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Abstract—Spectre and Meltdown have pushed the research
community toward an otherwise-unavailable understanding
of the security implications of processors’ microarchitecture.
Notwithstanding, research efforts have concentrated on high-
end processors (e.g., Intel, AMD, Arm Cortex-A), and very
little has been done for microcontrollers (MCU) that power
billions of small embedded and IoT devices. In this paper,
we present BUSted. BUSted is a novel side-channel attack
that explores the side effects of the MCU bus interconnect
arbitration logic to bypass security guarantees enforced by
memory protection primitives. Side-channel attacks on MCUs
pose incremental and unforeseen challenges, which are strictly
tied to the resource-constrained nature of these systems (e.g.,
single-core CPU, stateless bus). We devise a unique approach
that relies on the concept of hardware gadgets. We present
practical attacks on state-of-the-art Armv8-M MCUs with
TrustZone-M, running the Trusted Firmware-M (TF-M). In
contrast to the Nemesis attack, our attack is practical on Arm
Cortex-M MCUs, and our findings suggest that it can scale
across the full MCU spectrum.

Index Terms—Side-Channels, Microarchitecture, Bus, Micro-
controllers, TEE, TrustZone-M.

1. Introduction

Microarchitectural side-channel attacks rely on secret-
dependent traces (e.g., timing differences) left in the
microarchitecture of a computer to extract otherwise-
unavailable secret information [1, 2]. Spectre [3] and Melt-
down [4] have shed light on an untapped potential and
practicality of leveraging microarchitectural elements (e.g.,
caches, branch target buffers) and design techniques (e.g.,
speculative execution) to leak sensitive information and
secrets. Since then, we have witnessed the rise of a plethora
of powerful software-based microarchitectural timing side-
channel attacks capable of breaking and bypassing the se-
curity (isolation) boundaries of numberless processors and
technologies from mainstream central processing unit (CPU)
vendors (e.g., Intel [5–10], AMD [2, 11, 12], Arm [13–16]).

Despite the abundance of research and literature on mi-
croarchitectural side channels affecting high-end application
processors (APU) used in servers, desktops, and mobiles,
very little has been done and is known regarding the exis-
tence and practicality of side-channel attacks in the opposite
side of the computing spectrum, i.e., small embedded and

IoT systems powered by microcontrollers (MCUs). MCUs
(e.g., Arm Cortex-M family) are resource-constrained in
computing power and memory, have highly simplistic mi-
croarchitectures (e.g., no caches, 2-3 pipeline stages), and
lack support for virtual memory; notwithstanding, MCUs
are shipped in billions annually and are at the heart of
our infrastructures, transportation systems, and consumer
devices [17].

Despite the pervasive use of MCUs at scale, the research
community is reluctant to understand the potential security
implications of MCUs’ microarchitecture. To the best of our
knowledge, the Nemesis attack [18] is the single existing
work reporting on how to explore the microarchitecture of
an MCU (MSP430) to leak sensitive information; however,
the attack is tied to the CPU interrupt logic of the MSP430
MCU and not proven replicable on Cortex-M MCUs (e.g.,
Cortex-M0+), which dominates the market. We hypothe-
size that this lack of motivation may be justified by a
general assumption that many microarchitectural elements
and design techniques available in high-end APUs (e.g.,
highly parallelized pipelines, virtual memory) are absent
on MCUs, precluding the existence of microarchitectural
side-channel attacks and justifying a bias towards this as-
sumption. Notwithstanding, we decided to challenge the
status quo and answer the still open question: Which unique
microarchitectural elements on MCUs may create new chan-
nels, and how can they be used to mount effective attacks?

In this paper, we contribute to answering this question
by unveiling BUSted. BUSted is a novel class of microarchi-
tectural side-channel attacks that leverage the timing differ-
ences exposed in the arbitration logic of the MCUs bus inter-
connect. Our key observation states that when multiple bus
mains1 (e.g., CPU, DMA) perform simultaneous accesses to
the same secondary port (e.g., memory controller), one will
be delayed in time, resulting in subtle timing differences.
To corroborate our observation, we validate the existence
of this channel by mounting a simple covert channel in
11 MCUs, encompassing CPUs from five different ISAs
and five different silicon manufacturers. Evolving from a
simple channel observation to a successful attack has proven
challenging, mainly due to the foreseen MCU limitations.
Firstly, MCUs are mostly powered by a single CPU, hin-
dering the concurrent execution of the traditional spy and
victim logic. And lastly, the bus interconnect is stateless,

1. Authors replaced master and slave terminology used in technical
documentation and manuals with the keywords main and secondary.



thus requiring timing differences to be assessed on-the-fly
(i.e., in real time).

To address these challenges, we introduce the concept
of hardware gadgets. Hardware gadgets are widely available
MCU memory-mapped peripherals (e.g., timers, DMAs) that
can be programmed to perform a specific logic without CPU
intervention. These gadgets can be leveraged to automate
concurrent spy logic (e.g., periodic memory accesses) while
the victim code executes in the CPU. One interesting ob-
servation is that the simple and highly deterministic mi-
croarchitecture of MCUs, which intuitively precludes the
existence of side channels, facilitates the synchronization of
the spy and victim at the clock cycle level. This property
enables the spy to use these gadgets that precisely monitor
the victim’s activity and perform conditional actions based
on the victim’s control flow.

To mount the BUSted attack, we resort to the so-called
smart gadget network, i.e., a combination of hardware gad-
gets interconnected to perform a specific spy logic. Similarly
to Nemesis, we emulate a smart lock IoT use case, embed-
ding a reference security-critical application that interfaces a
trusted keypad [19]. We implement the attack on two state-
of-the-art Armv8-M MCU platforms with TrustZone-M, i.e.,
ST NUCLEO-L552ZE-Q and Microchip ATSAML11E16A.
The trusted execution environment (TEE) kernel encom-
passes the open-source Trusted-Firmware-M (TF-M) [20],
configured for Platform Security Architecture (PSA) isola-
tion levels 2 and 3. We completely bypassed the TrustZone-
M isolation guarantees and successfully stole the 4-digit
PIN.

We focus on Armv8-M MCUs with TrustZone-M. How-
ever, our findings suggest that the attack can be used to by-
pass isolation enforced via memory protection units (MPUs)
on legacy Armv7-M MCUs (and RISC-V), thus breaking
the protections enforced among applications in RTOS (e.g.,
Zephyr [21]) or enclaves in TEEs (e.g., MultiZone [22]).
Compared to Nemesis, our attack has proven effective in
bypassing security-oriented technologies on state-of-art Arm
MCUs and suggests being scalable across the full MCU
spectrum.

Contributions. In summary, the contributions of this work
are:

• We disclose the MCU bus interconnect arbitration logic
as a novel, non-conventional side-channel to bypass
hardware memory isolation primitives and leak infor-
mation from protected / trusted applications;

• We show the prevalence of the side-channel across
the full MCU spectrum, providing evidence about the
existence of the side-channel in 11 MCUs from five
different ISAs (including the complete Arm Cortex-M
family) and five different silicon manufacturers;

• We introduce a unique approach based on the concept
of hardware gadgets (widely available on MCUs) and
leverage them to mount the most powerful and scalable
microarchitectural side-channel attack for MCUs to
date;

• We demonstrate and evaluate the effectiveness of the

attack to bypass state-of-the-art commercial-graded
MCU hardware TEE technologies (TrustZone-M).

Responsible disclosure. We first shared our findings with
the Trusted Firmware (TF) security team and the STMi-
croelectronics Product Security Incident Response Team
(PSIRT). Both teams acknowledged the successful exploit.
The TF security team argues no vulnerability exists in the
TF-M code (TF-M is simply a convenient framework for
demonstrating the exploit), and the vulnerability is in the
microarchitecture of the platform and the custom victim
secure partition – we agree with them. Surprisingly, the
ST PSIRT argues that the vulnerability is not in the ST’s
product but rather related to Arm’s TrustZone-M (Armv8-
M) – we do not necessarily agree with their view. We also
reported to Arm which acknowledge the attack and released
a public statement on their website [23]. We have reported
our findings to other silicon manufacturers listed in Table
1. There are ongoing discussions with Microchip, NXP, and
Silicon Labs. As for GigaDevice, we have not received any
response.

2. Background and Attack Overview

In this section, we identify the source of the channel,
provide an overview of the attack, and assess the pervasive-
ness of the channel in a large spectrum of MCU.

2.1. Scope and Adversary Model

Scope. We target tiny embedded and IoT devices powered
by MCUs. MCUs typically have a single CPU2, feature a
wide range of peripherals (e.g., UART, SPI, timers, DMAs,
I2C, etc.), and do not support virtual memory (thus are
not capable of running Linux). Some devices have MPUs,
and the most recent Armv8-M MCUs have support for
two security states, i.e., secure and non-secure world (a.k.a.
TrustZone-M). MCUs are highly deterministic computing
units designed to consistently produce the same outputs for
the same inputs under well-defined timing constraints.

Adversary model. We consider the attacker’s3 main goal is
– from an isolated environment (e.g., TEE enclave, RTOS
task) – to bypass the memory isolation security mecha-
nisms enforced by privileged software (e.g., trusted kernel,
RTOS) and steal sensitive information from another isolated
environment. We assume the attacker has full access and
control over one isolated domain and its resources, i.e.,
peripherals (e.g., timer) and bus mains (e.g., DMA). For
example, in Armv8-M MCUs with TrustZone, we assume
the attacker has control over the (unprivileged) normal world
and its resources. We also assume that the attacker knows
the victim’s code, and this code contains secret-dependent
control flows. The spy and the victim run from the same

2. A few modern MCUs already embedded dual-core configurations –
e.g., STM32H7, i.MX RT1170, and PSoC 64 series

3. Throughout the paper, we will refer to the person who mounts the
attack as the attacker, and the code that the attacker develops as the spy.



Figure 1: Two bus mains, i.e., CPU (BM1) and DMA (BM2),
simultaneously accessing a shared memory bank.

physical memory bank, and the victim executes upon re-
quests (remote procedure calls) from the attacker. We do
not consider software attacks exploiting vulnerabilities in
the most privileged software (e.g., trusted kernel) [24, 25].
We assume those are correct and belong to the system’s
TCB. The platform’s secure boot initializes the system to a
known state. We do not consider physical attacks that tamper
with hardware, e.g., fault injection [26–29].

2.2. Root Cause: Bus Interconnect

In an MCU, architectural elements have to be intercon-
nected, e.g., CPU, memory, and peripherals. This is typically
done through a central interconnect, i.e., bus matrix, that,
accordingly to the address broadcasted by a bus main (BM),
creates a communication channel between the main and sec-
ondary. Assuming that the target bus secondary is different,
the bus can perform several concurrent non-blocking full-
bandwidth transfers between multiple BMs and secondary
ports; however, when two data transfers target the same bus
secondary, the bus resorts to an arbitration policy to issue
the transfers in a specific order.

Arbitration policies. We survey 11 MCUs from different
ISAs and vendors and found that there are two main arbitra-
tion policies: priority-based (5) or round-robin (7). For the
priority-based policy, access to the bus secondary is granted
to the main with the highest priority. For the round-robin
policy, secondary port access is fairly multiplexed in time
between competing bus mains. The arbitration policy does
not hinder our ability to establish a channel, as shown in
§2.5.

2.3. Key Observation

Our key observation states that when multiple bus mains
(e.g., CPU, DMA) issue simultaneous accesses to the same
secondary (either for priority-based or round-robin policies),
the access of one BM will be delayed in time, resulting
in subtle timing differences. By carefully analyzing these
timing differences, a BM can determine if another BM
accessed the same secondary during a specific time frame.

Figure 1 illustrates a scenario with two BMs: a CPU
and a DMA peripheral. The CPU is multiplexed in time
between the spy and victim, while the DMA is under the
exclusive control of the spy. Both the CPU (BM1) and DMA
(BM2) operate (i.e., read, write) over the same memory
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Figure 2: Left, balanced If-else statement compiled for Arm
Cortex-M33 (-O0). Right, memory access pattern and monitoring
of clock t+ 3.

bank but in isolated physical memory spaces (assuming
memory protection mechanisms are correctly set). Despite
enforcing access control for memory regions, the memory
bank (and the memory slave port) is still shared between
BM1 and BM2. By observing the timing drifts caused by the
matrix arbitration on memory transactions, BMs can extract
information about access patterns. Thus, without breaking
security isolation boundaries, a malicious BM can spy on
bus activity and determine when another BM accessed a
specific slave.

2.4. Attack Overview

Our attack leverages the timing differences exposed in
the arbitration logic of the MCUs bus interconnect, i.e., an
attacker resorts to the bus arbitration side-effects to obtain
the victim’s memory access pattern. First, the spy triggers
the DMA to perform memory accesses 1 and then invokes
the victim 2 . Using an external wall clock, the spy can
measure the BM transfer latency to assess the time of the
transaction, thus concluding if there was contention. As
depicted in Figure 1, when there is contention, DMA access
(A2) takes t + Delay instead of t 3 . A spy can observe
those differences by leveraging the MCUs load-store archi-
tecture, which has two types of instructions: (i) instructions
that interface with memory, i.e., loads and stores; and (ii)
arithmetic-logic unit (ALU) operations. If the victim code
has a secret-dependent control flow, i.e., loads/stores are
executed at different clock offsets on conditional paths,
producing different memory access patterns. The spy may
leverage it to infer and steal a particular secret.

”Toy” attack. Figure 2 presents a toy example of the
overall attack. We assume the victim code has a balanced
conditional statement that branches on a secret. A careful
analysis of assembly code (compiled with -O0 for the Arm
Cortex-M33) shows that an external observer would not see
any difference in execution time since both execution paths
have the same execution time (6 clock cycles, starting at
t + 1, i.e., after the cmp instruction). Additionally, this if-
else statement fits within a single instruction cache line
(16 bytes), so there is no difference in the instruction
cache access pattern between paths. While the example code
snippet may be hardened against timing and cache attacks,
a spy can still observe a different access pattern to the
memory between execution paths. In this case, the notable
difference between the two execution paths is due to the



Platforms PIC18F16Q41 GD32VF103 STM32L0 SAMD21 EFM32GG SAML11 STM32L5 LPC5500 STM32f4 SAME54 STM32F7/H7

Vendor MC GD ST MC SL MC ST NXP ST MC ST
MCU P18 RVM M0+ M0+ M3 M23 M33 M33 M4 M4 M7
MHz 64 108 32 48 48 32 110 150 180 120 216
ISA PIC RV32 v6M v6M v7M v8M v8M v8M v8M v7M v7M
Arch. H H VM VM H VM H H H H H
Isolation — PMP MPU — MPU TZ TZ TZ TZ MPU MPU
Policy P R R P R PR R P PR P R
Ch. (bits) 6.16/8 6.16/8 6.16/8 6.16/8 6.19/8 6.16/8 6.16/8 6.16/8 6.16/8 6.16/8 6.16/8

TABLE 1: Evaluation of the extensibility of the vulnerability. Architectures: Von Neumann (VM) or Harvard (H). Vendors: ST, NXP,
Silicon Labs (SL), Microchip (MC) and Gigadevice (GD). MCUs: Cortex-Mx (Mx), PIC18 (P18) and RISC-V Microcontroller Profile
(RVM). ISAs: Armv6-M (v6M), Armv7-M & Armv7E-M (v7M), Armv8-M (v8M), PIC, and RISC-V RV32IMAC (RV32). Interconnect
arbitration policy: Priority-based (P), Round-robin (R) and Priority-based or Round-robin (PR). MCUs with any hardware isolation
primitive (–).

branch instruction. If the branch (beq) is not executed, it
takes only one clock cycle A ; but, if executed, it takes three
clock cycles B . Overall, this changes the relative position
of the str instruction C to the beq instruction and unveils
the secret. When the secret is 1, the str occurs in clock
cycle t + 3; otherwise, it happens in clock cycle t + 5. A
spy monitoring one of these two clock cycles can derive the
secret by observing whether or not there is contention on
the data memory bus.

2.5. Pervasiveness of the Channel

The bus interconnect is a microarchitectural element
pervasive in MCUs. To assess the extensibility of this
microarchitectural channel, we mounted a simple covert
channel in 11 low-end embedded platforms from 5 vendors,
and evaluated the existence of the channel. Covert channels
leverage microarchitectural elements to create unauthorized
communication channels between isolated domains, i.e., en-
coding and transmitting information from an evil actor to a
spy; this also holds for benign actors (side-channel victims).
There is a common assumption that when there is a covert
channel, the system is vulnerable to side-channel attacks
[30].

The covert channel aims to transmit 8 bits of infor-
mation. It encompasses three steps: (i) the spy triggers a
DMA to initiate the transfer of N bytes of data from a
shared memory bank and starts a timer; (ii) it then invokes
a malicious code (a trojan) injected into the victim domain,
which generates a specific number of memory accesses,
depending on the secret it wants to transmit; lastly, (iii) the
spy reads the timer, measuring the time it took for the DMA
to transfer all the N bytes of data. The total measured time
varies depending on the number of observed contentions at
the memory secondary port (each contention results in an
additional delay), which is closely related to the value sent
by the trojan.

Results. From the 11 platforms assessed, we were able to
establish a channel in all of them. We found no additional
challenges related to differences in the arbitration policies.
The results are summarized in Table 1, where we present
the channel capacity4 measured for each platform/MCU.

4. The channel capacity was measured with leakiest tool [31], which is
based on the concepts of information theory presented in [32, 33].

3. Attack Methodology

Template attacks are a powerful subset of side-channel
attacks, where the spy creates a victim execution-related
profile used to correlate with the side-channel data and steal
a secret [34]. These attacks are composed of two phases: (i)
a profiling phase; and (ii) an exploitation phase. In the profil-
ing phase, the victim runs in a spy-controlled environment
to record several side-channel traces. After collecting the
traces, the template is generated, i.e., side-channel patterns
that unequivocally identify secret-dependent control flow. In
the exploitation phase, the spy correlates the incoming side-
channel data with the patterns on the template to identify
a victim execution path associated with a secret. Inspired
by former template attacks [35–37], we established a very
similar attack methodology.

In the (i) profiling phase, the spy constructs a template
matrix by tracing each victim’s vulnerable execution path
(see Section §4.2). We consider a vulnerable code (vC)
any secret-dependent control flow presented in the victim
binary (vB). The attacker must manually analyze the vB
to identify a vC. The process, conducted offline, involves
correlating, at the instruction level, the vB with the recorded
trace (a process similar to the one depicted in Figure 2).
In the (ii) exploitation phase, the spy matches the trace of
the victim’s execution with the template, aiming to derive
the secret. There are two variants, depending on the target
victim application. Firstly, for applications that can operate
multiple times over the same secret, the attacker can leverage
traditional template attacks, i.e., get a victim trace through
multiple runs and correlate it with the template matrix to
identify the secret. A second (and more sophisticated) vari-
ant is related to applications where the secret is ephemeral,
i.e., it changes per victim run. To retrieve the secret, the
attacker has to collect all side-channel data in a single victim
run, which requires a more complex attack infrastructure and
levels of expertise.

3.1. Profiling Phase

The profiling aims to obtain the memory access tem-
plate matrix of a specific vC presented in the vB. This
template matrix can take two forms: (i) raw template matrix
(rT ∈ NN×M ), used in the exploitation phase to find the
first instruction of the vC (see Section §3.2); or (ii) pruned
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Figure 3: Attack methodology: core steps to identify ”vulnerable” clocks cycles. First, the attacker profiles the victim (represented with
four execution paths A, B, C, and D) to obtain the trace T . Next, the attacker identifies the pattern rT for the victim’s vC. The rT matrix
is then pruned to yield the pT1 matrix, which is further reduced to include only the clock cycles that result in contention, pT2. Using
pT2, the attacker selects the clocks to be monitored (e.g., A3, B8, C22, and D15) and constructs the leakage matrix L. In the exploitation
phase, the spy traces the victim’s execution paths and matches them with Tx to obtain the pattern rTx (collected in the profiling phase).
It yields the base clock cycle tbase for each execution path.

template matrix (pT ∈ NN×M ), used in the exploitation
phase to infer the secret. Both matrices (represented on the
left side of Figure 3) have the same number of columns
(M), one per vC execution path, but differ in the number
of rows (N). The rT has one row per each vC clock cycle,
and the pT only has the rT rows with useful information,
i.e., rows with different memory access latencies across vC
execution paths. The profiling phase (Algorithm 1), has four
stages: (i) first, the vC is identified; (ii) second, the spy gets
a victim trace (T⃗ ) for each execution path of the vC; (iii)
third, the spy gets the rT by searching in T⃗ the pattern for
each vC execution path; and (iv) finally, the pT matrix is
computed. To generate the template matrices, i.e., rT and
pT , for each vC execution path, the spy needs to get a victim
trace T⃗ , which is a vector of memory access latencies per
MCU clock cycle.

Identify vC and execution paths. The attacker starts by ana-
lyzing the victim’s code and identifying all secret-dependent
code structures. From the constructed poll of vulnerable
code, the attacker chooses a snippet to be monitored. This
is highly dependent on the target victim application and
is performed manually. After clear identification of the
vulnerable code, the attacker determines the execution paths
that will lead to the leakage of the secret and store them in
the vector of execution paths to profile (E⃗). For instance,
in the conditional statement depicted in Figure 2, there are
two possible execution paths, i.e., if S = 1 or S ̸= 1.

Get victim trace T⃗ . For each x execution path in E⃗, the
attacker has to check for contention on each victim clock
cycle. However, the spy can only assess one clock cycle per

Algorithm 1: Profiling Phase.

input : Victim Binary, vB
output: Template Matrices, rT and pT

begin Profiling vB

Identify the vC and their execution paths E⃗

foreach Execution path x in E⃗ do
foreach Victim clock cycle t do

Generate contention in clock cycle t
Call victim to execute execution path x
Tt ← Record contention in clock cycle t

end
rT⃗x ← Get vC pattern in trace T⃗

end
pT ← Prune raw template matrix rT

end

victim run; thus, the profile requires running the victim
multiple times (for each x execution path in E⃗), equal to the
number of clock cycles needed for that specific execution
path to execute. The spy obtains a trace using a hardware
mechanism that creates contention in a particular clock cycle
for each victim run and records whether or not there was
contention (Section §4.2).

Get pattern rT⃗x. For each x execution path in E⃗, the
attacker manually searches for the vC in the trace T⃗ and
stores it in the rT matrix. The vC pattern is within the
victim trace, but the attacker has no pre-existing knowledge
about the exact location. To discover that information, the
attacker correlates the vB with a victim trace by matching



the microarchitectural profile of the code with the memory
accesses in the trace. To do that, the attacker emulates vB
execution at the instruction level; however, this process is
highly dependent on the target MCU’s microarchitecture.
Information about instruction timing and behavior is re-
quired but often unavailable due to MCU design secrecy,
requiring reverse engineering. This process can be challeng-
ing because microarchitectural components may affect code
execution, e.g., cache and pipeline hazards. Notable, MCUs
are highly deterministic; thus, the victim code generates the
same memory fingerprint across different executions.

Prune rT . In this step, the pT matrix is computed from
the rT matrix by removing entries without useful side-
channel information, i.e., entries with the same memory
access latency across all execution paths. To identify N
execution paths, the pT matrix needs to have at least N
unique entries.

3.2. Exploitation Phase

As previously explained, the exploitation phase can have
two variants, i.e., (i) victims that can run multiple times over
the same secret and (ii) victims whose secret is ephemeral.
We focus on the latter and consider the former out of the
scope. We argue that mounting a multiple-run attack is, in
principle, easier because the attacker can acquire multiple
victim traces and perform most of the attack offline.

The exploitation phase (Algorithm 2) for the single-
run variant of the attack encompasses three stages: (i)
obtaining the victim trace and finding a specific execution
path’s pattern (rT⃗x); (ii) launching the attack by observing
contention in key points in time (clock cycles) of the victim
pattern (rT⃗x); and (iii) comparing the resulting contention
pattern (C⃗) with a leakage template matrix (L ∈ NN×M ),
to infer the secret (S). All of these stages are performed
automatically.

Find execution pattern. The target victim is typically an
application running atop privileged firmware (e.g., TEE
kernel), which switches execution between spy and victim.
To determine the exact time occurrence of the vC first in-
struction, the spy must account for the elapsed time between
the spy call and the victim execution, i.e., the first instruction
of the vC. We refer to this specific point in time as the base
clock cycle (tbase). To find all instances of the vC pattern,
the spy follows these steps: (i) first, the spy invokes the
victim (through the firmware APIs) and traces all the full
execution (firmware + victim); (ii) second, the spy searches
for the vulnerable code pattern rT⃗x on the trace, and tracks
all pattern matches. The rT⃗x pattern may appear more than
once in the T⃗ because a vC may be executed multiple times.
For example, if the vC is a piece of code within a loop, it
will appear once in T⃗ for every iteration of the loop. Each
pattern match returns a unique clock cycle (tbase), which is
stored in a vector (⃗tbase), and marks the beginning of each
vC execution.

Monitor victim execution. This step is the core of the attack.

Algorithm 2: Exploitation Phase Single-Run Vari-
ant.

input : Template Matrices, rT and pT
input : Execution path to monitor, x
output: Secret or Secret-Related Information, S

begin Find Execution Pattern
T⃗ ← Invoke victim and get trace
t⃗base ← Find pattern rT⃗x in T⃗

end
begin Attack

L, t⃗offset ← Select pT entries to monitor
Launch the attack and invoke the victim
while Victim Executes do Simultaneously

foreach tbase in t⃗base do
foreach toffset in t⃗offset do

if t = tbase + toffset then
Generate contention in t
Ct ← Check contention in t

end
end

end
end
foreach Pattern L⃗x in L do

if C⃗ = L⃗x then
S ← x

end
end

end

The spy uses specific hardware mechanisms (see Section
§4.2) to automate the attack while the victim executes in
the CPU. To do this, the spy monitors specific points in
time (clock cycles) within the victim code, which may leak
secret-related information. They are defined by two factors:
(i) a base clock cycle, t⃗base, which indicates specific points
in time within the victim code where the target vC is
executed; (ii) a set of offsets, t⃗offset, which are relative
to t⃗base and identify potential contention points within vC.
These contention points (⃗toffset) are selected based on the
minimum number of pT matrix entries that unequivocally
identify an execution path. The spy launches this phase by
repeatedly checking if a specific point in time (t) in the
victim code is one of the contention points to be monitored,
i.e., tbase + toffset. When a match occurs, the mounted
hardware spy logic automatically records the result in the
C⃗ vector.

Leak the secret. Finally, the spy has to identify the execution
path associated with the recorded C⃗ pattern to retrieve the
secret data. Thus, the spy compares the C⃗ pattern with the
pre-recorded patterns Lx in the leakage matrix L. These pat-
terns Lx are unique fingerprints that unequivocally identify a
specific execution path x, and the matrix L is a subset of the
pT⃗ matrix, holding only the matrix entries associated with
the monitored t⃗offset clock cycles. When there is a match
between vectors C⃗ and L⃗x, the spy uncovers that the vC



executed path x. The leaked information directly exposes
the secret, i.e., x is the secret or is closely related to the
secret. How the secret is inferred depends on the victim,
i.e., the target application.

4. Attack Building Blocks

This section discusses the challenges we faced in design-
ing the attack and how we address them by introducing the
concept of hardware gadgets. We propose two elementary
hardware gadgets as key building blocks to mounting the
attack.

4.1. Challenges

To successfully mount an attack, we have to fulfill three
main requirements. (R1) The spy must be able to create
contention in a memory bank shared between the spy and
victim (i.e., the spy needs arbitrary control over a BM). (R2)
The spy must be able to record the shared secondary port
access pattern to obtain the execution trace. (R3) The spy
must be able to detect contention points on-the-fly. These
requirements need specific core building blocks, and their
materialization imposes four main challenges. These four
challenges combined create an unforeseen set of conditions
that, to our knowledge, have yet to be addressed so far.

C1: Spy lacks access to past microarchitecture states.
Unlike other microarchitectural elements (such as I-/D-
caches and branch predictor caches), the bus does not retain
any state over time. The contention must be assessed and
recorded on-the-fly, i.e., in real-time.

C2: Spy is unable to run concurrently with the victim.
MCUs are typically powered by a single CPU5, thus con-
current execution of spy and victim code is not possible.

C3: Victim execution cannot be interrupted. We as-
sume that the victim domain implements mitigations against
Nemesis attacks [18, 38] and has interrupts disabled. Hence,
the spy cannot preempt the victim’s execution.

C4: Spy only has one chance to steal the secret. The
attack must be performed during a single execution of the
victim since we are focusing on the single-run variant of the
attack.

4.2. Hardware Gadgets

We introduce the concept of hardware gadgets to over-
come the aforementioned challenges. These gadgets are
interconnected peripherals (e.g., timers and DMAs) that can
execute specific tasks in the background without requiring
CPU intervention. The peripherals are self-contained and
have direct communication channels, enabling them to op-
erate in parallel without interfering with each other. Thus,
hardware gadgets enable concurrent execution between the

5. While dual-core configurations can be found in modern microcon-
trollers, e.g., STM32H7 and i.MX RT1170, single-core MCUs still make
up the majority of the market share.

Figure 4: Illustration of two gadgets: a) record contention gadget
and b) detect contention gadget.

victim code (CPU) and the spy logic (hardware gadgets),
addressing C2. The hardware gadgets can automate logic
(such as periodic memory access) without interrupting the
victim’s code execution, addressing C3. The highly deter-
ministic nature of MCUs also enables these gadgets to be
synchronized with the victim code at the clock cycle level.
It allows the spy to use these gadgets to monitor the victim’s
activity (e.g., memory accesses) and execute conditional
actions based on the victim’s control flow, addressing C1
and C4, respectively.

To meet the requirements of the attack (creating (R1),
recording (R2), and detecting contention (R3)), we devise
two elementary hardware gadgets (for advanced gadgets,
see Section §5): the record contention gadget (Figure 4a)
and the detect contention gadget (Figure 4b). The record
contention gadget is used to obtain the victim’s memory
access pattern, while the detect contention gadget is used
to detect, on the fly, accesses to the shared memory bank.
These gadgets are activated by an external trigger, i.e.,
software or another hardware gadget. Both require control
of a BM and access to a timer (operating at the CPU
frequency).

Record contention gadget. The record contention gadget,
Figure 4a, can record all bus contentions. It can assess the
victim memory access pattern and re-create victim execution
control-flow traces. The record contention gadget consists
of three peripherals: a BM for data transfer, a free-running
timer acting as a wall clock, and a target memory. When
triggered 1a , the BM reads the value of the wall clock
2a and writes it to the target memory 3a , creating and
recording contention (R1 and R2). Contention created dur-
ing consecutive data transfers will result in delays in the
BM transfers, causing an observable timing difference. This
time difference is recorded by the wall clock. To reconstruct
the bus contention history, the spy calculates the difference
between recorded transactions 4a after the victim execution,
resulting in a pattern 5a similar to the one shown in Figure
2. This gadget is a powerful tool for attackers performing
the profiling phase of the single-run variant or mounting the
multiple-run variant of the attack.
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Figure 5: Illustration of two possible contention scenarios: a) read stage contention and b) write stage contention. Both scenarios are
depicted with and without contention at the system-level, with the MCU diagram, and at bus-level, with the timing diagram.

Detect contention gadget. The detect contention gadget en-
ables on-the-fly bus contention detection, although it cannot
record the contention history. Thus, it is a perfect fit for the
single-run variant of the attack. Figure 4b depicts the gadget
operation and the timer peripheral. This gadget also consists
of three peripherals: the BM for data transfer, the timer for
detecting contention, and the target (memory) secondary
port. To observe contention, the gadget uses a timer to
measure BM latency 4b and to generate an interrupt 5b
in case contention is detected (which can be handled by
software or fed into other hardware gadgets). The detection
timer is started at the same time the BM starts the transfer
1b . The BM then reads from the target memory 2b and
writes 3b the value to the timer control register (CTR),
stopping the timer. Both the BM read and write have a
dual goal: the BM read creates contention (R1) and reads
the timer CTR stop value, while the BM write stops the
timer and detects contention (R3). The contention is de-
tected if the BM transfer latency exceeds a certain threshold
(minimal BM transfer latency for contention). The compare
register (CMP) is set with this threshold value, and when
the counter (CNT) overflows, the contention is detected. If
there is no contention, the timer will be stopped before the
counter overflows, and nothing will happen; otherwise, it
will generate an interrupt 5b . By precisely monitoring the
start of the transfer 1b , the spy can make the contention
happen at a specific time. Using this gadget, a spy can
monitor memory accesses with clock cycle granularity (e.g.,
clock cycle t+ 3 in Figure 2) and detect contention on the
fly without the CPU’s intervention.

4.3. Read and Write Stage Contention

At the bus level, data transfers consist of dual-stage
access, i.e., data is read from one memory address and
written to another. A notable exception is the CPU, which
can perform single-stage accesses by reading data from core
registers and writing to memory or vice-versa. The spy can
use read and/or write stages to create contention, depending
on the characteristics of the peripheral.

Figure 5 depicts the bus view of a read and write
stage contention. In this case, the bus arbitration relies on the
round-robin policy, with a bus quantum of 2 clock cycles.
In this example, the spy-controlled bus main (BM block in
Figure 5) performs, in the read stage, one BM transfer, and
in the write stage, two BM transfers. In both contention
scenarios, the CPU does two consecutive memory accesses,
i.e., A1 and A2 accesses. In this example, the first arbitration
is granted to the CPU, and all subsequent BM memory
accesses have an equal bus quantum. As shown in Figure
5, the bus quantum 3 and c are assigned to the CPU’s
A1 access, and the BM transfers are postponed to the next
bus quantum 4 and d . A contention happens between
the second CPU memory access, A2, and the delayed BM
operation, R1 4 and W1 d . However, the CPU A2 access
is precluded by the BM R1 and W1 accesses, incurring an
additional bus quantum delay to complete the A2 operation
5 and e .

Read stage contention. Figure 5a illustrates the timing and
bus level interactions at the read stage. In a memory
transaction without contention, the BM reads from SRAM
1 1 and then writes the read value to the timer control
register 2 . At the same time, the CPU does two con-
secutive accesses to SRAM 2 2’ . In this case, there is
no contention because there is no dispute for the SRAM
access. When CPU and BM issue concurrent accesses, the
bus matrix round-robin arbitration process the CPU A1 and
delays the BM R1 read 3 . Therefore, R1 is delayed by
one bus quantum 4 , and thus the W1 write operation 5 .
This contention point is captured with the detect contention
gadget (G1), which triggers an interrupt upon the occurrence
of a certain threshold. On an operation without contention
(Figure 5a - timing diagram A), the timer starts counting
upon the BM transfer A1 1 and is immediately stopped
by the BM write W1 2 , i.e., the BM itself writes to the
timer control register to stop counting. The interrupt is not
triggered in this case because no contention was detected.
In a scenario under contention (Figure 5a - timing diagram



B), the BM write W1 is delayed 5 , and, therefore, the
threshold is met, and the timer interrupt is triggered 6 .

Write stage contention. Figure 5b illustrates the timing
and bus level interactions at the write stage. Contrary to
the read stage contention, in this case, the BM needs to
perform two consecutive transactions per bus contention.
For an operation without contention (Figure 5b - timing
diagram C), the CPU accesses the SRAM 2 b’ while the
BM performs two memory transactions. First, the BM reads
a free-running timer a and then writes the read value to
SRAM 1 b . No contention occurs in this case since both
transactions do not share the same memory banks. In a
contention scenario (Figure 5b - timing diagram D), the
BM attempts to write the timer value to SRAM 2 while
the CPU simultaneously accesses the same memory c .
At the bus matrix, the BM W1 d operation is delayed,
which introduces a cascade effect delay on all the remaining
operations, i.e., BM R2 e and BM W2 f . The spy
leverages this delay (recorded in memory) to identify a
contention point in the memory access trace by calculating
the time difference between two consecutive BM transfers.
If there is no contention (Figure 5b - timing diagram C), the
BM will read a value of 1 and 5, with a transfer latency of
4 g . If there is contention (Figure 5b - timing diagram D),
the BM will read a value of 1 and 7, with a transfer latency
of 6 h .

5. BUSted Attack

In this section, we introduce the BUSted6 attack. Like
other side-channel attacks [5, 18, 39–42], we focus on
single-run applications whose secret depends on asyn-
chronous events, e.g., a user input. To demonstrate the
effectiveness of the attack in a realistic setup, we used an
off-the-shelf smart lock application which we justify and
describe next. This application uses an external keypad to
interface with the user. The attacker’s goal is to steal the
PIN entered by the user.

5.1. Off-the-Shelf Smart Lock Application

The selected smart lock application is a component of
Vulcan [43], a vehicular authentication system that adheres
to a reference implementation of a trusted keypad7 provided
by Texas Instrument [19]. This very same application was
used in the Nemesis attack [18]. There are also popular
open-source firmwares such as QMK [47] and TMK [48]
that use a similar logic to interface with keyboards, i.e.,
larger keypads.

We embedded this off-the-shelf logic in a trusted appli-
cation (TA) deployed in the secure domain of a TustZone-
enabled MCU. It receives service requests from the main

6. https://github.com/ESCristiano/BUSted
7. Texas Instruments offers several products based on the trusted keypad

reference implementation [19], e.g., the Low-Power Hex Keypad [44], the
BOOST-IR BoosterPack Plug-in Module [45], and a USB Keyboard [46].
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if branch (leak)

else branch

while loop

signed int read_keypad(void){
    int is_pressed, mask = 0x1;
    int new_key_state = get_keypad_state();
    for (int key = 0; key < KYPD_NB_KEYS; key++){
        is_pressed = (new_key_state & mask) & ~(key_state & mask);
        if (is_pressed)
          pin[pin_idx++] = key;
        else
          dummy_pin[dummy_pin_idx++] = key;
        dummy_pin_idx = 0;
        mask <<= 1;
    }
    key_state = new_key_state;
    return (4 - pin_idx);
}
void read_pin(){
  signed int pin_len = PIN_LEN;
  while(pin_len>0)
    pin_len = read_keypad();
}

Figure 6: We split the read_keypad code snippet into five parts.
There are two potential execution paths, depending if a key is
pressed. Both paths include three common parts: (i) the while
loop, (ii) the read_key function, and (iii) the for loop. The
key difference between the two paths is the secret-dependent if
statement, which causes a variation in the memory access patterns
based on user input. When a key is pressed, the if branch is
executed; otherwise, it is the else branch.

application in the non-secure domain, e.g., to authenticate
a user. Upon a request, it loops over all 16 keys of the
keypad (i.e., 4x4 key matrix) until all four digits of the pin
have been pressed. The TA then returns a status message
indicating whether the entered pin was valid or not. The
code snippet of the smart lock read_keypad function is
presented in Figure 6.

To steal the PIN, the spy monitors the victim’s control
flow and checks whether the victim executes the secret-
dependent path (Figure 6). Apparently, the code logic is not
vulnerable to timing attacks since the code is balanced for a
constant time. However, the assembly implementation of the
if statement (we refer the interested reader to Appendix A)
indicates that memory accesses occur at different points in
times, suggesting the secret-dependent path and the secret.

With the identification of the vulnerable code (if state-
ment), the spy only needs to monitor a specific timing
(similar to t+ 3 clock cycle in Figure 2) in each for loop
iteration. For example, if the spy observes that the if branch
was executed in the 7th iteration of the for loop, it indicates
that the user pressed the key 7. The spy logic is simple: (i)
keep track of the loop and record the number of iterations it
has executed, and (ii) monitor a specific point in time (clock
cycle) to observe contention. When a key is pressed, the spy
will observe the resulting contention. To acknowledge the
pressed key, the spy resorts to the internal counter that keeps
track of the for loop.

5.2. Smart Gadget Network

To track execution and assess the victim control flow,
we devised a combination of hardware gadgets called smart
gadget network (SGN). SGN interconnects multiple hard-
ware gadgets to perform a specific logic. To implement

https://github.com/ESCristiano/BUSted
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Figure 7: Profiling and Exploitation SGNs. The gray arrows connecting the hardware gadgets of both SGNs represent direct communication
channels between the gadgets’ peripherals. These communication channels are used to send signals to each other, e.g., trigger their execution
or acknowledge a particular action.

the attack methodology (see Section §3), we resort to two
SGNs: one for the profiling phase and another for the
exploitation phase.

The profiling SGN (pSGN), Figure 7a, is used to trace
the victim’s execution. To achieve this, the pSGN uses
two hardware gadgets: (i) the record contention gadget
that generates and records contention; and (ii) the trigger
contention gadget that instructs the record contention gadget
to execute and create contention at specific points in time
(clock cycle level). The exploitation SGN (eSGN), Figure
7b, is used to track the smart lock application execution
and steal the secret. This SGN automatically generates and
detects contention on the secret-dependent if branch and
keeps track of the for loop iteration number. To achieve
that, the eSGN uses five hardware gadgets: (i) the detect
contention gadget, to generate and automatically detect
contention; (ii) the trigger contention gadget (same as the
pSGN), to trigger the detect contention gadget and generate
contention in arbitrary clock cycles; (iii) the counter gadget,
to track the iteration index of the for loop; (iv) the read
secret gadget, to automatically read the counter gadget when
there is contention (i.e., a key was pressed); and (v) the auto-
sync gadget, to keep the eSGN in-sync (at the clock cycle
granularity) with the victim.

5.3. Complete Attack Flow

In the profiling phase, the attacker uses the pSGN to
capture the memory access patterns. During the (online)
attack, the attacker uses the eSGN to retrieve the secret.
Figure 7 shows an overview of the attack.

Offline profiling phase. In this phase, Figure 7a, the spy has
full control over the victim, which is executed within the
spy’s domain. The spy gets the victim’s execution profile
(traces A and B ) by running the victim multiple times
and, in each execution, incrementing the clock cycle where
contention is created. To profile an execution path, the
spy forces the victim to execute only one path per run
by forcing a constant input. This can be done either by

pressing the same key repeatedly – we mimic this behavior
by instrumenting the keypad with a shunt resistor – (to
trace path A ) or by not pressing any key at all (to trace
path B ). The profiling involves three steps. Firstly (step
1), the spy instructs the pSGN to generate contention at a
specific clock cycle a . Then (step 2), the spy invokes the
victim b . Finally (step 3), after a predetermined amount
of time has elapsed (indicated by the clock variable in
Figure 7a), the trigger contention gadget activates the record
contention gadget c . This process is repeated (loop) until
the victim executes the last instruction. The profiling is
conducted for each of the 17 potential execution paths in
the read_keypad code (16 distinct keys plus one path for
the absence of key press). Each execution path may generate
one of two patterns: one when a key is pressed (if path)
A , and another when there is no key press (else path)
B .

Online exploitation phase. In the exploitation phase, Figure
7b, the spy monitors specific points in time (tbase+toffset),
to detect the executed path and thus inferring the secret. The
spy and the victim run in isolated domains. The victim’s
execution is initiated by the spy’s exploitation code that
issues a request to the secure firmware, which then performs
a domain switch 2 and runs the victim. This context
switch results in a timing offset (tbase) of the profiling phase
patterns.

(Step 1) To account for the context-switch (firmware)
overhead, the spy traces the victim domain (victim +
firmware), and searches for the patterns (rT ) obtained in
the profiling phase. It enables the spy to determine tbase,
i.e., the time elapsed from when the spy invokes the victim
until the first victim instruction is executed. The spy uses this
offset to adjust the patterns (rT and pT ) from the profiling
phase.

(Step 2) After selecting the target point in time (tbase+
toffset), the spy launches the attack. First, the spy triggers
1 the eSGN to generate contention in the selected clock



cycle and invokes the victim 2 . Then, the trigger gadget
creates 16 triggers 3 , one per iteration of the for loop.
This causes the detect contention gadget to generate con-
tention at the first clock cycle (tbase) and in multiples of
that (tbase + toffset). Each trigger generated 3 is fed into
the counter gadget, which will keep track of the number of
triggers, from 0 to 15 C . Upon reaching the count of 15,
the counter gadget signals the completion of the for loop
6 .

(Step 3) When contention is detected, a signal 4 is sent
to both the read secret gadget and the auto-sync gadget. The
read secret gadget then accesses the value of the counter
gadget C to reveal the key (secret).

(Step 4) The auto-sync gadget is activated by either
the completion of the for loop 6 or by the detection of
contention 4 . Upon activation, it adjusts 7 timing for the
next clock cycle in which contention will occur, thereby
re-synchronizing the eSGN with the victim code.

Finally, as an example, let us assume the initial instruc-
tion of the victim executes at the clock cycle 1000 (tbase),
and the spy chooses the 14th clock cycle (toffset), from
traced patterns A and B . Then, the 14th clock cycle shifts
to 1014, and the spy monitors clock 1014 (tbase + toffset).
Assuming that the for loop requires 50 cycles to complete,
the contention will be generated in the clock cycle 1014 for
key0, 1014 + 50 for key1, 1014 + 100 for key2, and so on.
If the counter gadget holds a value of 7 when contention
is detected, i.e., clock cycle 1014 + 7x50, it indicates that
the key corresponding to the 7th iteration (key7) of the for
loop was pressed.

6. Implementation and Evaluation

We implemented BUSted on the NUCLEO-L552ZE-Q
[49] and ATSAML11E16A [50] (Armv8-M/TrustZone-M
platforms available when we started this work). From now
on, we will refer to NUCLEO-L552ZE-Q as ST and AT-
SAML11E16A as SAM. As secure TEE kernel (firmware),
we used the open-source TF-M [20]. Although there are
other TEE kernel options, we either were not granted an
evaluation license (e.g., ProvenCore-M [51]) or we decided
to exclude them due to limited adoption (e.g., mTower
[52], and uTango [53]). Furthermore, despite our findings
suggesting that it may be possible to implement the attack
targeting other ISAs (e.g., Armv6/7-M, and even RISC-
V) and firmware (e.g., MultiZone [22], Zephyr [21]), we
focused on security-oriented TEE hardware technologies for
MCUs (TrustZone-M).

6.1. TF-M: PSA Isolation Level 2

Attack setup. We leveraged TrustZone-M to create a trusted
and an untrusted domain (secure and normal worlds, re-
spectively). As depicted in Figure 8a, the spy operates in
the normal world, while the victim (smart lock application)
is encapsulated in a trusted application (TA). The TA runs

Figure 8: BUSted attack setup.

in secure unprivileged thread mode on top of the privileged
trusted kernel (TF-M). TF-M [20] was configured at PSA
isolation level 2 [54], which provides isolation between
the secure and non-secure world (TrustZone), as well as
between trusted kernel and TAs (secure MPU). To create
contention on the shared memory banks, the spy uses a
DMA as a malicious BM and leverages a set of peripherals
that are accessible to the non-secure world to build the
SGNs.

Attack implementation. We mounted this attack scenario
on the ST platform. The ST features a Cortex-M33 that
implements the Harvard architecture, i.e., instruction and
data fetches occur on separate buses, and has 8KB of I-cache
and no D-cache. The platform’s bus interconnect uses round-
robin as the arbitration policy. It has a 256KB of SRAM
memory, divided into two banks: one with 192KB (where
the NS data is located) and another with 64KB (exclusively
assigned to TF-M). The spy cannot observe memory ac-
cesses to the 64KB bank; however, TF-M allocates the TA
data to the 192KB memory bank by default. Out of the
73 peripherals available on the ST platform, only 6 (i.e., 4
timers, 1 DMA, and 1 DMA Multiplexer) were used in this
exploit, which represents 8.2% of the available peripherals.
We successfully bypassed all isolation barriers at PSA level
2 (TrustZone and secure MPU) and retrieved the secret of
the smart lock TA with a 100% success rate, i.e., we always
recover the user’s PIN.

6.2. PSA Isolation Level 3

Attack setup. Figure 8b expands the system configuration to
a more restrictive (but realistic) scenario: all MCU periph-
erals are assigned to the secure world, i.e., enforcement via
the so-called peripheral protection controller (PPC), and not
directly accessible on the normal world to the attacker. In
this case, device access is mediated via a TA in the secure
world. We acknowledge the deployment of 3rd party TAs
as part of the thread model of TrustZone-M [20]. Thus, the
TEE kernel should be configured with PSA isolation level
3 [54], which extends PSA level 2, enforcing protection
between TAs via the secure MPU. To validate BUSted
attack, we devised a stripped-down version of TF-M. We
reduced the code base to the bare minimum set of features
to provide: (i) peripherals assignment/protection via PPC
to the secure world; (ii) memory protection enforcement



Gadgets Timers DMAs DMA MUX Event System LUTs
SAM ST SAM ST SAM ST SAM ST SAM ST

Rec. & Det. 1 1 1 (same) 1 Na 2 4 Na – Na
Trigger 1 1 – – Na 1 1 Na – Na
Counter – 1 1 (same) – Na 1 – Na – Na

Read Secr. – – 1 1 Na – – Na 2 Na
Auto-Sync – 1 3 3 Na 1 – Na – Na

Total 2/3 4/14 5/8ch 5/16ch Na 5/16ch 5/8ch Na 2/2 Na

Platform Core Bus Memory I-Cache N Peri.
CPU Freq. Arch. Arb. SRAM FLASH Size Status Total Used

SAM M23 32 MHz VN P 16KB 64KB 512B Ena 29 5
ST M33 110 MHz H R 256KB 512KB 8KB Ena 73 6

TABLE 2: Resources used by the BUSted attack by gadget and
the characteristics of each platform. CPUs: Cortex-M23 (M23)
and Cortex-M33 (M33). Architectures: Von Neumann (VN) and
Harvard (H). Arbitration Policies: priority-based (P) and round-
robin (R). Resource not used (–).

between trusted kernel and multiple TAs via the secure
MPU; security gate (SG) entry/exit logic for TAs. We argue
that this code base presents the smallest TCB to implement a
system following PSA isolation level 3. Any extra firmware
would increase the TCB and, therefore, the attack surface.
On top of this stripped version of TF-M, we ran a 3rd party
TA as a back-end service acting as an interface to secure
peripherals.

Attack implementation. We mounted this attack scenario on
the SAM platform. The SAM features a Cortex-M23, im-
plementing the Von Neumann architecture, i.e., instruction
and data fetch occur on the same bus, and has 512B of I-
cache and no D-cache. The platform’s bus interconnect uses
a priority-based arbitration policy. The SAM platform has
a single bank of 16KB SRAM, shared between secure and
non-secure software, i.e., the spy can monitor all the secure
world memory accesses. Out of the 29 peripherals available
on the SAM platform, only 5 (i.e., 2 timers, 1 DMA, 1
configurable custom logic (CCL), and 1 Event System)
were used in this exploit, which represents 17.2% of the
available peripherals. Even under a very restrictive system
configuration, we also successfully bypassed all isolation
barriers at PSA level 3 (secure MPU, TrustZone-M, and
PPC) and retrieved the secret of the smart lock TA with a
100% success rate. Despite the SAM bus interconnect im-
plementing a priority-based policy, we found no additional
implementation challenges. By default, the highest priority
is assigned to the CPU, i.e., the bus arbitration logic will
always grant access first to the CPU and only when the CPU
is idle to the remaining bus mains - end-result, contention
always exists.

6.3. Platform Constraints on SGNs

Table 2 summarizes the platform resources (hardware
gadgets) required to successfully mount the BUSted attack.
The number of gadgets varies across platforms due to
the difference in features and properties of the peripher-
als. While some gadgets, e.g., record, detect, and trigger
gadgets, use the same peripherals on both platforms (just
slight variations), others, such as the counter gadget, require
entirely different peripherals (i.e., a timer in ST and a
DMA in SAM). Despite having the same design, SGNs
implementations can be different.

Figure 9: Smart lock application trace recorded in SAM. Both
boards generate similar traces. We limit the trace to 4 execution
paths, i.e., 4 keys.

The pSGN in ST uses the write stage contention, while
the eSGN uses the read stage contention. On the SAM
platform, both the pSGN and eSGN utilize the read stage
contention. The timers used to implement the record gadget
wall-clock (see §4) do not have the counter register syn-
chronized with the internal counter, which means we cannot
read a register to get the timer counter value. This drives
the record gadget to be implemented using the read stage
contention, i.e., a trigger initializes a timer, and the DMA
stops the timer, which measures the DMA transfer latency.
In post victim run, the spy manually synchronizes the timer
to read its counter value.

The differences in the DMAs from ST and SAM is
another major implementation constraint. In the former,
the DMA configuration is static, meaning that once it is
set up, the DMA always performs the same transfer. In
contrast, the DMA channel on the SAM platform is much
more versatile, allowing for multiple transfers, each with a
different configuration. As a result, on the ST, each gadget
requires a dedicated DMA channel. In contrast, the DMA
channel on the SAM platform can multiplex operations. This
allows the detect and counter gadgets to share the same
DMA channel and the auto-sync gadget to be implemented
exclusively with DMA channels. In contrast, on the ST, the
counter and auto-sync gadgets require an additional timer.
Furthermore, SAM features a peripheral (the CCL), which
enables the implementation of basic logic gates such as
AND and OR. These gates can be used in signals generated
by gadgets. The read secret gadget utilizes this feature to
execute a logical condition and determine whether it should
execute its function.

6.4. Real Victim trace

Figure 9 shows a real victim trace obtained from SAM.
Due to space limitations, we only present the trace for five
execution paths. The figure includes a representation of the
rT and pT matrices obtained from profiling the read_pin
code (Figure 6), as well as the L matrix for the exploitation
phase. Columns 1 to 4 of rT represent four key presses.
Column 0 is provided as a visual reference point (no key



pressed). After all pruning operations (see §3.1), we obtain
the pT matrix with all the unique contention points from
rT matrix, from which we select four points in time (clock
cycles) to monitor in the exploitation phase (note that any
clock or combination of clocks from pT would be effective).
The secret is immediately revealed upon the existence of
contention in one of these monitored timing points.

7. Countermeasures

The most effective countermeasure to mitigate BUSted
is to avoid sharing memory banks between sensitive and
non-sensitive execution domains. However, this may not al-
ways be a realistic possibility. MCUs are typically resource-
constrained, and among the entire spectrum, many devices
feature a single memory bank, e.g., the evaluated SAM
platform. Furthermore, in many cases, code is loaded from
the flash directly into data memory (SRAM) to boost perfor-
mance and minimize power consumption [55]. This creates
difficulties even on devices that feature multiple memory
banks. Thus, below, we point out other potential counter-
measures.

Avoid secret-dependent code. Eliminating secret-dependent
code can prevent the spy from detecting timing differences
resulting from simultaneous memory accesses. Developers
may balance memory accesses across execution paths, but
it requires significant engineering effort and expertise. Al-
ternatively, this process can be automated at the compiler
level [56]. However, this approach would still have severe
scalability limitations due to the intrinsic dependencies on
the microarchitecture and the exponential design options.

Disable DMA during the victim execution. DMA periph-
erals (or other bus mains), a key element in the overall
attack methodology, may be disabled during the execution
of sensitive applications. However, this may not be a real-
istic approach due to the widely-establishment of DMAs in
MCU platforms and the severe impact on these applications’
functionality, usability, and performance.

Enforce priority-based arbitration policy. For platforms
with the priority-based policy (e.g., the SAM platform dis-
cussed in §6.2), it is possible to program priorities and thus
prioritize other bus mains, e.g., DMA devices, instead of
CPUs. In this case, it is possible to eliminate the contention
from the DMA (attacker) perspective since those transac-
tions are always prioritized. Notwithstanding, this approach
has a significant drawback since it comes at the cost of
enabling the attacker to perform a complete denial of service
attack over the main CPU (CPU starvation).

Add random delays to the victim code. Adding random
delays while mediating the victim execution (e.g., on the
TEE kernel while switching between execution domains)
introduces unpredictability, resulting in non-deterministic
patterns. This hampers the spy’s ability to monitor memory
accesses and build the template matrix. One challenge with
this approach is related to the source of randomness since
not all MCUs feature random number generators.

8. Discussion

BUSted generalization to other applications. We acknowl-
edge that BUSted is highly tailored to the target application;
however, we argue that our attack methodology (see §3)
is generic and can be used to attack other applications
with some engineering effort. BUSted is a proof-of-concept
attack that demonstrates the effectiveness of our methodol-
ogy. While the SGN requires a re-design per application,
hardware gadgets may be reused, considerably reducing
the generalization effort to attack other applications. Fur-
thermore, we argue that BUSted was designed under a
pessimistic scenario, i.e., single-run, single-core, and non-
preemptable execution. Relaxing just one of those condi-
tions would significantly enhance the attacker’s capabilities.
For instance, in a multi-run attack scenario (e.g., software-
based cryptographic application), the complexity of the SGN
would be considerably reduced due to the possibility of ob-
taining multiple traces. Alternatively, in a single-run attack
with preemption, the attacker could use an approach similar
to the ones reported in Nemesis [18] and SGX-Step [57]
(i.e., interrupt the victim at each instruction, launch the
record contention gadget, return to the victim instruction,
and observe if there was contention), to yield a very accurate
trace of all the victim instructions while, once again, highly
reducing the complexity of the SGNs.

BUSted portability to other platforms. Given the perva-
siveness of the bus interconnect across the MCU spec-
trum, we strongly believe that similar variants of the attack
may be replicable on a plethora of platforms powered by
Armv6/7/8-M, RISC-V (and other ISA) MCUs. We sup-
port our claims with the empirical findings from Table
1. Notwithstanding, the high heterogeneity of the MCU
spectrum in terms of architectural and microarchitectural el-
ements may create some challenges. While the SGN design
is agnostic from the MCU, its implementation depends on
the available peripherals and microarchitecture. We argue
that (i) MCUs typically have enough peripherals to create
the SGN and (ii) the SGN design is flexible enough to cope
with the expected heterogeneity.
BUSted and hardware gadgets. The number and type of
hardware gadgets an attacker can use to implement an
SGN are limited by the overall peripherals available on
the target platform. Moreover, hardware gadgets can only
automate simple operations such as memory reads/writes,
comparisons, tracking time, and simple combinational logic
operations (e.g., AND, OR, NOT). Although it is possible
to use hardware gadgets that implement conditional actions
(as we did with the detect contention gadget), the conditions
must be simple (e.g., >, =, <). These restrictions impose
inherent limitations on the spy logic. Notwithstanding, we
argue it is possible to combine multiple hardware gadgets
to implement a reasonably complex algorithm, as demon-
strated with the eSGN, using only a fraction of the platform
peripherals (see Section §6).

BUSted and multi-core MCUs. BUSted leverages a DMA
as the malicious bus main; however, it is possible to mount



BUSted resorting to other bus mains. For instance, there is
an ongoing trend to embed dual-core configurations in mod-
ern MCUs (e.g., STM32H7 and PSoC 64 series). Inclusively,
the PSoC 64 leverages a dual-core (Cortex-M4 + Cortex-
M0+) to implement isolated execution environments and is
Arm PSA certified. Thus, for this MCU series, we envision
a scenario where the spy runs on one CPU (e.g., Cortex-
M4) and the victim on the other CPU (e.g., Cortex-M0+).
This design configuration empowers the attacker since the
spy logic can run concurrently and a significant portion of
it can be implemented in software, i.e., easing the reliance
on SGNs and the complexity and limitations they induce
(aforementioned).

BUSted (full-)attack automation. To successfully mount
BUSted, we acknowledge the need for a skilled attacker and
a large manual effort; however, we argue that automating
a significant part (if not all) of the process is possible.
For example, mounting hardware gadgets and SGNs can
be reflected in a puzzle-solving problem that considers the
constraints and functionalities of the peripherals. Since both
are well-defined, it is realistic to develop a tool that takes
the target application (algorithm) as input and outputs an
SGN design (and potential implementation). Furthermore,
target applications with less restrictive attack conditions
(e.g., multi-run crypto-related applications) may allow for
a fully automated template attack.

9. Related work

Side-channel attacks are not a new endeavor. These
attacks can leverage several physical properties, e.g.,
power [58–61], sound [62–64], and electromagnetic emana-
tions [65–68], to leak secret information. Microarchitectural
side-channel attacks are a particular class of these attacks in-
troduced by Kocher [69] which achieved mainstream atten-
tion with the disclosure of Spectre [3] and Meltdown [4]. At
a high level, there are two major classes of software-based
microarchitectural side-channel attacks [70]: persistent-state
and transient-state attacks. However, transient execution
attacks [2, 71] are not transient-state attacks, but rather a
combination of both.

Persistent-state attacks, also called stateful or residual-
state attacks, modify the state of a microarchitectural ele-
ment and preserve this state over time (at least after the
victim’s execution). Prominent examples include those tar-
geting the cache [36, 72–78], the address translation [10,
79–83], and branch predictors [42, 84–88]. Transient-state
attacks, also called stateless or contention-based attacks,
[89], exploit transient information that does not leave any
microarchitectural trace. These channels arise due to limited
bandwidth when multiple bus mains compete for the same
microarchitectural resource. There are multiple transient-
state side-channel attacks, leveraging different microarchi-
tectural elements, e.g., cache banks [70, 90], execution
ports [91–93], and bus interconnects [89, 94–96]. BUSted
can be seen as a transient-state attack, similar to attacks
leveraging the interconnect of high-end processors [89, 94,

96]. Nevertheless, multiple-run variants of our attack (using
hardware gadgets to record a contention trace) may fall
under the persistent-state classification. BUSted is also close
to controlled-channel attacks [5, 18, 39, 40], a subset of side-
channel attacks that leverages deterministic and noiseless
channels to extract a victim’s secret in a single-run.

Software-base side-channel attacks on MCUs. Despite the
significant research effort on high-end processors, only a few
software-based side-channel attacks have been reported on
MCUs [18, 97–99]. In [98], authors exploit a timing side-
channel to construct a leakage module of the Cortex-M4
and Cortex-M7 MCUs, which is then exploited through a
power side-channel. From a different perspective, in [99],
D. Gnad et al. leverage the correlation between the ADC
noise and the power consumption of the MCU (STM32
Cortex-M4) to collect from software power consumption
traces, which are then used to leak the secret key of an
AES implementation. Similarly, in [97], authors also use the
ADC to mount a remote power side-channel attack to bypass
the TrustZone-M protection of a SAM L11 (Cortex-M23)
MCU and retrieve the secret key. Finally, the Nemesis attack
[18] explore the microarchitecture of the MSP430 MCU to
leak sensitive information. In summary, most existing works
are software-based power side-channel attacks. To the best
of our knowledge, the Nemesis attack [18] is the single
research work focused on microarchitectural side-channels
on MCUs; however, the attack is tied to the particularities
of the CPU interrupt logic of the MSP430 MCU and has
not proven scalable across the MCU spectrum (in particular
in Arm Cortex-M).

10. Conclusion

In this paper, we presented BUSted, a novel side-
channel attack that leverages timing differences on the
MCU bus interconnect to undermine security guarantees
enforced by memory protection primitives, including MPU,
TrustZone-M, and other platform-level protection controllers
(e.g., PPC). To tackle the challenges posed by resource-
constrained MCUs, we introduced a novel concept named
hardware gadgets. We mounted the attack on two modern
TrustZone-M hardware platforms, i.e., the ST NUCLEO-
L552ZE-Q and the Microchip ATSAML11E16A, running
the TF-M TEE kernel configured at PSA isolation levels 2
and 3.
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Appendix A.
Victim Application Vulnerable Instructions

We compiled the target victim application for Cortex-
M33 using different compilation optimizations (O0, O1, and
O2). In all outputted binaries, we observed the existence
of at least one conditional branch (e.g., bne or beq) that
leaks the secret. All compilation options resulted in code
vulnerable to our side-channel attack. Below, we present
code snippets with the assembly instructions generated by
each compilation for the vulnerable if-else statement in
the read_keypad function (see Figure 6). We used the
arm-none-eabi-gcc compiler, v9.3.1, with the com-
pilation flags -mcpu=cortex-m33 and -Ox (x = 0, 1,
2).

A.1. Victim Application Compiled With O0

Listing 1 presents the code snippet with the assembly
instructions for the vulnerable read_keypad function,
i.e., the if-else statement, compiled with optimization -O0.
The beq .L5 instruction (line 16) represents the if-else
statement which unintentionally leaks the secret. Similar to
the code snippet shown in Figure 2, when the branch is taken
(to execute code at label .L5, i.e., the else path), there is a
delay of two clock cycles, allowing to distinguish from the
if path, i.e., when the beq .L5 is not taken, and execution
continues at label line 17.

1 read_keypad:
2 (...)
3 .L7:
4 ldr r2, [r7, #4]
5 ldr r3, [r7, #12]
6 ands r2, r2, r3
7 ldr r3, .L9
8 ldr r1, [r3]
9 ldr r3, [r7, #12]

10 ands r3, r3, r1
11 mvns r3, r3
12 ands r3, r3, r2
13 str r3, [r7]



14 ldr r3, [r7]
15 cmp r3, #0
16 beq .L5 /*Instruction That Leaks*/
17 ldr r3, .L9+4
18 ldr r3, [r3]
19 adds r2, r3, #1
20 ldr r1, .L9+4
21 str r2, [r1]
22 ldr r2, [r7, #8]
23 uxtb r1, r2
24 ldr r2, .L9+8
25 strb r1, [r2, r3]
26 b .L6
27 (...)

Listing 1: Vulnerable read_keypad if-else statement compiled
with -O0.

A.2. Victim Application Compiled With O1

Listing 2 presents the code snippet with the assembly
instructions for the vulnerable read_keypad function,
i.e., the if-else statement, compiled with optimization -O1.
The beq .L3 instruction (line 7) represents the if-else
statement which unintentionally leaks the secret. Similar to
the code snippet shown in Figure 2, when the branch is taken
(to execute code at label .L3, i.e., the else path), there is a
delay of two clock cycles, making it clearly distinguishable
from the if path, i.e., when the beq .L3 is not taken, and
execution continues at label line 8.

1 read_keypad:
2 (...)
3 .L5:
4 and r2, r5, r1
5 uxth r2, r2
6 cmp r2, #0
7 beq .L3 /*Instruction That Leaks*/
8 strb r3, [lr, r0]
9 adds r0, r0, #1

10 mov r7, ip
11 b .L4
12 (...)

Listing 2: Vulnerable read_keypad if-else statement compiled
with -O1.

A.3. Victim Application Compiled With O2

Listing 3 presents the code snippet with the assembly
instructions for the vulnerable read_keypad function,
i.e., the if-else statement, compiled with optimization -O2.
The bne .L12 instruction (line 7) represents the if-else
statement which unintentionally leaks the secret. Similar to
the code snippet shown in Figure 2, when the branch is taken
(to execute code at label .L12, i.e., the if path), there is a
delay of two clock cycles, making it clearly distinguishable
from the else path, i.e., when the bne .L12 is not taken,
and execution continues at label line 8.

1 read_keypad:
2 (...)
3 .L6:
4 and r2, r5, r1
5 uxth r2, r2

6 cmp r2, #0
7 bne .L12 /*Instruction That Leaks*/
8 strb r3, [ip, r4]
9 adds r3, r3, #1

10 cmp r3, #16
11 mov r4, #0
12 lsl r1, r1, #1
13 bne .L6
14 (...)

Listing 3: Vulnerable read_keypad if-else statement compiled
with -O2.

Appendix B.
Meta-Review

B.1. Summary

This paper presents BUSted, a new side channel vector
to bypass memory protection by exploiting the bus con-
tention as a timing side channel. Measuring the bus state in a
single-core CPU is the major technical challenge, addressed
by using hardware gadgets composed of peripheral devices
(e.g., DMA, timer) that work in parallel to the CPU. BUSted
is demonstrated by attacking a target program protected by
TrustZone-M on the two state-of-the-art ARMv8-M MCU
platforms. The target program implements a keypad device
for entering a secret 4-digit PIN, and BUSted launched from
the non-secure world successfully stole the PIN.

B.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field;

• Independent Confirmation of Important Results with
Limited Prior Research;

• Identifies an Impactful Vulnerability.

B.3. Reasons for Acceptance

1) Conducted successful attack on two TEE platforms;
2) The adversarial model focuses on attacks that have a

single shot at stealing the secret (a challenging threat
model);

3) Paper discusses potential mitigations.

B.4. Noteworthy Concerns

• As acknowledged and discussed as a limitation in the
paper, the attack is evaluated only with a particular
implementation of a simple keypad application.
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