
Efficient and Safe I/O Operations
for Intermittent Systems

Eren Yıldız
Ege University
Izmir, Turkey

eren.yildiz@ege.edu.tr

Saad Ahmed
Georgia Institute of Technology

Atlanta, USA
sahmed@gatech.edu

Bashima Islam
Worcester Polytechnic Institute

Worcester, USA
bislam@wpi.edu

Josiah Hester
Georgia Institute of Technology

Atlanta, USA
josiah@gatech.edu

Kasım Sinan Yıldırım
University of Trento

Trento, Italy
kasimsinan.yildirim@unitn.it

Abstract
Task-based intermittent software systems always re-execute
peripheral input/output (I/O) operations upon power fail-
ures since tasks have all-or-nothing semantics. Re-executed
I/O wastes significant time and energy and risks memory
inconsistency. This paper presents EaseIO, a new task-based
intermittent system that remedies these problems. EaseIO
programming interface introduces re-execution semantics
for I/O operations to facilitate safe and efficient I/O manage-
ment for intermittent applications. EaseIO compiler front-
end considers the programmer-annotated I/O re-execution
semantics to preserve the task’s energy efficiency and idem-
potency. EaseIO runtime introduces regional privatization
to eliminate memory inconsistency caused by idempotence
bugs. Our evaluation shows that EaseIO reduces the wasted
useful I/O work by up to 3× and total execution time by
up to 44% by avoiding 76% of the redundant I/O operations,
as compared to the state-of-the-art approaches for intermit-
tent computing. Moreover, for the first time, EaseIO ensures
memory consistency during DMA-based I/O operations.

CCS Concepts: •Computer systems organization→ Em-
bedded software.

Keywords: Intermittent Computing, Energy Harvesting, Bat-
teryless Internet of Things, Peripherals

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’23, May 8–12, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9487-1/23/05.
https://doi.org/10.1145/3552326.3587435

ACM Reference Format:
Eren Yıldız, Saad Ahmed, Bashima Islam, Josiah Hester, and Kasım
Sinan Yıldırım. 2023. Efficient and Safe I/O Operations for Inter-
mittent Systems . In Eighteenth European Conference on Computer
Systems (EuroSys ’23), May 8–12, 2023, Rome, Italy. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3552326.3587435

1 Introduction
With predictions of more than a trillion Internet-of-Things
devices by 2035, concerns of maintenance costs and scale [4]
have caused significant interest in energy harvesting for em-
bedded sensing devices to extend lifetimes. These devices
leave batteries behind, and instead power all operations from
ambient energy such as solar, thermal gradient, or even mi-
crobes [11, 39]. Instead of batteries, they store harvested
energy in a small capacitor to perform sensing, actuation,
inference, computation, and communication [22, 53]. Bat-
teryless devices compute intermittently since they suffer
from frequent power failures due to the high spatio-temporal
variability of ambient energy, as shown in Figure 1. Power
interruptions can occur anywhere in the program, requiring
these devices to save application state in durable non-volatile
memory (e.g., FRAM, STT-RAM, or MRAM) so that it can
restore it whenever energy is available again.

Prior art proposed system support to enable intermittent
execution of programs by efficiently saving application state
across reboots. Programmers can place checkpoints in the
application code to save the entire volatile state (includ-
ing registers and volatile main memory) across power fail-
ures [2, 7, 8, 10, 42], which might introduce considerable time
and energy overhead. Another practice for programmers is
to use a programming language-based model to divide an
application into a set of atomic tasks with lightweight check-
points at the end of each task boundary to ensure persis-
tence [14, 26, 34, 54]. Together, these practices have enabled
significant progress in intermittent computing: including a
battery-free virtual machine used to play Nintendo Game
Boy games [19], an online compiler for novice-focused block-
based programming via MakeCode [31], and even batteryless
devices shot in space [33] and used in medical implants [24].

35

https://doi.org/10.1145/3552326.3587435
https://doi.org/10.1145/3552326.3587435
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3552326.3587435&domain=pdf&date_stamp=2023-05-08

Despite these commendable efforts on energy-efficient
state retention, key limitations exist in adopting existing
task-based systems for peripheral bound workloads, which
prevents general applicability.We list the following problems
regarding always repeated I/O operations.
P1: Wasteful Repetitive I/O Operations. By definition,
tasks are atomic entities, and they have all-or-nothing se-
mantics. If a power failure interrupts a task execution, the
task is re-executed again in the next energy cycle. As a result,
I/O operations inside tasks are always re-executed upon task
restart after recovering from a power failure. However, it is
not always necessary to repeat I/O operations. Some periph-
eral operations have single-shot semantics. For instance, a
camera-based sensor does not need to re-capture the image if
the capture operation was successful in the previous energy
cycle. Besides, the output of some I/O operations can remain
valid for a certain duration of time. For instance, a tempera-
ture sensor does not need to repeat its execution if the time
between power failures is less than the freshness interval
of the value. Unfortunately, existing task-based systems do
not provide programming language and runtime support to
capture re-execution semantics of I/O operations to avoid re-
peated I/O operations. Thus, they waste a significant amount
of harvested energy [26, 30, 54, 55].
P2: Idempotence Bugs. Modern applications employ com-
plex machine learning algorithms to enhance the inference
capabilities of batteryless sensors [23, 27]. Such applications
involve frequent and large data movements between volatile
and nonvolatile memory, requiring peripheral operations,
e.g., direct memory access (DMA) copy, that bypasses the
CPU to perform a fast and efficient data transfer. Performing
such operations within a task can lead to memory incon-
sistencies under intermittent energy supply if they modify
nonvolatile memory directly [41]. The existing task-based
programming model lacks appropriate interfaces to help pro-
grammers guard against idempotence bugs due to repeated
I/O operations.
P3: Unsafe Program Execution. Embedded sensing de-
vices interact with the environment via different peripherals,
and programs may take different execution paths in the code
based on the sensed input [46]. For instance, repeating an
I/O operation might lead to incorrect behavior when a task’s
control flow depends on the result of that I/O operation [48].
While existing works rely on compile-time analysis to avoid
such executions [48], no programming language support
exists in task-based solutions to help programmers ensure
the correct execution of programs.
Problem Statement. Existing task-based intermittent com-
puting systems fail to address these problems. We need lan-
guage semantics and runtime that complement the existing
task-based programming model with the following features:

1. providing re-execution semantics for various periph-
eral operations to eliminate unnecessary repeated I/O
operations and improve energy efficiency,

2. ensuring memory consistency, safe program execution
during repeated I/O operations.

Challenges. Introducing these features to intermittent com-
puting is not trivial. Depending on the application, each
peripheral (and operation) requires different re-execution
semantics. Some peripheral operations require re-execution
after every reboot, while others only require re-execution
if the previous peripheral operation expires. A group of I/O
operations does not need repetition in the next energy cycle
if they are fully executed once.

1.1 Our Contributions

This paper introduces EaseIO (EfficientAnd SafE I/O), a pro-
gramming language and runtime for intermittent computing
that eliminates the inefficiencies andmemory inconsistencies
due to repeated I/O operations. EaseIO allows programmers
to annotate the re-execution semantics for their intermittent
programs, as depicted in Figure 3. The EaseIO compiler front-
end transforms the program source code by considering the
programmer-annotated I/O re-execution semantics and pre-
serving task idempotency. EaseIO runtime library handles
the re-execution of I/O operations and prevents memory
inconsistency due to idempotence bugs.

Briefly, we make the following contributions:
1. Programming Language and Runtime. We propose a

low-overhead programming languagemodel and a run-
time system, named EaseIO, that enables programmers
to introduce I/O re-execution semantics and avoid un-
necessary peripheral operations after each reboot.

2. Memory Consistency Management. Our APIs and com-
piler annotations help programmers to annotate dif-
ferent code regions that can potentially cause memory
inconsistencies across reboots.

3. Regional Privatization. DMA-based I/O bypasses the
CPU and directlymodifies non-volatilememory, which
might lead to memory inconsistencies. We introduce a
newmethod, named regional privatization, that allows
the developers to guard against memory inconsisten-
cies specific to DMA-based I/O.

We evaluate EaseIO against state-of-the-art solutions and
show that it eliminates all memory inconsistencies due to
repeated I/O operations and reduces wasted work by up to
68% and total execution time by up to 44% by avoiding 76%
redundant I/O operations than InK [54] and Alpaca [34].

2 Background and Related Work
Recent advances in embedded systems have enabled the
miniaturization of tiny sensing devices, enabling them to
weave into the daily fabric of human life. A paradigm shift
towards batteryless computing has already begun that al-
lows these devices to power themselves using energy har-
vested from the environment that can be in any form, for
example, solar or thermal. Such batteryless platforms like
WISP [13], Flicker [25], Camaroptera [40], and Protean [5]

36

Figure 1. Energy harvesting devices compute intermittently
with execution times unpredictably apart from each other.
This makes it important to ensure efficient use of energy in
order to ensure maximum program progress.

support heterogeneous peripherals, both internal (e.g., DMA)
and external (e.g., accelerometers, microphones) peripherals,
to plug in with the platform to sense the environment and
perform necessary actuation while ensuring their deploy-
ment in different application settings [15, 19, 25, 40, 45]. In
this section, we give the background of the problem by high-
lighting key challenges arising from the repeated execution
of peripherals. We review existing state-of-the-art solutions
for enabling the intermittent peripheral operation to iden-
tify their limitations to explain the motivation and design of
EaseIO.
Batteryless system power themselves by harvesting en-

ergy from the highly variable and unpredictable environ-
ment [32], thus making these devices compute intermit-
tently (see Fig. 1). Many existing runtime systems for bat-
teryless devices use a checkpointing-based programming
model [2, 10, 35, 51] to ensure the persistence of application
state across power failures. Most approaches instrument the
bare C code at compile time and decide to save a checkpoint
at run time. Checkpointing, however, incurs significant over-
head in terms of time and energy. Therefore, our focus in
this paper is repeated I/O problems with task-based models.

Task-based programmingmodels [6, 14, 20, 34, 38] provide
a lightweight mechanism for representing a program into a
set of atomic and independent tasks that back up the program
state in non-volatile memory only after they complete. Since
tasks have all-or-nothing semantics, a power failure in the
middle of the task execution leads to the re-execution of the
same task in the next power cycle. This situation also leads
to the repetition of peripheral operations already performed
in the previous energy cycle, causing many challenges to
intermittent computing.

2.1 Problems with Peripheral-bound Tasks

Existing task-based systems cannot differentiate between
peripheral and compute (non-peripheral) operations. Thus,
they do not provide abstractions to programmers to avoid
redundant re-execution or capture appropriate re-execution
semantics, leading to the following problems.

2.1.1 Wasted Energy Peripheral operations might have
single-shot or timely re-execution semantics [26]. For in-
stance, consider Figure 2a, in which the application was
able to send data over the radio in the active cycle but was
interrupted by a power failure. In this example, the task
re-executes after a power failure and sends the data again,
leading to wasted energy. Other operations may require re-
execution only if a certain time has elapsed since the power
failure. For example, sensor data has to be sensed again after
a power failure if it is expired (e.g., not valid anymore). Re-
dundant re-executions might even lead to a non-termination
bug since I/O operations increase the task’s energy require-
ments, which may exceed the energy buffer’s capacity.

2.1.2 Idempotence Bugs Some peripheral operations, e.g,
DMA bypasses the CPU and directly modifies non-volatile
memory, which may lead to memory inconsistencies. Re-
executing such peripheral operations can create idempotence
bugs due to write-after-read (WAR) dependencies. Consider
the example in Figure 2b, which shows a task containing two
DMA operations that manipulate non-volatile memory. The
first DMA operation copies Block-1 to Block-3. The second
DMA copies Block-2 to Block-1. If a power failure occurs right
after the second DMA operation, the first DMA will be re-
executed after reboot. However, since Block-1 is changed at
the previous power cycle, this DMA operation would lead to
memory inconsistency at Block-3. These WAR dependencies
cannot be resolved at compile time since current runtimes
can neither detect I/O operations nor track non-volatile mem-
ory locations manipulated by the peripherals.

2.1.3 Unsafe Program Execution I/O operations may
determine the branch condition where each branch can ma-
nipulate different parts of non-volatile memory. If the task
restarts after a power failure, it might take a different branch
from the previous energy cycle since the repeated I/O opera-
tion might output a different value. For example, in Figure 2c,
the application sets one of the persistent variables stdy and
the alarm that will trigger the corresponding actuation (e.g.,
heating on/off), considering the temperature value. If the
sensed temperature value is lower than 10, the stdy flag
should be set. Otherwise, the alarm flag should be set. How-
ever, the power failure interrupts the task after setting the
stdy flag. To make it worse, the alarm flag is also set in
the next energy cycle since the sensed temperature value
changed. Therefore, both flags were incorrectly set due to
repeated I/O operations.

2.2 Limitations of Prior Arts

Table 1 presents a qualitative comparison of the main charac-
teristics of EaseIO and the existing intermittent computing
runtimes. Current task-based studies suffer from wasted
work as they lack the necessary programming language
support and fail to capture re-execution semantics for each

37

task send{
 x= y+z;
 send(x);

var x,y,z;

task send{
 x= y+z;
 send(x);
 .
 .
 .
 task_t(next_task)
}

Reboot
task send{
 x= y+z;
 send(x);

(a) Wasteful I/O Operation

task dma{
 DMA_Copy(Blk1 to Blk3);
 DMA_Copy(Blk2 to Blk1);
 .
 .
 .
 task_t(next_task)
}

a b c e f g

Blk-1 Blk-2 Blk-3

e f g a b ce f g

e ge g e f gf f

Non-volatile memory

e f g a b ce f g

task dma{
 DMA_Copy(Blk1 to Blk3);
 DMA_Copy(Blk2 to Blk1);

Reboot
task dma{
 DMA_Copy(Blk1 to Blk3);
 DMA_Copy(Blk2 to Blk1);

Reboot

(b) Idempotence Bugs

stdy
1

alarm
0

stdy
1

1

__nv stdy, alarm;

task sense{
 temp = readTemp();
 if(temp<10)
 stdy = 1;
 else
 alarm = 1;
 .
 .
 .
 task_t(next_task)
}

Reboot

task sense{
 temp = readTemp();
 if(temp<10)
 stdy = 1;

task sense{
 temp = readTemp();
 if(temp<10)
 stdy = 1;
else
 alarm = 1;

temp
9

temp
11

alarm

(c) Unsafe Program Execution.

Figure 2. Task-based intermittent systems re-execute all peripheral operations regardless of their re-execution semantics. This
leads to a waste of energy, inconsistencies in memory, and unsafe program execution.

Intermittent Runtimes Main Features of I/O Operations
Repeated I/O Due to

Power Failure
Wasted I/O Due to
Power Failure

Memory Inconsistency
Due to Repeated I/O Safe DMA Operation Timely I/O

Operation
Semantic Aware
I/O Re-execution

Chain [14], Coala [38], Alpaca [34],
Coati [44] Rehash [6], Mayfly [26],
InK [54], CatNap [37], Immortal

Threads [55]
Yes ✗ High ✗ Yes ✗ No ✗ No ✗ No ✗

IBIS [46, 48] Yes ✗ High ✗ Yes (Due to DMA bugs) ✗ No ✗ No ✗ No ✗
Samoyed [36] Yes (Atomic Functions) ✗ Medium ● Yes (Atomic Functions) ✗ No (Atomic Functions) ✗ No ✗ No ✗
Ocelot [47] Yes (Atomic Regions) ✗ Medium ● Yes (Atomic Regions) ✗ No (Atomic Regions) ✗ No ✗ No ✗
EaseIO

(this work) No ✓ Low ✓ No ✓ Yes ✓ Yes ✓ Yes ✓

Table 1. A comparison of the main features of EaseIO with the relevant intermittent computing approaches.

peripheral operation, thus leading to repeated I/O opera-
tions [14, 26, 34, 54, 55]. These studies mainly capture data
freshness by checking the inputs of the tasks and do not con-
sider re-execution semantics for individual I/O operations
within a task. If the input data is stale, they either do not
execute the corresponding task or non-selectively repeat all
I/O operations within the task body, leading to the problems
we mentioned.

Samoyed [36] and Ocelot [47] rely on compile-time anal-
ysis to encapsulate peripheral operations in atomic func-
tion/regions as it ensures a consistent peripheral state across
reboot. Both methods disable checkpoint interrupts before
executing functions/regions to ensure atomicity, making it
a task. If there is a power interruption in the region/func-
tion, all I/O operations are re-executed, causing the problems
mentioned in Section 2.1. Recently, Surbatovich et al. [46, 48]
proposed taint analysis at compile time to detect and circum-
vent memory inconsistencies. They do so by privatizing the
tainted non-volatile variables at run time, thus avoiding un-
safe program execution. However, such an analysis cannot
cover DMA operations oblivious to the CPU and can directly
modify non-volatile memory.

3 EaseIO Overview
EaseIO comprises two subsystems to make the task-based
model safe and efficient for I/O-bound applications for bat-
teryless devices. EaseIO’s programming language semantics

enables the programmer to express re-execution require-
ments for a peripheral operation. EaseIO runtime uses this
information to re-execute peripheral operations while avoid-
ing the challenges of redundant re-execution and memory
inconsistencies. EaseIO has mainly the following features:
(1) Programming expressiveness. Programmers are

aware of the timeliness and redundant re-execution
constraints of peripheral operations. We expose APIs
to the programmer to express these semantics, which
reduces the burden of the programmer to handle these
constraints manually.

(2) Eliminate redundant I/O. As peripheral operations
are energy-hungry, their redundant re-execution
wastes a significant amount of energy. EaseIO elim-
inates the unnecessary repetition of the peripheral
operations annotated by the programmers.

(3) Ensure safe I/O. Application programmers are gener-
ally unaware of the challenges posed by intermittent
energy supply when performing peripheral operations.
By providing power-failure resilient APIs, EaseIO en-
ables the programmer to write applications that can
avoid memory inconsistencies that may arise due to
the re-execution of peripheral operations.

3.1 Keywords for I/O Re-execution Semantics

EaseIO introduces three keywords to express peripheral re-
execution semantics and constraints. Figure 3 shows the use

38

__nv bool flag_temp, const_flag;
__nv int temp_priv, humd_priv;
__nv uint32t time_temp;
__nv bool flag_block;

Task sense(){
 int temp,humd;

 if (flag_block!){
 const_flag = GetTime()
 - time_temp)<10)
 if(!(flag_temp)||(const_flag){
 temp_priv = Temp();
 time_temp = GetTime();
 flag_temp = SET;
 }
 humd_priv = Humd();
 flag_block = SET;
 }
 temp = temp_priv;
 humd = humd_priv;
 ...
}

EaseIO Compiler
Frontend

Source-to-source
transformation

EaseIO
Runtime
Library

EaseIO Program with I/O Semantics

Compiler

Intermittent Program
with efficient and

safe I/O

Task sense(){
 int temp,humd;

 _IO_block_begin ("Single")
 temp= _call_IO(Temp(),"Timely",10);
 humd= _call_IO(Humd(),"Always");
 _IO_block_end
 ...
}

Figure 3. The programmer calls I/O functions using EaseIO
language interfaces and semantics. The compiler front-end
handles the re-execution I/O semantics transformation con-
sidering task idempotency. EaseIO runtime library handles
the re-execution of I/O functions and prevents memory in-
consistency due to idempotence bugs.

of these keywords in the EaseIO subsystem. It is worth men-
tioning that with a continuous power supply, programmers
do not need to specify such constraints since each peripheral
operation is executed only once.
Single tells the runtime to execute a peripheral operation
only once, i.e., if the operation was successful in the pre-
vious energy cycle, it does not require re-execution in the
next cycle. Typical examples are data copying operations
from volatile memory to non-volatile memory using DMA
or sending the same data in the previous power cycle.
Timely tells the runtime if the data involved in the peripheral
operation has timeliness constraints [21, 30]. If the data of
the last I/O operation is still valid, then the runtime does not
need to re-execute that operation again. As we mentioned in
Section 2.2, existing works (e.g., Mayfly [26]) do not enable
timeliness for peripheral operations within the tasks.
Always tells the runtime to re-execute peripheral operations
after each power failure. This is the default policy of task-
based systems since interrupted tasks are always repeated.
3.2 Programming Interfaces

EaseIO exposes interfaces for the programmer to make
the previously mentioned semantics easier to use. Using
the following three interfaces, developers can write a
peripheral-bound intermittent application without dealing
with repeated I/O challenges arising from frequent power
failures. The main interfaces provided by EaseIO are
depicted in Table 2.
_call_IO is an abstraction that enables the programmer to
execute a peripheral operation along with the re-execution
semantics. If a power failure occurs after the I/O function
is executed, _call_IO decides to re-execute it after reboot,

Language Construct Explanation

_call_IO(name,type,...)
call I/O function name according to the re-
execution type with appropriate arguments

_IO_block_begin(type,...)
start I/O block according to the re-execution
type

_IO_block_end end of the I/O block
_DMA_copy(*src, *dst, size) copy size of data from *src to *dst via DMA

Table 2. EaseIO language abstraction for I/O functions

considering the annotated semantic at run time. _call_IO
can invoke both void functions and functions that return a
value. If the function returns a value, the compiler front-end
creates a private copy of the variable in non-volatile memory
to restore the last returned value after power failure.
_IO_block_begin/_IO_block_end defines the start/end of
an atomic execution for multiple I/O functions considering
EaseIO I/O semantic annotations. Since some I/O functions
have temporal relation to each other, EaseIO presents
_IO_block_begin/end blocks to annotate multiple I/O
functions that need to be executed atomically with the
same re-execution semantic. For example, in Figure 3,
the programmer provided a code block that requires
measuring humidity within 10 milliseconds after sampling
the temperature. If the time constraint is violated, the
temperature and humidity measurements will re-execute.
The programmer wrapped _call_IO(temp, Timely,10ms)
and _call_IO(humid,Always) in a _IO_block_begin/end
structure so that these operations are atomically executed
with the Single semantics. If these operations are executed
successfully, EaseIO will not re-execute the whole block
since it has single-shot semantics.
_DMA_copy performs block data copy from source to desti-
nation address via DMA peripheral. _DMA_copy detects the
memory type of the source and destination address and re-
solves the re-execution semantics of the DMA operation at
run time to prevent memory inconsistency due to WAR de-
pendencies. For instance, if the copy is from non-volatile
memory to non-volatile memory, the DMA operation is han-
dled as Single since the non-volatile memory is persistent.
On the other hand, if the copy is from volatile memory to
volatile memory, the DMA operation is handled as Always
since it should be always repeated.

3.3 Semantic Precedence

I/O operations outside an I/O block hold their own semantics.
However, within an I/O block, I/O operations can have any
level of nesting and can also contain another I/O block, as
shown in Figure 4. In the given example in the figure, since
the innermost I/O block has Timely semantic, all operations
inside it should be re-executed when the time constraint
of the block is violated. Therefore the Timely semantic of
the block should have higher precedence than the Single
semantic of the pres(). However, the Single semantic of

39

Single

TimelySingle

Single

TimelyTimely Timely

Semantic Precedence

 Control Flow

 Higher Scope

 Data Dependence

Task T1(){

 int temp,humd;

 _IO_block_begin ("Single")

 _IO_block_begin ("Timely",10)
 ...
 pres= _call_IO(Pres(),"Single");
 ...

 _IO_block_end

 temp= _call_IO(Temp(),"Timely",50)

 humid= _call_IO(Humd(),"Timely",20)

 _call_IO(Send(temp,humd),"Single")

 _IO_block_end

}
C Source File

Figure 4. EaseIO handles precedence of re-execution seman-
tics in the task considering the two types of dependency, the
scope of the semantic and data dependency.

the outmost IO block should have higher precedence than
all IO functions inside the block since the Single semantic
should prevent re-execution of the block. Therefore we can
not build precedence based on the semantic type between IO
functions and IO blocks. To resolve such a scenario, we de-
cide the precedence of each re-execution semantic based on
two things: The scope of the semantic and data dependence
between I/O operations.
3.3.1 Scope of the Semantic. In an I/O block, the prece-
dence of each re-execution semantic is decided by its scope:
higher scope means higher precedence. Consider the two I/O
blocks as an example shown in Figure 4. The innermost I/O
block contains an I/O operation that has Singlewhereas the
I/O block has Timely semantic with a time interval of 10ms.
Any interruption longer than 10ms after block operation
requires re-execution of the whole block. However, since
the Pres() function is annotated as Single, it will never
re-execute. Since the re-execution semantic for the block has
higher scope, we override the semantics of the internal I/O
operation with Timely semantic.
3.3.2 Data-dependent I/O Operations. Some I/O opera-
tions may have data dependencies between each other thus
forcing them to resolve the precedence between them. For
example, there exists a data dependency between Temp(),
Humd() and Send() functions represented in Figure 4.
Send() function receives outputs of Temp() and Humd()
as its inputs. In this case, a long interruption after Send()
operation can lead to re-execution of Temp() or Humd()
functions since they have Timely annotation. However,
since Send() is Single, it never re-sends the updated values.
In this scenario, the data inconsistencies between the last
sent data and the stored data in the memory. To avoid such
a scenario, EaseIO re-executes an I/O operation if the I/O
operation it is dependent on was re-executed. We discuss
the implementation details of this in Section 4.
3.4 Regionalizing

DMA operations can manipulate the nonvolatile variables
indirectly. Therefore, EaseIO needs to handle DMAwith care

or otherwise, it can causeWAR bugs to arise because of DMA
operations handling nonvolatile variables. Existing state-of-
the-art work [34, 54, 55] creates private copies of non-volatile
variables to avoid WAR bugs to make non-volatile variables
consistent at the beginning of the task. However, since Ea-
seIO runs the DMA operation with different re-execution
semantics, including Single semantics, the existing privati-
zation technique is not viable for EaseIO. For instance, if a
Single annotated DMA manipulates a non-volatile variable
temp, the traditional privatization techniquesmake temp con-
sistent at the region before the DMA. But the temp would
be inconsistent at the region after the DMA since the DMA
couldn’t update the temp again due to the Single annotation.

To solve this problem, EaseIO separates tasks into regions
according to the DMA positions and number in the task body,
thus keeping non-volatile variables consistent in each region
by privatizing them in each region.

3.5 Correctness

EaseIO prevents unsafe program execution by holding a
private copy of the successful I/O outputs. On each power
failure, EaseIO avoids re-execution of the I/O function and
restores the last successful/valid output value of the I/O op-
eration before restarting task execution. This mechanism
helps the program to avoid taking branches that would not
have been taken in continuous execution. To avoid memory
inconsistencies, EaseIO decides the re-execution of the DMA
operation considering the memory type of the source and
target data. If it decides to re-execute a DMA that has source
data in non-volatile memory, EaseIO separates the first exe-
cution of the DMA into two DMAs by using a privatization
buffer to hold a private copy of the source data. EaseIO uses
the private copy as source data during the re-execution to
avoid memory consistency.
EaseIO re-execution semantics ensure that the program-

mer avoids non-termination. If a task’s energy cost exceeds
the energy budget of the capacitor, the system would en-
counter a non-termination bug. When an I/O operation is
complete, EaseIO prevents its re-execution in the next en-
ergy cycle thus allowing the system to spend this energy
on performing useful computations and making application
progress in the next energy cycle. Thus, EaseIO avoids non-
termination by preventing redundant re-execution of I/O
operations.

4 EaseIO Implementation

We implemented EaseIO using macros, compiler directives,
and a compiler front-end that utilizes the LLVM and Clang
LibTooling [1] framework for source-to-source transforma-
tions. The transformation converts the I/O call into C code
and identifies redundantly executed I/O operations with a
control block.

40

Task T1(){
 int temp,humd,pres;

 time_flg_blck = GetTime()-time_blck)<10;
 if (flag_block!||!(time_flg_blck)){
 depend_flg_pres = time_flg_blck;
 if(!(flag_pres)||!(depend_flg_pres) {
 pres_priv = Pres();
 flag_pres = SET;
 }
 time_blck = GetTime();
 flag_block = SET;
 }
 pres = pres_priv;

 time_flg_tmp = GetTime()-time_temp)<50;
 if(!(flag_temp)||!(time_flg_tmp) {
 temp_priv = Temp();
 time_temp = GetTime();
 flag_temp = SET;
 }
 temp = temp_priv;

 < Transformation of Humd() >

 depend_flg_send = time_flg_tmp&time_flg_hum;
 if(!(send)||!(prec_flg_send) {
 Send(temp,humd);
 flag_send = SET;
 }
}

Task T1(){
 int temp,humd;

 _IO_block_begin ("Timely",10)
 ...
 pres= _call_IO(Pres(),"Single");
 ...
 _IO_block_end

 temp= _call_IO(Temp(),"Timely",50)

 humid= _call_IO(Humd(),"Timely",20)

 _call_IO(Send(temp,humd),"Single")

} C Source File

After Compiler Transformation

Figure 5. EaseIO transformation for the programmer anno-
tated source code.

4.1 Target Hardware

The current EaseIO library implementation targets the
TI-MSP430FR5994 microcontroller with 256KB FRAM
and 8KB SRAM. EaseIO library supports a persistent time
circuitry [18] to ensure timely re-execution of I/O operations
where necessary. However, it can be easily extended for
other resource-constrained microcontrollers.

4.2 Semantic-aware I/O Re-execution

This section discusses the implementation details of enabling
semantic-aware re-execution, which is key to avoiding redun-
dant execution of peripheral operations. We propose three
semantics – Single, Timely, and Always – each handling a
different context.
Single semantic holds a dedicated boolean flag; e.g.,
flag_pres in Figure 5; for the corresponding I/O call
in the task. After the successful execution of each I/O
operation, this flag gets set, allowing the runtime to track I/O
operation completion. This transformation requires careful
consideration, as functions with return values may lead to
data inconsistencies if not correctly restored. EaseIO avoids
such a scenario by maintaining a non-volatile private copy
of the returned value. If the function fails to be re-executed
ever or until the time violation, EaseIO restores the latest
value, e.g., pres_priv, shown in Figure 5. Therefore, if the
runtime decides not to re-execute the I/O operation, the
private copy of the return value is restored, ensuring the
correct execution of the program.
Timely semantic captures a timestamp at the time of the
last execution of the operation, in addition to maintaining
a boolean flag for the I/O completion check. This enables
the runtime to re-execute the operation if a specific time
has elapsed since its last execution. The same logic applies

to an IO_block definition allowing multiple re-execution
semantics for the multiple I/O functions in the same task.
Always semantic does not add any new logic and relies on
task-based models to help re-execute I/O operations. We
add this semantic to remain consistent with the task-based
programming model.

EaseIO stores the output of all call_IO operations during
reboot and ensures that the program always takes the same
path as it would on a continuous power to avoid unsafe
program execution.

4.2.1 Semantic Precedence. As discussed in Section 3.3,
within a block, an IO_block has precedence over execution
semantics for individual I/O operations. Therefore, all func-
tion semantics are replaced during a block semantic violation
with the block’s re-execution semantics.

EaseIO implements this precedence with an additional
boolean flag that checks the validity of the block’s semantics.
If they are invalid, EaseIO executes all I/O operations within
the block regardless of whether the functions were already
executed. To illustrate, let us assume a Timely annotated
block that includes a Single annotated function. EaseIO adds
a depend_flg_#fn_name# variable in the code to check the
validity of the I/O block’s time constraint. This way, EaseIO
can re-execute Single annotated functions more than once,
depending on the block’s semantics.

4.3 Enabling Memory-Safe DMA Operations

DMA operations can modify non-volatile memory without
CPU intervention, which may lead to idempotence bugs and
memory inconsistencies, as discussed in Section 2.2. EaseIO
runtime decides the semantics for DMA operations based
on the source and destination memory address of the DMA
copy operation in order to circumvent these inconsistencies:
(i) Volatile/non-volatile to non-volatile. If the desti-

nation address points to the non-volatile memory, in that
case, the data will reside at the same location if the operation
was successful in the previous energy cycle, irrespective of
whether the source memory address is in volatile or non-
volatile memory. EaseIO annotates such DMA copy opera-
tions as Single at run time to prevent re-execution after a
power failure.
(ii) Non-volatile to volatile memory. If the source

address points to non-volatile and the destination address
points to volatile memory, in that case, we can not annotate
the DMA operation as Always since a power failure clears
volatile memory. Therefore, this DMA can be re-executed
after each reboot. However, since the source address points
to the non-volatile memory, a successive DMA operation
might manipulate the source address, which leads to WAR
dependency. Thus, we separate the DMA copy operation into
the two DMA operations at run time via a two-phase com-
mit. EaseIO copies the source data to a privatization buffer
in the first phase. In the second phase, it copies from the

41

if(regionalPriveFlag[ID] != SET){
 b0_priv1 = b[0];
 regionalPriveFlag[ID] = SET;
}

 b[0] = b0_priv1;

Task1{

 privatization();
 recovery();

 int z, t;
 z = b[0];

Region 1

DMA_copy(a[0], b[0], 500);
 privatization();
 recovery();

 t = b[0];
 a[0] = z;

Region 2

if(regionalPriveFlag[ID] != SET){
 b0_priv_region2 = b[0];
 a0_priv_region2 = a[0];
 regionalPriveFlag[ID] = SET;
}

 b[0] = b0_priv_region2;
 a[0] = a0_priv_region2;

__nv a[N],b[N];

Task1{

 int z, t;
 z = b[0];

 DMA_copy(a[0], b[0], 500);

 t = b[0];
 a[0] = z;

 next_task Task2
}

Region 1

Region 2

Figure 6. Regional Privatization: EaseIO compiler front-end
separates Tasks which contain DMA into the regions consid-
ering the DMAs position in the Task. The EaseIO runtime
only considers the DMA operation complete when Regional
Privatization successfully ends.

privatization buffer to the destination address. If any DMA
operation modifies the source data, we reserve the private
copy in the privatization buffer. Thus, EaseIO annotates such
DMA operations as Private.

(iii) Volatile to volatile. If the source and destination ad-
dresses point to the volatile memory, the DMA copy does not
lead to any memory inconsistencies when re-executed. The
EaseIO runtime annotates this DMA operation as Always.

DMA operations on constant data, e.g., copying constant
coefficients from non-volatile memory to volatile memory,
do not have WAR dependencies and, thus, are safe when
re-executed after power failure. Thus, this DMA operation
into the two DMAs with Private annotation wastes valu-
able time, memory, and energy. Therefore, EaseIO supports
a Exclude annotation that allows programmers to exclude
DMAs from the privatization process to reduce system over-
head. When the programmer uses this annotation for a
_DMA_copy interface, the EaseIO compiler sets the DMA_Type
of that DMA operation as Always at compile time. Thus,
EaseIO skips the annotating and privatization processes at
run time for that DMA.

4.3.1 I/O and DMA Data Dependencies. Some DMA op-
erations may depend on the output data of an I/O operation.

For all such cases, EaseIO’s runtime annotates these DMA op-
erations with the same re-execution semantics as the I/O op-
eration. For example, let us assume a DMA operation copies
the output of the Always annotated I/O operations to the non-
volatile memory. EaseIO annotates this DMA operation as
Single since the destination is in the non-volatile memory. If
a power failure occurs after the DMA operation is completed,
the Always annotated I/O operations re-executes. However,
the new result can not be saved to non-volatile memory since
Single annotated DMA does not re-execute. A similar case
ensues when DMAs copy Timely annotated I/O operation
results. To handle this scenario, EaseIO’s compiler front-
end parses the task body to detect data dependencies be-
tween _call_IO and _DMA_copy interfaces. EaseIO assigns
the constraint_check flag of the _call_IO interface to the
RelatedConstFlag of the _DMA_copy interface. If the related
I/O operation is Always, EaseIO sets the RelatedConstFlag
of _DMA_copy to 1. The RelatedConstFlag is set to 0 if the
corresponding I/O operation is Single or if there is no re-
lated I/O operation.

These runtime decisions enable EaseIO to ensure memory
safety and consistency under intermittent energy supply.

4.4 Regional Privatization

Non-volatile variables manipulated by the CPU can also
be part of the source or destination of a DMA operation,
which is problematic for memory consistency. Consider a
task that copies a value from a non-volatile buffer to an-
other non-volatile buffer. By the rules mentioned above, the
runtime would label such a DMA operation as Single. How-
ever, avoiding re-execution of such DMA operation would
cause data inconsistencies. For example, if a power failure
interrupts the task after the a[0] is modified in region 2 in
Figure 6, the existing task-based privatization method [34]
would restore the initial value of the non-volatile variables.
Since the DMA operation is annotated as Single, it would
not be re-executed in the next energy cycle, thus leading
to an inconsistent value due to WAR dependency for the
variable b[0] after reboot. In addition, changed I/O results
due to re-execution can cause memory inconsistency on
the non-volatile during the branch operations variables, as
mentioned in Section 2.1.
To ensure safe program execution, EaseIO compiler han-

dles the WAR dependencies between non-volatile variables
and DMAs using a novel approach named Regional Privati-
zation. EaseIO separates the task into multiple regions con-
sidering the DMA operation locations. EaseIO separates a
task that contains N number of DMAs into the N+1 number
of regions. If the task includes no DMA operations, EaseIO
considers the whole task a single region for the privatization
process. For instance, since Task1 has one DMA operation
in Figure 6, the compiler divides it into two regions. EaseIO
compiler places the regional privatization and recovery pro-
cesses at the beginning of each region, respectively. The

42

compiler creates dedicated private copies for each region
to ensure regional idempotency. EaseIO sets the regional
privatization flag, which shows the privatization process is
completed at the end of the privatization process to signal
the _DMA_copy function. Thus, EaseIO achieves the DMA op-
eration and the privatization process atomically. If a power
failure interrupts the task after regional privatization is com-
pleted, EaseIO recovers non-volatile variables utilizing the
private copies. Since EaseIO accomplishes the regional pri-
vatization after the DMA, it avoids the inconsistencies due
to no re-execution of the DMA in the next energy cycle.

As regional privatization allows private copies of all non-
volatile variables in the region, it overcomes unsafe program
execution problems by avoiding program paths that would
not have been visited in continuous execution.
4.5 Compiler Frontend

We implemented the compiler front-end using the LLVM
and Clang LibTooling [1] framework, which is responsible
for performing the source-to-source transformations. The
transformations include converting the I/O call into C code
and the control block required to check the redundant exe-
cution of the I/O operation. We implemented our compiler
front end as a combination of AST-matcher to match the
call to our API when traversing the AST. For each match,
we bind a callback to insert the necessary code blocks re-
quired to insert control logic which keeps the information
about the previous execution of the I/O operation. Figure 5
presents how the compiler front-end transforms _call_IO
and _IO_block_begin/end into the if structure. Since the
if structure conditions change according to the re-execution
semantic types, the compiler considers the annotation type
during source-to-source transformation. Each if structure
controls the lock flag dedicated to the called function to com-
prehend I/O function completion. However, multiple tasks
can invoke the same I/O function, or a task can invoke the
same I/O function multiple times. Therefore, the compiler
front-end creates a lock flag in non-volatile memory named
lock_##functionName##taskName##num, considering each
_call_IO’s function name, task name, and calling number.
4.5.1 Regional Privatization for DMA operations. Ea-
seIO’s compiler front-end parses the body of each task in the
application to extract non-volatile variable accesses to avoid
idempotence bugs due to repeated I/O operations. For each
non-volatile variable access, the compiler creates a privatiza-
tion buffer to undo any temporary change in the buffer that
may be there due to power failure.

5 Evaluation
We evaluate EaseIO against two state-of-the-art runtimes
(Alpaca [34] and InK [54]) in two phases using an emulated
energy environment. In the first phase, we evaluate EaseIO
on a uni-task application, where an application performs
a single type of I/O operation. The second phase evaluates

Alpaca InK EaseIO
Tasks I/O func. Tasks I/O func. Tasks I/O func.

LEA 3 1 3 1 3 1
DMA 3 1 3 1 3 1
Temp. 3 1 3 1 3 1
FIR filter 5 1 5 2 5 2
Weather App. 11 5 11 5 11 5

Table 3. Tasks and I/O functions of evaluated applications.

EaseIO with a multi-task application that performs three
different types of I/O operations. Our results show that by
preventing unnecessary re-executed I/O operations and en-
suring safe DMA operations across power failures, EaseIO
reduces wasted work up to 3 times.

5.1 Target Platforms and Tools

We use the MSP430FR5994 [49] at 1 MHz operating fre-
quency, which includes 256kB FRAM and 4kB SRAM mem-
ory.We compile our applications using theGNUGCCv9.3.1.0
and measure execution time and energy consumption us-
ing a logic analyzer and TI EnergyTrace software [50]. Our
evaluation board connects to a P2110-EVB RF receiver [17]
which harvests power from the Powercast TX91501-3W RF
transmitter [16] operating at 915 MHz center frequency.
We emulate the energy conditions, including power fail-

ures, to reproduce and repeat the comparative measurements.
The power failure is simulated by random soft resets trig-
gered by an MCU timer with a uniformly distributed firing
period in the interval of [5ms, 20ms].

5.2 Evaluation Metrics

We consider five evaluation metrics – (1)Wasted Work rep-
resents the computational progress lost due to power failure
as the number of and time corresponding to unnecessary re-
executions and power failures; (2) Energy Consumption is the
energy consumed to finish a single execution of the target
application; (3) Execution Correctness denotes the number of
correct execution of DMA operations with WAR dependen-
cies; (4) Runtime Overhead is the additional time added to the
execution time to progress computation and keep memory
consistency across power failure; and (5) Memory Overhead
denotes the additional memory and code size required by
the runtime.

We implement applications for InK and Alpaca’s runtime
with atomic tasks having all-or-nothing semantics. Table 3
shows the number of tasks and I/O functions for each appli-
cation.

5.3 Phase 1: Uni-Task Application

In this phase, we execute three applications introduced in
Samoyed [36] representing each I/O semantic described in
Section 3.1. For example, temperature sensing (temp) re-
quires Timely semantics, whereas DMA operation copying
data from non-volatile to non-volatile memory has a Single

43

0 10 20 30 40 50
Time (ms)

Alpaca

InK

EaseIO App.

Overhead

Wasted Work

(a) Single semantic - NVM to NVM DMA

0 1 2 3 4 5
Time (ms)

Alpaca

InK

EaseIO App.

Overhead

Wasted Work

(b) Timely Semantic - Temperature Sensing

0 10 20 30 40
Time (ms)

Alpaca

InK

EaseIO App.

Overhead

Wasted Work

(c) Always Semantic - LEA

Figure 7. Total execution time, runtime overhead, and wasted work with controlled power failures.

Single (DMA) Timely (Temp.) Always (LEA)
PF Re-exe. PF Re-exe. PF Re-exe.

Alpaca 3749 3624 402 334 1359 1314
InK 3749 3624 403 335 1359 1321

EaseIO 1996 863 (↓76%) 385 190 (↓43%) 1359 1314 (0%)

Table 4. EaseIO reduces the number of power failures since
it save energy from unnecessarily executed I/O operations
allowing it to spend more energy on performing useful com-
putations.

re-execution semantics. For applications performing LEA
operations, we annotate the task with Always semantics.
Each application is executed 1000 times with pseudo-random
seeds, and we report the average results. Each application
contains a minimum number of shared variables to fairly ob-
serve the overhead of the handling I/O semantics of EaseIO.

5.3.1 Wasted Work and Runtime Overhead Results
Figure 7 shows each uni-task application’s total execution
time, highlighting the application’s execution time (APP),
runtime overhead, and wasted work. We can observe that,
despite having 108% higher runtime overhead than InK and
Alpaca, EaseIO has 216% lower wasted work, which reduces
the total execution time by 85% (Figure 7a). While InK and
Alpaca re-execute all I/O operations, EaseIO avoids redun-
dant re-execution with the help of semantics re-execution
integrated with EaseIO’s programming interfaces to execute
an I/O operation only if it is necessary.

Energy saved by avoiding redundant re-execution allows
the device to go father on the same charge, thus making the
application make more progress in a single energy cycle and
reducing the number of power failures before completing
the workload. Table 4 shows that avoiding redundant re-
execution results in 76% less I/O operations, reducing power
failures by 0.1% – 46% compared to InK and Alpaca. The
lack of shared variables in the DMA application produces
similar overhead for InK and Alpaca. EaseIO requires higher
overhead than InK and Alpaca for Timely operations since
it requires time stamping and checking during the Timely
I/O operations, as shown in Figure 7b. Despite this increased
overhead, EaseIO reduces the wasted work overall due to
power failures by preventing the re-execution of valid I/O
operations after reboot.

Single Timely Always
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

E
n

e
r
g

y

 (
N

o
r
m

a
li
z
e
d

) EaseIO

InK

Alpaca

EaseIO

InK

Alpaca

Figure 8. Average energy consumption of for re-execution
I/O semantics with controlled power failures.

Capture
Weather Image

@Single
Send

@Single

DNN Inference

Sunny
Cloudy
Rainy

Sense
I/O Block @Single

Sense Temp. @Timely
Sense Humid. @Always

Figure 9.Weather Classification Application

5.3.2 Energy Consumption Results. Reducing power
failures and execution translates into reduced energy con-
sumption of the system. Figure 8 demonstrates a one-half
average reduction in energy consumption of the task.
5.4 Phase 2: Multi-Task Applications

In phase 2, we develop two multi-task applications contain-
ing all three types of I/O semantics, including DMA opera-
tions with WAR dependencies.
5.4.1 Applications. We developed an FIR filter and DNN-
based weather classifier application as they require multiple
I/O operations with different execution semantics.
The FIR filter includes three DMA and one LEA opera-

tion that we exploit to evaluate application correctness. The
first two DMA fetch input and filter coefficients data from
non-volatile memory to volatile LEA-RAM. The input signal
is divided into four samples, and four LEA calls complete
the filtering operation in a loop. The last DMA saves the
results from LEA-RAM to the non-volatile memory. The in-
put and output of the application use the same buffer in the
non-volatile memory. Therefore, we call the LEA using the
Always semantic, and EaseIO annotates the first two DMA
as Private and the last DMA as Single at run time.
The weather classifier is a complex application that con-

tains multiple I/O operations and hardware accelerators to

44

0 10 20 30 40

Weather
App.

FIR
Filter

150 200 250 300

Time (ms)

App.

Overhead

Wasted Work

EaseIO/Op.
EaseIO
InK
Alpaca

Figure 10.The execution time, runtime overhead andwasted
work of weather classifier and FIR filter with controlled
power failures.

evaluate all system performance. The application consists
of four main steps, as shown in Figure 9: (i) sense tem-
perature and humidity values, (ii) capture an image of the
weather, which we simulate by running the microcontroller
in a delay loop. (iii) infer weather conditions using DNN,
(iv) send the inference result, temperature, and humidity
value. Since temperature and humidity sensing operations
are time-dependent, we used the Timely semantic for the
temperature sensing in a Single annotated IO_block. In
contrast, the send operation is annotated as Single. Figure 9
shows the workflow of the application, which is divided into
11 tasks.

The DNN contains five layers: (i) the 1x4x4 convolution
layer, (ii) the RELU layer, (iii) the 1x4x4 convolution layer,
(vi) the fully connected layer, and (v) the inference layer.
The convolution and fully connected layers utilize the LEA
and DMA hardware like in TAILS. We send the temperature,
humidity, and weather inference in the last step. We also
simulate this transmitter operation using the same method
as in step two.
5.4.2 Wasted Work and Runtime Overhead Results.
Figure 10 shows the execution time, overhead, and wasted
work of the FIR Filter and DNN-based weather classifier. The
two Private DMAs of FIR filter require privatization result-
ing in higher overhead than Alpaca and InK. However, with
the reduced wasted work by preventing unnecessary execu-
tion, EaseIO saves overall execution and energy by avoiding
redundant I/O operations. To reduce overhead further, we
also employ Exclude API for the DMAs that copy constant
nonvolatile coefficients of the filter, decreasing the priva-
tization process. We call the results for this Exclude API
as "EaseIO /Op" in our evaluation. "EaseIO /Op" completes
application execution almost simultaneously as Alpaca.
The DMA fetches input data from non-volatile memory

to LEA-RAM for weather applications before triggering the
LEA. EaseIO annotates these two DMA as Private at run-
time because of a probable WAR dependency, as mentioned
in Section 4.3. EaseIO separates them into two DMAs using a
privatization buffer to protect memory consistency. Figure 10
shows that EaseIO has a more significant overhead as the

FIR Filter Weather App.
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
n

e
r
g

y

 (
N

o
r
m

a
li
z
e
d

)

EaseIO/Op.

EaseIO

InK

Alpaca

EaseIO/Op.

EaseIO

InK

Alpaca

Figure 11. Average energy consumption of multi-task appli-
cations with controlled power failures.

0 200 400 600 800 1000
Number of Execution

Alpaca

InK

EaseIO
Correct

Incorrect

Figure 12. The numbers of correct and incorrect execution
of the FIR Filter.

destination buffers of the DMAs are in volatile memory; they
re-execute and require privatization after each reboot. Since
Alpaca and InK can not build a re-execution semantic or
temporal relation between I/O operations, they execute the
temperature and humidity sensing operations after each re-
boot. On the contrary, EaseIO’s timely and temporally links
these sensing operations using IO_block and re-execution
semantics and reduces wasted work due to power failures
by up to 3 times.
5.4.3 Energy Consumption Results. Reducing wasted
and redundant re-execution reduces the system’s overall
energy consumption significantly. Figure 11 shows both ap-
plications’ energy consumption reduction. EaseIO reduces
the average energy consumption of FIR filter and weather
classification applications by up to 5% and 17%, respectively.
5.4.4 Execution Correctness. Figure 12 shows that Ea-
seIO protects the FIR application from memory inconsisten-
cies during intermittent execution. Since the DMA opera-
tions have WAR dependencies, InK and Alpaca can produce
21% and 16% incorrect results, depending on the power fail-
ure interruption point. However, EaseIO uses a privatization
buffer to handle WAR dependencies and produces correct
results despite power failures.
For applications using DNNs, programmers use two

buffers for input and output data of each DNN layer [23, 55]
to avoid WAR dependency. However, our Regional Pri-
vatization of EaseIO allows the programmer to use a
single buffer for the DNN implementation without having
idempotence violations. Table 5 shows the execution time

45

Double Buffer Single Buffer
Cont.(ms) Int.(ms) Corr. Cont.(ms) Int.(ms) Corr.

Alpaca 185.63 243.54 ✓ 185.63 242.78 ✗
InK 175.94 275.65 ✓ 175.94 274.92 ✗

EaseIO 228.45 259.14 ✓ 228.45 257.63 ✓

Table 5. Execution times and correctness of Weather Classi-
fication App for double-buffered and single-buffered DNN.

Alpaca InK EaseIO
.text Ram Fram .text Ram Fram .text Ram Fram

LEA 1344 2064 956 2992 2056 4226 2123 2065 4980
DMA 914 8 8242 2188 8 12064 1772 9 12242
Temp. 784 8 314 3042 8 3231 1566 9 4320
FIR Filter 1220 2048 3554 2338 2048 5225 2432 2049 7564
Weather App. 2838 2384 776 2978 2384 4310 3548 2385 4886

Table 6.Memory and Code Size requirements (in B).

52 55 58 61 64
Distance (inch)

−40

0

40

80

120

T
im

e
 D

if
f.

 (
m

s
)

EaseIO/Op.
EaseIO
InK
Alpaca

EaseIO/Op.
EaseIO
InK
Alpaca

Figure 13. The execution time performance normalized by
EaseIO /Op. that includes Exclude annotation for real energy
harvester.

and correctness for the DNN implementations using the
single and the double buffer. InK and Alpaca cannot ensure
correct execution with a single buffer under intermittent
energy supply, whereas EaseIO completes the execution.
For double buffers, EaseIO’s execution time is close to both
systems.

5.4.5 Memory Overhead. Finally, we investigate the
memory overhead of EaseIO as a complex DNN application
with a larger memory footprint, which can lead to more
considerable memory overhead. The EaseIO runtime
requires almost 1 KB more .text size than Alpaca due to
Regional Privatization and DMA handling, as shown in
Table 6. The programmer can define the DMA privatization
buffer size at compile time. For example, we use a 4 KB
privatization buffer in our evaluation. However, when an
application has no DMA operation, this buffer size can be set
to zero. For example, the temperature sensing application
does not include the DMA operation and thus has no
DMA privatization buffer. Therefore, EaseIO loads a 6-byte
overhead for the I/O semantic implementation.

5.5 Real-World Evaluation

We also evaluate the performance of our system in a real-
world scenario. We employ an RF power transmitter to har-
vest energy and charge a 1mF capacitor as energy using five
different distances between the transmitter and the MCU.
Figure 13 shows the execution time results difference be-

tween "EaseIO /Op." and the rest. When the transmitter is
close to the MCU, the system can harvest enough energy,
so there are no power failures. However, as the distance in-
creases, power failures begin to occur. The results show that
in such a scenario, EaseIO consistently performs better than
Alpaca and Ink as it prevents unnecessary re-execution of
the I/O functions.

6 Discussion

EaseIO-Blocks vs Atomic Regions. Subartovic et al. [47]
proposed atomic regions to ensure I/O freshness. These re-
gions contain instructions dependent on the results of an
I/O operation and execute them atomically to avoid mem-
ory inconsistency problems. However, atomic regions do
not prevent repeated I/O operations. On the contrary, the
EaseIO-block definition can avoid repeated I/O as long as
the semantics of the operation remain valid.
Tasks vsRegions. EaseIO-regions are conceptually different
from atomic and idempotent tasks in task-based program-
ming models since they don’t have all-or-nothing semantics.
They are re-executed (within the task) after reboot to ensure
memory consistency, application safety, and liveness.
Regional Privatization vs Task-based Privatizations.
Traditional task-based systems use privatization for variables
withWAR dependencies or double buffers for all non-volatile
variables to ensure memory consistencies. Both methods
swap original and private copies or indexes of buffers at the
beginning or end of the task. However, these methods are
insufficient for EaseIO since EaseIO might skip some DMA
operations after power failures. These methods can only en-
sure memory consistency until the first ignored DMA in the
task. However, they can not guarantee memory consistency
if the DMAmanipulates any non-volatile variable in the task.
Therefore, EaseIO introduces regional privatization, which
ensures memory consistencies by taking private copies of
non-volatile variables in each region.
DMA Privatization Buffer Limits. EaseIO uses a set of
privatization buffers to ensure safe DMA copy operation,
significantly increasing memory overhead. Buffer sharing
between DMA operations reduces this overhead. However,
programmers need to ensure that the size of the DMA copy
operation does not exceed the size of the privatization buffer
to enable this sharing. In our future work, we plan to im-
plement a compile-time analysis to keep track of the size of
_DMA_copy interfaces and generate a compiler error message
if it exceeds the limit.

46

Re-execution Semantics in Loops. EaseIO can be extended
to ensure the semantic safety of nested I/O operations that
use loops to fill elements of an array. For example, the pro-
grammer can nest an I/O operation in a loop to collect sev-
eral samples from the sensor. EaseIO compiler creates the
lock_flags of _call_IOs in the loop as a loop-sized array.
The compiler creates a private copy of each array element to
restore them in the next energy cycle. Therefore if a power
failure occurs in the loop, each sample is re-executed con-
sidering the EaseIO language semantic. For sequential I/O
operations like collecting periodic samples, the programmer
should use a dedicated _call_IO interface for each sample.
Programmer Burden. EaseIO is the first step towards al-
lowing re-configurable I/O support as it provides the API
and runtime support to define I/O re-execution semantics.
However, it is the programmer’s responsibility to identify
semantics for each I/O operation, introducing an additional
burden on the programmer. An automated system requires
identifying time-dependent data, power failure prediction,
and WAR dependencies in the program to correctly identify
bugs arising from I/O re-execution, which requires a compile-
time analysis. In the future, we aim to build compiler support
for such analysis and, thus, automate the annotation process.
Asynchronous Peripheral Operations Peripheral state
management is orthogonal to our work. Therefore, as in
Samoyed, EaseIO currently targets arbitrarily restartable
peripherals, which do not have an internal non-volatile state.
The current implementation of EaseIO can support only
synchronous peripherals, due to its flagging techniques to
keep track of the completion of I/O functions. Since EaseIO
sets the completion flag at the end of the call_IO function,
EaseIO might set the completion flag while the peripheral is
still processing during the asynchronous operations, which
is problematic. Similarly, the block flag might be set for the
I/O block operations while nested I/O functions are still
processing. Therefore, the peripheral operations should be
synchronous to guarantee to set the completion flag after
completing the I/O operation.

7 Additional Related Work
This section briefly discusses a few previous works related
to our work and highlights similarities and key differences
from the proposed work.

7.1 Intermittent Computing

A vast majority of existing literature enabling software sup-
port for batteryless devices focus on checkpointing the com-
putational [3, 10, 42] and peripheral [9, 12, 43] states before
power failure. Such a system either works with statically
placed checkpoints in the program code [2, 10, 42] or adopts
JIT checkpointing model [8, 10, 29] to back up the system
state just before the power failure is imminent. While static
checkpoints suffer from code re-executing, the JIT check-
points strategy avoids repeated I/O and reduces wasted work.

However, it fails to guarantee timely I/O operations and re-
quires additional hardware and constant pooling of the en-
ergy buffer to detect to trigger a checkpoint, resulting in
additional energy overhead.

7.2 Regional Privatization

Our regional privatization is similar to JustDo [28] and Clob-
ber logging (undo+Justdo) [52] proposed in the existing lit-
erature. JustDo logging strategy tracks necessary program
states to resume execution from the interrupted instruction.
However, JustDo increases runtime overhead by keeping
track of every STORE instruction to the non-volatile memory.
Furthermore, it does not allow volatile memory usage since
it does not roll back any instruction. Clobber logging detects
overwritten input of the non-volatile memory and includes
them in the recovery process to reduce undo-logging over-
head. However, both these approaches focus on main-stream
computing devices that have significantly more energy when
compared with batteryless devices. Energy is scarce, and ef-
ficient energy use is essential in ensuring correct application
execution for batteryless sensors.

8 Conclusion

EaseIO is the first intermittent runtime that introduces re-
execution semantics for the I/O operations and handles idem-
potence bugs due to repeated I/O operations. The program-
mer can use EaseIO language interfaces and semantics to
express re-execution requirements for a peripheral. Thanks
to the Regional Privatization and _DMA_copy interface, the
programmer can design their code without consideringWAR
dependencies on the DMA operations and non-volatile vari-
ables. Our evaluation shows that EaseIO can reduce the
wasted work due to power failures up to 3 times against
the state-of-the-art task-based runtimes and can ensure the
safe DMA copying operation while the other runtimes can
not.

Acknowledgments

We thank the anonymous reviewers of ASPLOS 2022 and
EuroSys 2023 for their valuable comments. We are also grate-
ful to Aurojit Panda for shepherding our final draft. Eren
Yildiz was a visiting Ph.D. at Northwestern University to
carry out this study and he was supported by the Scientific
and Technological Research Council of Türkiye (TUBITAK)
under the 2214-A program. This work was also partially
funded by the European Union under Horizon Europe Pro-
gramme - Grant Agreement 101070537 — CrossCon, and by
the National Science Foundation under award numbers CNS-
2145584 and CNS-2107400. Views and opinions expressed are
however those of the author(s) only and do not necessarily
reflect those of the granting agencies: the European Union,
European Climate, Infrastructure, Environment Executive

47

Agency (CINEA), or the National Science Foundation. Nei-
ther the European Union nor the granting authorities can be
held responsible for them.

References
[1] Clang 7 libtooling. https://github.com/llvm-mirror/clang/blob/master/

docs/LibTooling.rst, March 2019. Last accessed: May. 7, 2021.
[2] Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad Alizai, Ju-

naid Haroon Siddiqui, and Luca Mottola. Efficient intermittent com-
puting with differential checkpointing. In Proceedings of the 20th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems, pages 70–81, 2019.

[3] Khakim Akhunov and Kasim Sinan Yildirim. Adamica: Adaptive mul-
ticore intermittent computing. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 6(3):1–30, 2022.

[4] ARM. An update on arm’s ai journey toward a trillion connected
devices, September 2019.

[5] Abu Bakar, Rishabh Goel, Jasper deWinkel, Jason Huang, Saad Ahmed,
Bashima Islam, Przemysław Pawełczak, Kasım Sinan Yıldırım, and
Josiah Hester. Protean: An energy-efficient and heterogeneous plat-
form for adaptive and hardware-accelerated battery-free computing.
In Proceedings of the 20th ACM Conference on Embedded Networked
Sensor Systems, pages 207–221, 2022.

[6] Abu Bakar, Alexander G Ross, Kasim Sinan Yildirim, and Josiah Hester.
Rehash: A flexible, developer focused, heuristic adaptation platform
for intermittently powered computing. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(3):1–42,
2021.

[7] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez
Arreola, Davide Brunelli, Bashir M Al-Hashimi, Geoff V Merrett, and
Luca Benini. Hibernus++: a self-calibrating and adaptive system
for transiently-powered embedded devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 35(12):1968–
1980, 2016.

[8] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-
Hashimi, Davide Brunelli, and Luca Benini. Hibernus: Sustaining
computation during intermittent supply for energy-harvesting sys-
tems. IEEE Embedded Systems Letters, 7(1):15–18, 2014.

[9] Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset,
and Guillaume Salagnac. Sytare: a lightweight kernel for nvram-
based transiently-powered systems. IEEE Transactions on Computers,
68(9):1390–1403, 2018.

[10] Naveed Anwar Bhatti and Luca Mottola. Harvos: Efficient code instru-
mentation for transiently-powered embedded sensing. In 2017 16th
ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), pages 209–220. IEEE, 2017.

[11] Paolo Bombelli, Anand Savanth, Alberto Scarampi, Stephen JL Row-
den, David H Green, Andreas Erbe, Erland Årstøl, Ivana Jevremovic,
Martin Frank Hohmann-Marriott, Stefano P Trasatti, et al. Powering
a microprocessor by photosynthesis. Energy & Environmental Science,
15(6):2529–2536, 2022.

[12] Adriano Branco, Luca Mottola, Muhammad Hamad Alizai, and Ju-
naid Haroon Siddiqui. Intermittent asynchronous peripheral opera-
tions. In Proceedings of the 17th Conference on Embedded Networked
Sensor Systems, pages 55–67, 2019.

[13] Michael Buettner, Richa Prasad, Alanson Sample, Daniel Yeager, Ben
Greenstein, Joshua R. Smith, and David Wetherall. Rfid sensor net-
works with the intel wisp. In Proceedings of the 6th ACM Conference
on Embedded Network Sensor Systems, SenSys ’08, page 393–394, New
York, NY, USA, 2008. Association for Computing Machinery.

[14] Alexei Colin and Brandon Lucia. Chain: Tasks and channels for reliable
intermittent programs. In Proc. OOPSLA, pages 514–530, Amsterdam,
Netherlands, 2016. ACM.

[15] Alexei Colin, Emily Ruppel, and Brandon Lucia. A reconfigurable en-
ergy storage architecture for energy-harvesting devices. In Proceedings
of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 767–781,
2018.

[16] Powercast Corp. Powercast hardware. http://www.powercastco.com,
2014. Last accessed: Dec. 10, 2020.

[17] Powercast Corp. Powercast hardware. https://www.powercastco.com/
wp-content/uploads/2016/11/p2110-evb1.pdf, 2015. Last accessed: Dec.
10, 2020.

[18] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Prze-
mysław Pawełczak, and Josiah Hester. Reliable timekeeping for inter-
mittent computing. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 53–67, 2020.

[19] Jasper De Winkel, Vito Kortbeek, Josiah Hester, and Przemysław
Pawełczak. Battery-free game boy. Proceedings of the ACM on Interac-
tive, Mobile, Wearable and Ubiquitous Technologies, 4(3):1–34, 2020.

[20] Çağlar Durmaz, Kasım Sinan Yıldırım, andGeylani Kardas. Virtualizing
intermittent computing. IEEE Internet of Things Journal, 2022.

[21] Ferhat Erata, Eren Yildiz, Arda Goknil, Kasim Sinan Yildirim, Jakub
Szefer, Ruzica Piskac, and Gokcin Sezgin. Etap: Energy-aware timing
analysis of intermittent programs. ACM Transactions on Embedded
Computing Systems, 22(2):1–31, 2023.

[22] Kai Geissdoerfer and Marco Zimmerling. Bootstrapping battery-free
wireless networks: Efficient neighbor discovery and synchronization
in the face of intermittency. In NSDI, pages 439–455, 2021.

[23] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. Intelligence
beyond the edge: Inference on intermittent embedded systems. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 199–213, 2019.

[24] Robert Herbert, Hyo-Ryoung Lim, Bruno Rigo, and Woon-Hong Yeo.
Fully implantable wireless batteryless vascular electronics with printed
soft sensors for multiplex sensing of hemodynamics. Science advances,
8(19):eabm1175, 2022.

[25] Josiah Hester and Jacob Sorber. Flicker: Rapid prototyping for the bat-
teryless internet-of-things. In Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems, pages 1–13, 2017.

[26] Josiah Hester, Kevin Storer, and Jacob Sorber. Timely execution on
intermittently powered batteryless sensors. In Proceedings of the 15th
ACM Conference on Embedded Network Sensor Systems, pages 1–13,
2017.

[27] Bashima Islam and Shahriar Nirjon. Zygarde: Time-sensitive on-device
deep inference and adaptation on intermittently-powered systems.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 4(3), 2020.

[28] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic
persistent memory updates via justdo logging. ACM SIGARCH Com-
puter Architecture News, 44(2):427–442, 2016.

[29] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. Quick-
recall: A low overhead hw/sw approach for enabling computations
across power cycles in transiently powered computers. In 2014 27th
International Conference on VLSI Design and 2014 13th International
Conference on Embedded Systems, pages 330–335. IEEE, 2014.

[30] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob Sorber, Josiah
Hester, and Przemysław Pawełczak. Time-sensitive intermittent com-
puting meets legacy software. In Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 85–99, 2020.

[31] Christopher Kraemer, Amy Guo, Saad Ahmed, and Josiah Hester.
Battery-free makecode: Accessible programming for intermittent com-
puting. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 6(1):1–35, 2022.

48

https://github.com/llvm-mirror/clang/blob/master/docs/LibTooling.rst
https://github.com/llvm-mirror/clang/blob/master/docs/LibTooling.rst
http://www.powercastco.com
https://www.powercastco.com/wp-content/uploads/2016/11/p2110-evb1.pdf
https://www.powercastco.com/wp-content/uploads/2016/11/p2110-evb1.pdf

[32] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily
Ruppel. Intermittent computing: Challenges and opportunities. 2nd
Summit on Advances in Programming Languages (SNAPL 2017), 2017.

[33] Brandon Lucia, Brad Denby, Zachary Manchester, Harsh Desai, Emily
Ruppel, and Alexei Colin. Computational nanosatellite constellations:
Opportunities and challenges. GetMobile: Mobile Comp. and Comm.,
25(1):16–23, jun 2021.

[34] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermittent
execution without checkpoints. Proceedings of the ACM on Program-
ming Languages, 1(OOPSLA):1–30, 2017.

[35] Kiwan Maeng and Brandon Lucia. Adaptive dynamic checkpointing
for safe efficient intermittent computing. In 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), pages
129–144, 2018.

[36] Kiwan Maeng and Brandon Lucia. Supporting peripherals in inter-
mittent systems with just-in-time checkpoints. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 1101–1116, 2019.

[37] Kiwan Maeng and Brandon Lucia. Adaptive low-overhead scheduling
for periodic and reactive intermittent execution. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 1005–1021, 2020.

[38] Amjad Yousef Majid, Carlo Delle Donne, Kiwan Maeng, Alexei Colin,
Kasim Sinan Yildirim, Brandon Lucia, and Przemysław Pawełczak.
Dynamic task-based intermittent execution for energy-harvesting
devices. ACM Transactions on Sensor Networks (TOSN), 16(1):1–24,
2020.

[39] Gabriel Marcano and Pat Pannuto. Soil power? can microbial fuel cells
power non-trivial sensors? In Proceedings of the 1st ACM Workshop
on No Power and Low Power Internet-of-Things, LP-IoT’21, page 8–13,
New York, NY, USA, 2022. Association for Computing Machinery.

[40] Matteo Nardello, Harsh Desai, Davide Brunelli, and Brandon Lucia.
Camaroptera: A batteryless long-range remote visual sensing system.
In Proceedings of the 7th International Workshop on Energy Harvesting
& Energy-Neutral Sensing Systems, pages 8–14, 2019.

[41] Benjamin Ransford and Brandon Lucia. Nonvolatile memory is a
broken time machine. In Proceedings of the workshop on Memory
Systems Performance and Correctness, pages 1–3, 2014.

[42] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System
support for long-running computation on RFID-scale devices. In Proc.
ASPLOS, Newport Beach, CA, USA, 2011. ACM.

[43] Alberto Rodriguez Arreola, Domenico Balsamo, Geoff V Merrett,
and Alex S Weddell. Restop: Retaining external peripheral state in
intermittently-powered sensor systems. Sensors, 18(1):172, 2018.

[44] Emily Ruppel and Brandon Lucia. Transactional concurrency control
for intermittent, energy-harvesting computing systems. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 1085–1100, 2019.

[45] Phillip Stanley-Marbell andMartin Rinard. Warp: A hardware platform
for efficient multimodal sensing with adaptive approximation. IEEE
Micro, 40(1):57–66, 2020.

[46] Milijana Surbatovich, Limin Jia, and Brandon Lucia. I/o dependent
idempotence bugs in intermittent systems. Proceedings of the ACM on
Programming Languages, 3(OOPSLA):1–31, 2019.

[47] Milijana Surbatovich, Limin Jia, and Brandon Lucia. Automatically
enforcing fresh and consistent inputs in intermittent systems. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pages 851–866,
2021.

[48] Milijana Surbatovich, Brandon Lucia, and Limin Jia. Towards a formal
foundation of intermittent computing. Proceedings of the ACM on
Programming Languages, 4(OOPSLA):1–31, 2020.

[49] Texas Instruments. Msp430fr58xx, msp430fr59xx, msp430fr68xx, and
msp430fr69xx family user’s guide. http://www.ti.com/lit/ug/slau367o/

slau367o.pdf, 2019. Last accessed: September 2019.
[50] Texas Instruments. EnergyTrace Technology. https://www.ti.com/

tool/energytrace, 2021.
[51] Joel Van Der Woude and Matthew Hicks. Intermittent computa-

tion without hardware support or programmer intervention. In 12th
{USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 16), pages 17–32, 2016.

[52] Yi Xu, Joseph Izraelevitz, and Steven Swanson. Clobber-nvm: log
less, re-execute more. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 346–359, 2021.

[53] Fan Yang, Ashok Samraj Thangarajan, Sam Michiels, Wouter Joosen,
and Danny Hughes. Morphy: Software defined charge storage for the
iot. In Proceedings of the 19th ACM Conference on Embedded Networked
Sensor Systems, pages 248–260, 2021.

[54] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen
Schaper, Przemyslaw Pawelczak, and Josiah Hester. Ink: Reactive
kernel for tiny batteryless sensors. In Proceedings of the 16th ACM
Conference on Embedded Networked Sensor Systems, pages 41–53, 2018.

[55] Eren Yildiz, Lijun Chen, and Kasim Sinan Yildirim. Immortal threads:
Multithreaded event-driven intermittent computing on ultra-low-
power microcontrollers. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), 2022.

A Artifact Appendix

A.1 Abstract

EaseIO is a novel programming model that introduces re-
execution semantics of IO operations for intermittent com-
puting. Re-executed IO operations in intermittent systems’
tasks might lead to memory inconsistencies and high energy
consumption. EaseIO offers new interfaces to call IO func-
tions to overcome memory inconsistencies and save energy.
Programmers can call IO functions with re-execution se-
mantics annotations thanks to the EaseIO interfaces. EaseIO
consists of two main components EaseIO compiler fronted
and EaseIO runtime.

A.2 Description & Requirements

A.2.1 How to access All the project source code and
the instructions on how to build EaseIO and run an
example are available in the following git repository:
https://github.com/tinysystems/easeIO. The artifact
evaluation materials used in this paper can be reached
at:https://github.com/tinysystems/easeIO/commit/
1136f0c6c051516f77291383a93d4e6e7ca03ce2. Also these
materials are indexed by Zenodo with DOI 10.5281/zen-
odo.7735158.

A.2.2 Hardware dependencies EaseIO requires Texas In-
struments MSP430FR series FRAM-enabled microcontrollers.
Our evaluation is performed on MSP430FR5994 LaunchPad
Development Kit.

A.2.3 Software dependencies EaseIO compilerrequires
LLVM9.0.1.

49

http://www.ti.com/lit/ug/slau367o/slau367o.pdf
http://www.ti.com/lit/ug/slau367o/slau367o.pdf
https://www.ti.com/tool/energytrace
https://www.ti.com/tool/energytrace
https://github.com/tinysystems/easeIO
https://github.com/tinysystems/easeIO/commit/1136f0c6c051516f77291383a93d4e6e7ca03ce2
https://github.com/tinysystems/easeIO/commit/1136f0c6c051516f77291383a93d4e6e7ca03ce2
https://zenodo.org/record/7735158#.ZBEOWXbMK3A
https://zenodo.org/record/7735158#.ZBEOWXbMK3A
https://www.ti.com/tool/MSP-EXP430FR5994
https://www.ti.com/tool/MSP-EXP430FR5994

A.3 Set-up

A.3.1 Compiler-frontend EaseIO compiler-frontend is
responsible for performing semantic analysis to inject ap-
propriate code in the original file.

You can perform transformation using the following steps
and commands.

1. Run the following command to install Clang: sudo apt
install clang lldb lld

2. Use the llvm-build.sh to download and compile the
llvm-9.0.1: sudo llvm-build.sh

3. Afterwards, put the compiler frontend code in the /l-
lvm/tools/clang/tools/easeIO folder.

4. Add path of this subdirectory in the cmakelist file lo-
cated one folder above this one i.e. /llvm/tools/clang/-
tools.

5. Run make using the following commands. For sub-
sequent make commands, you can simply call make
easeIO-c:
cd /easeIO/llvm-9.0.1-build/build
sudo make

6. Now run easeIO-c.sh script to run the transformation
for all the codes.

Note: easeIO-c.sh contains path to the source file that the
user wants to parse and location of the destination folder
where the output will be written. You can change the path
of the LLVM folder and benchmark folders as per location
on your machine. However, please make sure you have sper-
ate folders for Originals and Transformed. EaseIO is pro-
grammed to keep these two files separate for the ease of use.
So the folder for transformed codes should on the same level
and path (similar to how it is in the given code structure).

A.3.2 Runtime The transformed code is then linked with
the EaseIO runtime before burning on the microcontroller.

We provide the ready to run project for one of the bench-
marks (FIR filter). Following are the steps to run the code.
Please note that we use Code Composer Studio to run the
project and tested our benchmarks on Ubuntu20.04 linux
environment.

1. Select the CCSProject folder as the workspace and
launch

2. Copy the transformed file from EASEIO-compiler/test
to the Benchmarks folder in the project

3. Just click the debug button. Now the project is ready
to go.

A.4 Evaluation workflow

A.4.1 Experiments In EaseIO-compiler/test/Transformed/
directory, there are sample benchmark applications imple-
mented using EaseIO. The Timely_Temp_Org_transformed.c
file is one of our uni-task benchmark applications which
shows an example of the Timely re-execution semantic
of the EaseIO. The application gets hundred temperature

sensor measurements. The time constraint of this application
is finishing the task within 10 msec after the sensor is
read. If the power failure time interval exceeds 10 ms, then
EaseIO runtime gets the temperature value again. Otherwise,
EaseIO runtime skips measuring temperature and finishes
the remaining part of the task.
We keep track of the application execution via LEDs on

P1.0 (red) and P1.1 (green). During the whole application, you
will observe that red LED is turned on. When the application
is completed, the red LED turns off and the green one turns
on. To intermittently run the application, INTERMITTENT
macro should be defined. The LEDs run the same logic during
the intermittent execution.

50

https://github.com/tinysystems/easeIO/tree/main/CCSProject
https://github.com/tinysystems/easeIO/tree/main/EaseIO-compiler/test

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Background and Related Work
	2.1 Problems with Peripheral-bound Tasks
	2.2 Limitations of Prior Arts

	3 EaseIO Overview
	3.1 Keywords for I/O Re-execution Semantics
	3.2 Programming Interfaces
	3.3 Semantic Precedence
	3.4 Regionalizing
	3.5 Correctness

	4 EaseIO Implementation
	4.1 Target Hardware
	4.2 Semantic-aware I/O Re-execution
	4.3 Enabling Memory-Safe DMA Operations
	4.4 Regional Privatization
	4.5 Compiler Frontend

	5 Evaluation
	5.1 Target Platforms and Tools
	5.2 Evaluation Metrics
	5.3 Phase 1: Uni-Task Application
	5.4 Phase 2: Multi-Task Applications
	5.5 Real-World Evaluation

	6 Discussion
	7 Additional Related Work
	7.1 Intermittent Computing
	7.2 Regional Privatization

	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

