various
smartphones and Android versions. The evaluation shows that
AppBox can effectively enforce fine-grained policies on a wide
set of existing apps, with an acceptable overhead.

Index Terms—Android Security, App Sandbox, MAM

I. INTRODUCTION

In the past decade, expensive company-owned laptops have
been replaced by cheaper devices often owned by the em-
ployees, enabling the so called Bring Your Own Device
(BYOD) paradigm, and applications are being rewritten w.r.t.
this new context. In this scenario, it is important for enterprises
to be able to configure secure policies for its employees’
devices. Mobile Device Management (MDM) and Mobile App
Management (MAM) services are the de facto solutions to
enforce such enterprise policies on mobile devices.

MDMs enforce policies only at the device level, while
MAMs are app and/or employee-specific. MAMs provide
Software Development Kits (SDKs), enabling developers to
customise their apps. In this paper, we propose AppBox, a
novel application sandboxing technique to enable an enterprise
to select any app from the market and enforce any chosen
security policy with minimum collaboration from the app
developer. The developer will not have to disclose the app
source code to the enterprise nor should he be involved with
code customisations. Our contributions are:

1) we propose AppBox as a core technology for MAM
solutions, enabling to regulate the behaviour of any app
without SDKs

2) AppBox works on stock Android devices and does not
require root privileges

3) we have implemented AppBox and tested it for perfor-
mance and robustness on 1000 of the most popular real-
world apps, using different Android versions.

II. APPLICATION SCENARIO

The reference application scenario we envisage involves the
following parties: (i) a developer Dev and (ii) an enterprise
Ent. Let us assume that Dev has created an app A that
Ent wants to use. In a traditional MAM service, one has to
have access to the source code of the app or the developer
needs to apply the sandbox while developing her own app.
Unfortunately, Ent does not have the source code of A, that
could be heavily obfuscated, and Dev does not want to release
the source due to IPR reasons. Dev is also not interested in
customising A using a wrapper sandbox because of the extra
resources needed for managing the customised version of A
and the cost of supporting updates.

In such a scenario, AppBox can be useful. We envision
the developer’s cooperation to offer an AppBox compatible
version of A. However, Dev does not need to branch out any
new version of A or to include third-party library/code within
the app. Therefore, AppBox can be seen as an alternative to
the SDKs offered by existing MAM services.

The only action needed is to run A through our StubFactory
(see Section IV-A). This component takes A as input and
returns two apps: the StubApp A′

stub and A′. The A′
stub will

generate the sandbox where A′ will be executed (details will
be discussed in Section IV-C2). Here we stress that A′ is
an exact copy of A, except for a slightly different manifest
file automatically modified by the StubFactory component.
Moreover, StubFactory neither modifies A’s bytecode nor does
it insert any additional code in the app.

At this stage, Dev has to sign A′
stub and A′ by a freshly

generated self-signed certificate K. Since both the app A′

and the stub A′
stub are now signed with the same K, the

Android manifest attribute android::sharedUserId allows to
execute both apps under the same UID. Finally, the signed
new app can be distributed.

When Dev releases a new version of A, the only step
required is to create a new version of A′. This is fully
automated by means of the StubFactory . Each time Dev
releases a new app’s update she creates a compatible app.
However, there is no need to update and distribute A′

stub again,
because the stub code is independent from the app version.
Finally, Dev normally signs the new version of A′ with the
certificate signing the previous version of the app.

2023 IEEE Symposium on Computers and Communications (ISCC)

979-8-3503-0048-2/23/$31.00 ©2023 IEEE 450

20
23

 IE
EE

 S
ym

po
siu

m
 o

n 
Co

m
pu

te
rs

 a
nd

 C
om

m
un

ic
at

io
ns

 (I
SC

C)
 |

 9
79

-8
-3

50
3-

00
48

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IS

CC
58

39
7.

20
23

.1
02

17
86

1

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 23,2023 at 10:31:37 UTC from IEEE Xplore.  Restrictions apply. 



III. REQUIREMENTS AND RELATED WORK

Our aim is to provide a black-box app-level MAM solution
that is also able to enforce enterprise policies. The following
requirements are of interest:

• R1: Compatibility: do not require modifications to the
Android OS or root privileges

• R2: BlackBox: provide customised apps without disclos-
ing the source code and without SDK integration.

• R3: do not require more privileges than those originally
requested by the app that will be sandboxed

• R4: Multilevel: cover both Java and at native levels
We summarise other approaches proposed in the literature

in Table I and classify them according to our requirements.
We start reviewing the two state-of-the-art approaches most

similar to our solution: DeepDroid [1] and AppShield [2]. The
former, listed with approaches in the first column of Table
I, proposes a dynamic enterprise security policy enforcement
scheme on Android devices, allowing fine-grained capabilities
but requiring the root privilege in order to operate (R1:✘).
The latter, AppShield, has goals similar to our solution but
it uses the inlined monitor technique. AppShield is basically
a rewriting-based approach (R2:✘), and it is designed for
scenarios where the app is modified by third-parties after it is
distributed, thus implicitly assumes the app is not obfuscated.

Early works for enforcing security and privacy policies [3]–
[9] modify part of the Android OS or require root privilege.
They meet many of our requirements, but they need modifica-
tions to the Android codebase, making it impossible to deploy
on stock devices (R1:✘). Extensive work on mobile security
has shown that massive and partially automated app analysis
is possible on stock Android [10]–[14], but massive policy
enforcement and remediation are also needed.

To address these issues, researchers proposed sandbox so-
lutions based on rewriting the bytecode of the apps using
inline reference monitors (IRM) to enforce the security policy
(R2:✘). The third column of Table I shows those approaches
[11], [15], [16].

Although these systems work on stock Android, they present
several limitations when it comes to rewriting obfuscated apps,
as reported by previous research [19]. On the other hand,
they do not require any additional permission and they have
low impact on performance. However, there is still a big
limitation. Since inlined monitors rewrite the app to enforce
a specific policy, supporting many different policies generates
many different custom versions of the same app, thus having
a serious impact on app maintenance and updates.

Two other works have then been published: Boxify [17]
and NJAS [18]. Both approaches do not need to modify the
Android OS and do not require root privileges.

Boxify offers app virtualization by means of an isolated
process, that executes without any privilege. If the app requires
a privilege, Boxify evaluates the request and acts as a proxy
for the app. This provides an isolation technique that works on
stock Android devices. To manage the permissions required by

the monitored apps, Boxify introduces a Broker. To work the
Broker has to collect the permissions of all the apps monitored
in Boxify thus creating a component that has the cumulative
privileges of all sandboxed apps, introducing a single point of
failure (R3:✘). To achieve a complete sandboxing of all app
communications, Boxify must understand the semantics of the
apps. This operation generates overhead and it would be very
difficult for obfuscated apps (R2:✘).

NJAS provides a sandboxing solution based on the PTrace
mechanism. NJAS does not require to access the app code
and works on stock Android devices. In contrast with Boxify,
its monitoring mechanism does not increase the permissions
set from the apps. In NJAS the target app is installed on the
user device and then executed within a stub app in which
it is monitored by means of PTrace. For this reason, NJAS
is tightly bound to the availability of PTrace on the user
device, thus limiting its deployability on a wide number of
real-world mobile devices (R1:✘). Furthermore, considering
the high number of context switches added by the PTrace-
based syscall filtering, it is not a lightweight solution. Finally,
it enforces policies only at the native level (R4:✘).

Samsung Knox provides a commercial solution to protect
Android from malware and isolate different working scenarios
[20]. Its adoption is limited to Samsung devices (R1:✘). Knox
requires ARM TrustZone hardware support, which limits its
deployment to certain Android platforms.

Google’s Android for Work [21] (AFW) defines a set of
device features that separate personal apps and data from a
work profile containing work apps and data. AFW manage-
ment capabilities rely upon features that are part of newer
Android operating systems. AFW supports a managed profile,
where a device can be monitored by the IT department, that can
distribute internal apps on Google Play for Work, a business-
specific market offered by AFW. An app that is requested to
run in a managed profile must make use of AFW APIs1, for
this reason the developer has to modify the app’s codebase
(R1:✘). AppBox can use some Google Play for Work features
such as the distribution channel for the StubApp provided by
AppBox , while the customised app can still be retrieved via
the official market.

To conclude, to the best of our knowledge, no other pro-
posed solution is able to satisfy all the requirements we have
identified for a black-box lightweight sandboxing approach.

IV. APPBOX ARCHITECTURE

AppBox creates and runs the managed app within a ded-
icated container that enforces enterprise policies at runtime.
It wraps each managed app in a sandbox that injects control
hooks to intercept the app interaction with the external world.
The installation of a single StubApp for each managed app
is required. The StubApp is automatically generated by the
app developer using the information contained in the manifest
of the managed app, and requests the same permissions as

1https://developer.android.com/work/guide.html

2023 IEEE Symposium on Computers and Communications (ISCC)

451
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 23,2023 at 10:31:37 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Comparison of Sandboxing Approaches Based on Desired Requirements. ( ✔ = applies; ✘ = does not apply )

OS/root Extension Aurasium [15]
Requirements [1], [3], [4], [7] Ref. Hijacking [11] Boxify [17] Njas [18] AppShield [2] AppBox

[5], [6], [8], [9] Hybrid [16]
(R1) Compatibility ✘ ✘ ✔ ✘ ✘ ✔
(R2) BlackBox ✘ ✘ ✘ ✘ ✘ ✔
(R3) No Add. Permissions ✔ ✔ ✘ ✔ ✔ ✔
(R4) Multilevel ✔ ✔ ✔ ✘ ✔ ✔

Fig. 1: AppBox design phases: Preparation, Distribution and
Execution.

the managed app. The StubApp contains only the shim code
responsible for loading the managed apps at runtime and for
dynamically retrieving enterprise-defined security policies. It
neither contains app code nor resources. For this reason, differ-
ently from repackaged apps, it can be submitted to the Google
Play Store and installed as a regular app. The generation of
a StubApp is done using the StubFactory provided by our
framework and described in Section IV-A.

However, to generate a correct StubApp , the manifest of
the managed app has to be modified to set the values for
the android:sharedUserId and android:process
attributes. The developer has to sign both the StubApp and
the managed app with the same certificate. By using these
two attributes, we are able to load the code of any app in the
process space of the StubApp .

The AppBox workflow consists of three phases as shown
in Fig. 1: preparation, distribution and execution. During the
preparation, the app developer creates the managed app (App′)
and the StubApp (step 1). Then, the developer distributes the
managed app via any supported Android market (step 2).

Fig. 2: StubFactory and its components

Finally, the user installs both apps (App′ and the StubApp )
on the target device. During the execution phase, the StubApp
creates a sandbox to execute the managed app. The sandbox is
responsible for monitoring the managed app’s behaviour and
enforce the policies (step 3), offered via the AppBox Policy
Manager instance (step 4).

In the following, we provide a description of the components
involved in each phase.

A. Preparation phase

To be able to manage an app with AppBox , the developer
has to create the StubApp and a managed app, as shown in
Figure 1. This step is performed by the developer using the
StubFactory , a set of python scripts along with a small DEX
file containing the actual stub code. Another interesting aspect
is that because the StubFactory only operates at the level of
the manifest file, the managed app and StubApp can be created
even if the original app code is obfuscated.

In the following, we assume that App is an app an enterprise
wants to customise. Using the StubFactory , the developer
generates the managed app, indicated as App′, and the stub
app, indicated as StubApp. Finally, both the StubApp and App′

must be digitally signed by the developer.
As shown in Figure 2, the StubFactory first extracts and

decodes the Android manifest from App, collecting package
name, main activity and requested permissions. Furthermore,
it checks if the manifest contains components of App defined
to run across multiple processes. If this is the case, then the
names of these components are added to the manifest of the
StubApp so that any additional process created by the app
will be monitored by a dedicated sandbox instance. Next, the
Manifest Maker creates a new manifest2 If App’s manifest
contains the broadcast receiver for the boot completed intent,
then this will be removed from the App′’s manifest. This is to
prevent the situation in which App′ might be launched before
StubApp .

2where App′ will include both the attributes android:sharedUserId
and android:process .

2023 IEEE Symposium on Computers and Communications (ISCC)

452
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 23,2023 at 10:31:37 UTC from IEEE Xplore.  Restrictions apply. 



The last step is to create StubApp through the Stub
Creator. First, the manifest for the StubApp is created,
with the same permissions as App. By default, StubApp’s
manifest will have the broadcast receiver component for the
BOOT COMPLETED system message. In this way, all
the StubApp installed in a device will start as soon as the
booting phase is completed. If the App’s manifest also con-
tained this broadcast receiver, then the StubApp will act as a
proxy and forward the boot completed intent to App′.

It is worth noting that App and App′ have exactly the same
bytecode. In fact, the StubFactory only operates on the App’s
manifest to output StubApp and App′. The developer is able to
create as many StubApp as she may need to satisfy customers’
requests. In fact, to iterate the preparation steps the developer
is asked to create a new certificate, which will identify each
customer. App updates are distributed via the app market as
a normal APK file, the developer needs to sign them by the
same certificates used initially.

B. Distribution phase

In this phase, the developer distributes apps as usual, via
any supported market. AppBox does not require any additional
user interaction to complete an app update and the developer
does not need to accomplish any particular operation in order
to distribute updates of managed apps. Whenever a new update
is ready, the developer uses the StubFactory to automatically
produce an updated managed app version. Thanks to our
approach the developer does not need to redistribute the
StubApp component.

C. Execution phase

After the preparation step, both StubApp and App′ are
deployed on a device running stock Android OS. The StubApp
is totally transparent, there are no additional icons shown nor
is there a management cost in charge of the end user. The
execution of the managed app is done by the AppBox Service.
The AppBox Service is a process created by the StubApp that
loads and executes the code of the managed app App′. Because
the StubApp and the AppBox Service share the same process
space, it is possible to inject hooks at runtime into the managed
app’s virtual memory. These are the hooks that enforce the
desired policy. By sharing the same UID through the use of the
android:sharedUserId attribute, the AppBox Service
is able to access all the private files of the managed app.
In AppBox the managed app is dynamically instrumented by
means of function interposition on both Java and native levels.
This enables the enforcement of security policies related to
Java APIs and native code. The AppBox Service modifies
the memory of the managed app to inject hooks capable
of intercepting calls to Java methods and to syscalls. The
mechanism is transparent to the managed app and new versions
of the target app can be easily managed without changing the
StubApp or the AppBox Service.

The biggest technical challenge at this point is to guarantee
that the managed app execution will be entirely confined

within our sandbox. Android offers a considerable number of
features for apps to communicate with each other and share
functionality. These features are accessed through callbacks
such as broadcast messages, intents, and IPC. Care must be
taken to avoid that these mechanisms are exploited in order to
let the managed app execute outside its sandbox.

The exported components of an app, including the main
activity that is always exported by default, can receive explicit
intents sent by any app. When this happens, usually Android
starts the exported component into a new process. If not
handled properly, this could be an issue because it could result
in a managed app starting in a process outside its sandbox.
However, before starting a new process, Android searches
if there is already a process where (1) the process name
matches the requested component’s name; (2) the process
UID is the same as the one assigned to the app in which
the target component has been defined. Thanks to the com-
bination of both attributes android:sharedUserId and
android:process , the AppBox Service is sharing the
same process name and UID, hence any intents sent to any
exported component of a managed app will be captured and
executed within the AppBox Service.

The following components are particularly relevant at exe-
cution time.

1) AppBox Policy Manager: AppBox Policy Manager is a
console application intended to be used by security administra-
tors. Through the AppBox Policy Manager an administration
(e.g., the MAM service) can define new policies and deploy
them on the enrolled devices. Once the managed app has
been started, the AppBox instance manages the authentication
process with the Policy Manager.

2) StubApp and AppBox Service: The StubApp is responsi-
ble for creating the sandbox process where the managed app
will be executed as shown in Figure 3. When a managed app
is launched, first the StubApp creates the AppBox Service in
a separate process (step 1) and invokes the prepare method
via the Binder to set up the interceptors (step 2). Then, the
StubApp retrieves the set of policies and the hooking library
(step 3) specific to the managed app from the AppBox Policy
Manager. The AppBox Service loads the hooking library to
instrument its virtual memory and the app’s code will be
loaded and executed within the AppBox Service (step 4).
Before the managed app can be executed, the StubApp has to
create the right Android context for that app. This operation is
performed by calling the Android API method createPackage-
Context specifying the CONTEXT INCLUDE CODE flag.
As an entrypoint, the StubApp declares in its manifest an
Application class, that is the first app component loaded by
Android before any other app code.

3) Java and Native Interceptors: The Java interceptors in
AppBox are an extended versions of the ArtDroid hook-
ing framework [22]. However, compared to ArtDroid, App-
Box Java interceptors are able to hook static Java methods by
implementing the approach proposed in [23]. We are able to
intercept all calls to monitored Java methods including either

2023 IEEE Symposium on Computers and Communications (ISCC)

453
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 23,2023 at 10:31:37 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: AppBox enforcing managed apps

calls via Java reflection, native code or dynamically loaded
code. The intercepted calls are redirected to the specific Policy
Enforcement Point (PEP) where the actual user-defined policy
is enforced. Java interceptors achieve transparent hooking by
means of memory instrumentation. It fully supports both the
DVM and ART Android runtime.

V. APPBOX POLICY LANGUAGE

Figure 4 shows the syntax of AppBox policy. Policies
are identified by a name and they define what operation a
Requester app can execute on a Resource. In our prototype
we defined two sets of operations: the first set contains
getter methods that return data from the Resource to the
Requester; the second set contains setter methods where data
is being passed by the Requester to the Resource. Moreover,
AppBox offers the possibility to define policies on events. The
operations defined in the policies are then mapped to relevant
Java methods or native functions.

Fig. 4: An AppBox Policy Language example

A resource identifies any sensitive data which could be
retrieved via either Android middleware APIs (e.g., location,
contact, camera) or native code (e.g., sensors, socket, micro-
phone). The have to perform clause specifies which actions
have to be performed if this policy is enforced. These actions
are mapped to a set of functions to control the app’s behavior
(e.g., filtering, anonymisation) and to change the values of the
parameters of the operation being executed. An action is a

callback that is registered by AppBox to dynamically forward
the execution to the corresponding function and can operate
on both input parameters and returned values.

VI. EVALUATION

In this section, we evaluate performance overhead, robust-
ness, applicability and effectiveness.

A. Performance Overhead

To evaluate performance penalty on managed apps, we
used benchmark apps and our custom micro-benchmarks. As
benchmark apps, we used Quadrant and Vellamo. The former
was selected because it has been used in other related works
[5], [17], [18]. The latter is a highly accurate benchmark
developed by Qualcomm and is specifically intended to stress
the Binder communication channel. Given that the Binder is
the most common means of communication for Android apps,
it is important to measure the overhead AppBox introduces.
Moreover, we executed the webview package of Vellamo that
contains various benchmarks for Android’s Webview API.

As shown in Table II, the impact of AppBox on the total
score produced by the benchmarks is low. The test marked
as total reports the cumulative score that the Quadrant bench-
marking app produced, while the I/O test were oriented to
stress disk read/write operations. The worst score (15.7%) is
low w.r.t. to similar works, and can be attributed to the I/O test.
AppBox overhead is lower than the one introduced by Boxify
and NJAS in equivalent tests. As for the performance penalty
introduced in the Binder communication (indicated as multi-
core in Table II), the score indicated by the Vellamo benchmark
is really low (up to 1%), due to the fact that AppBox does not
need to perform extra marshalling operations.

2023 IEEE Symposium on Computers and Communications (ISCC)

454
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 23,2023 at 10:31:37 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: BenchMark Apps Results For Nexus 5x (64 bit)

App Test AppBox Native Loss
Quadrant Total 17736 17449 1.6 %

I/O 9820 8277 15.7 %
Vellamo multi-core 1948 1930 0.9 %

webview 2803 2688 4.1 %

TABLE III: Native Micro-Benchmarks AppBox Performance,
Compared against Boxify.

AppBox: Nexus 5x (250k runs) Boxify: Nexus 5 (15k runs)
Func. Native AppBox OvHead Native Boxify OvHead
open 6.49 µs 6.7 µs 3.2% 9.5 µs 122.7 µs 1191%
mkdir 92.7 µs 95.2 µs 2.7% 88.4 µs 199.4 µs 125%
rmdir 80.7 µs 85.3 µs 5.7% 71.2 µs 180.7 µs 153%

To understand the performance implication of AppBox on
method invocations and function calls, we developed a syn-
thetic app in order to perform a micro-benchmark, testing the
most significant native functions by means of AppBox native
interceptors. In Table III, we report the overhead introduced
by AppBox when hooking functions in libc (first column).
In the same table, we also compare our overhead with Boxify
performance overheads as reported in [17]. As the results show,
our performance overhead is significantly lower.

Table V reports the results for the overhead introduced by
AppBox when interposing Java Android APIs, and Table IV
presents hooks that were in place during our experiments.
Results show that the performance penalty introduced by API
Hooking is acceptable. Micro-benchmark tests listed in Table
V are sometimes responsible for triggering multiple hooks.

B. Security

The threat model considered in this paper is based on the
assumption that AppBox will be used in an enterprise context
as part of a comprehensive MAM/MDM solution. We also
assume that developer apps are not malicious, but they may
not comply with the enterprise security policies.

We would like to consider if sandboxing may be avoided.
For example, the user might delete the stub app, and the man-
aged app could be run alone so that policy enforcement could
be bypassed. In the enterprise MAM context, however, this
possibility can be excluded, or in any case it can be considered
as external to our perimeter. Once the AppBox components are
in place and running, the managed app execution context will
always be the one instrumented by the stubApp.

In an enterprise scenario, attempts to uninstall monitored
applications can be detected by other existing solutions.
Sandboxing is enforced by the OS. Monitoring a running
agent instance is a common problem for any deployed MAM
solution: an external entity can monitor stubApp instances,
detect any change and respawn them when they are killed.

It is also easy to prevent the managed app from running
outside the stubApp container. In fact, by simply adding an
Application class to the manifest file, we can prevent the
managed app execution when the Application class defined
by the stubApp has not been loaded. Thus, once the stub is

installed, the stub and the managed app are bound together at
execution time.

C. Effectiveness

During this evaluation our goal was twofold: (i) demonstrate
that AppBox is easy-to-deploy and fully capable to wrap real-
world apps and (ii) assess robustness. To this end, we executed
1000 free apps from the Google Play Store. Out of these 1000
analyzed apps, 66 were obfuscated, with an average app size of
20 MB. To recognize obfuscation, we employed APKiD (see
https://github.com/rednaga/APKiD), that leverages on different
heuristics in order to statically detect presence of packers,
protectors and obfuscators.

To execute our tests, we had to modify the manifest of
the collected apps adding the attributes requested by App-
Box . This was required only for testing purposes - it is
not required in the operational scenario, where the developer
will be responsible for performing this task. We evaluated the
runtime robustness of AppBox running the collected apps on
a Nexus 5x with stock Android 8.0. We employed DroidBot
[24] to exercise the managed app’s functionality. DroidBot first
statically analyses the target app then it allows to dynamically
inject events to stimulate the app. We ran each managed app
for 5 minutes as in the Google Play Bouncer [25], while we
were collecting log information, seeking for app crashes. From
the 1000 apps, only 56 apps reported a crash during testing.
Manual investigation of the dysfunctional apps revealed that
most errors were caused by pre-existing bugs.

D. Applicability

We manually executed 5 of the most popular free apps
concerning business functionality. Our goal is threefold:

• test applicability on several Android versions;
• verify the correct interaction of the managed app with the

OS: we completed the authentication process, if present,
testing for correct delivery of system events and the
interaction with apps such as Google Play Service;

• stress the SandboxService: we disabled it to detect issues
when the managed app is executed outside AppBox .

Table VI lists the selected apps, with the following policies:
(1) network-related, e.g., denying connections to known ad-
vertisement servers, and monitoring non-TLS connections; (2)
file system monitoring to detect operations on the SD-card.
Moreover, a fake Location Provider was in place during the
tests. We stimulated those apps for 8 minutes, with tests such
as visiting web pages and sharing location data via GPS and
authentication through Google Play Services.

In the experiments none of the tested apps crashed and we
verified policy-enforced behavior. AppBox effectively blocked
any connection to the blacklisted addresses. Non-TLS con-
nections were denied and reported. When location policy
enforcement was in place we noticed that the actual location
shared was referring to our previously set value.

2023 IEEE Symposium on Computers and Communications (ISCC)

455
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 23,2023 at 10:31:37 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV: Android API: Micro-Benchmark Results

Nexus 5x (15k runs)
Android API Native on AppBox Overhead
Read Contact 6.55 ms 9.93 ms 3.38ms (51.6%)

Socket 23.23 ms 26.33 ms 3.1ms (13.3%)
openFileInput 0.19 ms 0.22 ms 0.03ms (15,7%)

openFileOutput 0.24 ms 0.28 ms 0.04ms (16.6%)
Create File 0.02 ms 0.03 ms 0.01ms (50%)

Open Camera 227.09 ms 237.02 ms 9,93 ms (4.4%)

TABLE V: APIs Monitored with Java Micro-Benchmarks

Alias Class package Method name
Read Contact android.content.ContentResolver query
Networking java.net.Socket <init>
File android.app.ContextImpl openFileInput

android.app.ContextImpl openFileOutput
java.io.File <init>

Camera android.hardware. openCamera
camera2.CameraManager

TABLE VI: Apps for Testing Applicability/Effectiveness

App Name Version Category
Skype for business 6.13.06 Business

Slack 2.30.0 Business
Dropbox 38.2.4 Productivity

Intesa San Paolo Mobile Banking 2.1.0 Finance
Chrome 56.0.2924.87 Communication

VII. CONCLUSIONS

We presented a black-box app sandboxing solution for stock
Android, suitable for enterprise domains, where apps running
on employees’ smartphones are often managed by specialised
services such as MAMs and MDMs. We enforce fine-grained
security policies covering both Java, native and third-party
code. The managed app is confined within an instrumented
process space, and we avoid modifications to its bytecode.
Preliminary evaluations showed limited performance overhead,
robustness and general applicability to real-world apps.

ACKNOWLEDGMENT

The work is partly funded by the European Union under
Horizon Europe Programme - Grant Agreement 101070537 —
CrossCon. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the
European Union or CINEA. Neither the European Union nor
the granting authority can be held responsible for them.

REFERENCES

[1] X. Wang, K. Sun, Y. Wang, and J. Jing. Deepdroid: Dynamically
enforcing enterprise policy on android devices. In NDSS, 2015.

[2] Z. Qu, G. Guo, Z. Shao, V. Rastogi, Y. Chen, H. Chen, and W. Hong.
Appshield: Enabling multi-entity access control cross platforms for
mobile app management. In Int. Conf. on Security and Privacy in
Communication Systems, pages 3–23. Springer, 2016.

[3] M. Conti, V. Nguyen, and B. Crispo. Crepe: Context-related policy
enforcement for android. In Int. C. on Inf. Sec., pages 331–345, 2010.

[4] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, L. P Cox, J. Jung,
P. McDaniel, and A. Sheth. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. ACM T. on
Computer Systems (TOCS), 32(2):5, 2014.

[5] G. Russello, A. Jimenez, H. Naderi, and W. van der Mark. Firedroid:
Hardening security in almost-stock android. In Proc. 29th Annual
Computer Security Applications Conf., pages 319–328. ACM, 2013.

[6] S. Heuser, A. Nadkarni, W. Enck, and A. Sadeghi. Asm: A pro-
grammable interface for extending android security. In USENIX Security,
volume 14, pages 1005–1109, 2014.

[7] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A. Sadeghi, and B. Shastry.
Practical and lightweight domain isolation on android. In Proceedings
of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices, pages 51–62, 2011.

[8] A. Saracino, F. Martinelli, G. Alboreto, and G. Dini. Data-sluice: Fine-
grained traffic control for android application. In Proc. IEEE Symp. on
Computers and Communication, pages 702–709, 2016.

[9] Xposed repository. https://repo.xposed.info/. Accessed: 2018-12-17.
[10] R. Hay, O. Tripp, and M. Pistoia. Dynamic detection of inter-application

communication vulnerabilities in android. In Proc. 2015 Int. Symp. on
Software Testing and Analysis, pages 118–128. ACM, 2015.

[11] W. You, B. Liang, W. Shi, S. Zhu, P. Wang, S. Xie, and X. Zhang.
Reference hijacking: patching, protecting and analyzing on unmodified
and non-rooted android devices. In Proc. 38th Int. Conf. on Software
Engineering, pages 959–970. ACM, 2016.

[12] L. Davi, A. Dmitrienko, A. Sadeghi, and M. Winandy. Privilege
escalation attacks on android. In Int. Conf. on Information Security,
pages 346–360. Springer, 2010.

[13] F. Bergadano, M. Boetti, F. Cogno, V. Costamagna, M. Leone, and
M. Evangelisti. A modular framework for mobile security analysis. Inf.
Security Journal, 29(5):220–243, 2020.

[14] V. Sembera, M. Paquet-Clouston, S. Garcia, and M. J. Erquiaga. Cy-
bercrime specialization: An exposé of a malicious android obfuscation-
as-a-service. In Proc. IEEE European Symp. on Security and Privacy,
pages 217–228. IEEE, 2021.

[15] R. Xu, H. Saı̈di, and R. Anderson. Aurasium: practical policy enforce-
ment for android applications. In USENIX Security Symp., 2012.

[16] Y. Zhou, K. Patel, L. Wu, Z. Wang, and X. Jiang. Hybrid user-level
sandboxing of third-party android apps. In Proc. ACM Symp. on Inf.,
Computer and Communications Security, pages 19–30, 2015.

[17] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-
Rekowsky. Boxify: Full-fledged app sandboxing for stock android. In
24th USENIX Security Symp., pages 691–706, 2015.

[18] A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna. Njas: Sandboxing
unmodified applications in non-rooted devices running stock android.
In Proc. 5th Annual ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices, pages 27–38, 2015.

[19] H. Hao, V. Singh, and W. Du. On the effectiveness of api-level access
control using bytecode rewriting in android. In Proc. 8th ACM SIGSAC
symp. on Inf., computer and comm. security, pages 25–36, 2013.

[20] Samsung knox. samsungknox.com. Accessed: 2023-03-03.
[21] Android for work. https://cloud.googleblog.com/2015/02/android-is-

ready-for-work.html. Accessed: 2023-03-03.
[22] V. Costamagna and C. Zheng. Artdroid: A virtual-method hooking

framework on android art runtime. Proc. Innovations in Mobile Privacy
and Security (IMPS), pages 24–32, 2016.

[23] M. Wißfeld, P. von Styp-Rekowsky, and M. Backes. Callee-side method
hook injection on the new android runtime art.

[24] Droidbot suite. github.com/honeynet/droidbot. Accessed: 2023-03-03.
[25] J. Oberheide and C. Miller. Dissecting the android bouncer. Summer-

Con2012, 2012.

2023 IEEE Symposium on Computers and Communications (ISCC)

456
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on October 23,2023 at 10:31:37 UTC from IEEE Xplore.  Restrictions apply. 


		2023-08-18T21:31:10-0400
	Preflight Ticket Signature




