
Shedding Light on Static Partitioning Hypervisors
for Arm-based Mixed-Criticality Systems

José Martins
Centro ALGORITMI/LASI, Universidade do Minho

jose.martins@dei.uminho.pt

Sandro Pinto
Centro ALGORITMI/LASI, Universidade do Minho

sandro.pinto@dei.uminho.pt

Abstract—In this paper, we aim to understand the properties
and guarantees of static partitioning hypervisors (SPH) for Arm-
based mixed-criticality systems (MCS). To this end, we performed
a comprehensive empirical evaluation of popular open-source
SPH, i.e., Jailhouse, Xen (Dom0-less), Bao, and seL4 CAmkES
VMM, focusing on two key requirements of modern MCS:
real-time and safety. The goal of this study is twofold. Firstly,
to empower industrial practitioners with hard data to reason
about the different trade-offs of SPH. Secondly, we aim to
raise awareness of the research and open-source communities
to the still open problems in SPH by unveiling new insights
regarding lingering weaknesses. All artifacts will be open-sourced
to enable independent validation of results and encourage further
exploration on SPH.

Index Terms—Virtualization, Static Partitioning, Hypervisor,
Mixed-Criticality, Arm.

I. INTRODUCTION

The explosion in the number of functional requirements in
industries such as automotive has led to a trend for centralized
architectures that consolidate heterogeneous software stacks in
high-performance platforms [1], [2]. These typically take the
form of mixed-criticality systems (MCSs) [3], [4] as they often
integrate safety- or mission-critical workloads with real-time
requirements, alongside Unix-like operating systems (OSs)
providing rich functionality. Virtualization technology is the
de facto enabler for these architectures as, by definition, it
allows for consolidation with strong fault encapsulation. In
this context, hypervisor design must balance, on one side,
minimality for safety and security, and feature-richness and
efficient sharing of resources on the other. While traditional
hypervisors were optimized for the latter [5], [6], on the
opposite end of the spectrum we have static partitioning hyper-
visors (SPH) specifically designed for MCS [7], [8]. Besides
statically assigning system resources (e.g., CPUs, memory,
or devices) to virtual machines (VMs), SPH must provide
latency and isolation guarantees at the microarchitectural level
to comply with the freedom from interference requirements of
industry safety standards such as ISO 26262 [1], [9]–[11].

In this paper, we shed light on open-source SPH for Arm-
based MCS. Despite the existence of multiple reports, research
papers, and public artifacts, information on these systems tends
to be scattered or focus on a single hypervisor or metric, while,
in some cases, empirical evidence is non-existent. Thus, it is
difficult to obtain a comprehensive understanding of the overall
properties and guarantees of these systems in the context of
MCS. To fill this gap, we conduct a leveled playing-field
evaluation of four open-source static partitioning virtualization

solutions, i.e., Jailhouse, Xen (Dom0-less), Bao, and the seL4
CAmkES virtual machine monitor (VMM). We drive our study
based on two key requirements of modern MCS, i.e., real-
time and safety, focusing on (i) performance, (ii) interrupt
latency, (iii) inter-VM communication, (iv) boot time, and
(v) code size. For each metric, we assess the effectiveness of
the cache coloring technique, pervasive in SPH, for inter-VM
interference mitigation.

The goal of this study is twofold. Firstly, we aim at em-
powering industrial practitioners with hard data to understand
the trade-offs and limits of modern Arm-based SPH as well
as how best configure these systems for their use case and
requirements. For example, the use of superpages significantly
decreases the number of TLB misses, resulting in negligible
performance overhead (<1% without interference), but it is
precluded by enabling page coloring, a widely adopted cache
partitioning technique in these hypervisors. Also, experiments
demonstrated that coloring, per se, can impact the performance
up to 20% and that it cannot fully mitigate interference,
where overhead can still reach up to 60%. Regarding inter-VM
communication, we show that for bulk data transfers, buffer
size choice is crucial to maximize throughput while avoiding
degradation due to inter-VM interference.

Secondly, with the collected empirical data, we aim at rais-
ing awareness of the research and open-source communities
to the still open problems in SPH, by highlighting both new
and previously known weaknesses for these SPH, which seem
to be mostly due to interrupt virtualization issues. Prominent
examples include: (i) the need for implementing state-of-the-
art mechanisms to fully mitigate inter-VM interference (e.g.,
memory throttling) in mainstream SPH; (ii) the extent of the
impact of interference on interrupt latency, which can increase
by several orders of magnitude; (iii) the lack of support for
correctly handling and delivering interrupts in priority order;
(iv) the absence of mechanisms that prioritize the boot of a
critical VM; and (v) the lack of plasticity of the SPH archi-
tecture which might hinder achieving its own goal of allowing
full IO passthrough. To address observed shortcomings, we
discuss potential solutions and research directions.

We made all artifacts openly available [12] to enable prac-
titioners and researchers with the methods and materials to
(i) independently replicate all experiments and corroborate as-
sessed results, as well as (ii) encourage and facilitate additional
experiments and further exploration of SPH.

In summary, this paper makes the following contributions:
(1) presents the most comprehensive empirical study to date



on popular open-source SPH focusing on a set of key metrics
for modern MCS; (2) provides hard empirical data to empower
industrial practitioners with the knowledge to understand the
limits and trade-offs of SPH; (3) raises awareness of the
research and open-source communities to the open problems of
SPH by shedding light on their shortcomings; and finally, (4)
opens all artifacts to enable independent validation of results
and facilitate further research.

II. BACKGROUND

In this section, we start by overviewing Armv8-A virtualiza-
tion support. We then explain the concept of static partitioning
virtualization, including key techniques implemented in SPH.
Finally, we describe Xen, Jailhouse, Bao, and seL4 CAmkES.

A. Arm Virtualization

CPU & Memory. Given the widespread proliferation of vir-
tualization in the last decades, Arm implemented hardware
support since version 7 of the ISA. The most recent version
of the architecture, i.e., Armv8/9-A, extends the privileged
architecture with a dedicated hypervisor privilege mode (EL2)
which sits between the secure firmware mode (EL3) and the
kernel/user modes (EL1/EL0) [13] where guests execute. A
hypervisor running at EL2 has fine-grained control over which
CPU resources are directly accessible by guests (e.g., control
registers). Access to a denied functionality by a guest OS
results in a trap to the hypervisor. It is possible to route specific
guest exceptions and system interrupts to EL2. Other resources
that can be managed by the hypervisor include the CPU-
private generic timer and the performance monitor unit (PMU).
EL1/EL0 memory accesses are subject to a second stage of
translation which is in full control of the hypervisor [13]. Any
guest access to a memory region not mapped in the second
stage of translation will result in a precise trap to EL2. Arm
provides multiple “translation granules”, resulting in pages of
different sizes: 4 KiB, 16 KiB, and 64 KiB. For each page size
it is also possible to map large contiguous memory regions.
These are known as superpages (or hugepages), which reduces
TLB pressure. The more commonly used 4KiB granule allows
for 1GiB and 2MiB superpages. Arm also defines the System
Memory-Management Unit (SMMU), that extends memory
virtualization mechanisms from the CPU to the bus, to restrict
VM-originated direct-memory accesses (DMAs).
Interrupts. Arm virtualization acceleration spans the full plat-
form, including the Generic Interrupt Controller (GIC). The
GICv2 standard has two main components: a central distributor
and a per-core interface. All interrupts are routed first to the
distributor, which then forwards them to the interfaces. The
distributor allows the configuration of interrupt parameters
(e.g., priority, target CPU) and the monitoring of interrupt
state, while the interface enables the core management of
interrupts. GICv2 provides virtualization support only on the
interface; there is a fully virtual interface with which the
guests can directly interact without VM exits. The distributor,
however, must be fully emulated. Furthermore, all interrupts
must first be handled by the hypervisor, which can then inject

them in the VM, by writing to GIC list registers (LRs). These
registers essentially take the place of the distributor for the
virtual interface: when a given interrupt (along with metadata
such as priority or state) is present on a register, it is forwarded
to the virtual interface. The GICv2 spec limits the number of
LRs to a maximum of 16. GICv3 and GICv4 provide support
for direct delivery of hardware interrupts to VMs; however,
this feature is only implemented for inter-processor interrupts
(IPIs) and message-signaled interrupts (MSIs), i.e., interrupts
implemented as write operations to special interrupt controller
registers and propagated via the system interconnect. Standard
wired interrupts, propagated by dedicated side-band signals,
are still subject to the mentioned limitation, i.e., hypervisor
interrupt injection through the list register.

B. Static Partitioning Virtualization (SPV)

Static partitioning is the practice of, either at build or ini-
tialization time, distributing all platform resources to different
subsystems. This can be materialized in many shapes and
forms, depending on the hardware primitives. Virtualization
is a natural enabler for the static partitioning architecture, due
to the strong encapsulation guarantees and flexible resource
assignment. Hypervisors designed for the static partitioning
use case (or providing such a configuration) have three fun-
damental properties: (i) exclusive assignment of virtual CPUs
to physical CPUs (i.e., no scheduler); (ii) static allocation,
assignment, and mapping of all hypervisor and VM memory
at build or initialization time; and (iii) direct assignment of
devices to VMs (passthrough) and exclusive allocation of their
interrupts to the same VM. To implement this efficiently, these
hypervisors are highly dependent on virtualization hardware
support both at the CPU and platform level (e.g., SMMU).
SPH also have non-functional requirements centered around
minimizing interrupt latency and inter-VM interference. Thus,
over the past few years, there have been efforts to enhance
SPH with mechanisms to address these requirements. These
include cache coloring and, analogously to what has been done
for x86 [14], direct injection in Arm processors. Furthermore,
it is important for the code base to be minimal and follow
industry coding standards (e.g., MISRA); this eases functional
safety (FuSa) certification efforts.
Cache Coloring. In SPH, VMs still share microarchitectural
resources such as the last-level cache (LLC). The behavior
and memory access pattern of one VM might result in the
eviction of another VM’s cache lines, impacting the latter’s
hit rate and consequently its execution time. Thus, there is the
need to partition shared caches assigning each partition to a
different VM. While in the past Armv7 processors provided
hardware means to apply this partitioning by way of per-master
cache-locking, modern-day Arm CPUs do not provide those
facilities. A solution is cache coloring, a software technique for
index-based cache partitioning [15]. Cache coloring explores
the intersection of the virtual addresses’ cache index and
the page number when creating virtual-to-physical memory
mappings. Each color is a specific bit pattern in this intersec-
tion that maps only to specific cache sets. Thus, hypervisors



can control which cache sets are assigned to a given VM
by selecting which physical pages are mapped to it. By
exclusively assigning a cache partition (i.e., group of cache
sets or colors) to a given VM, cache coloring fully eliminates
the conflict misses resulting from inter-VM contention. Cache
coloring can also be implemented at the hypervisor level by
assigning the hypervisor one or more color(s).
Direct Interrupt Injection. Direct interrupt injection is a new
technique implemented in Arm-based SPH to eliminate the
need of the hypervisor mediating interrupt injection. With this
technique, the hypervisor passes through the physical GIC
CPU interface and routes all interrupts directly to the VM
by configuring the CPU to trigger interrupt traps directly at
EL1, i.e., kernel mode. The hypervisor must still emulate
the shared distributor to ensure isolation between VMs, i.e.,
prevent misconfiguration of a given VM interrupts by another
VM. This allows physical interrupts to be directly delivered
to the VM with no hypervisor intervention, reducing latency
to native execution levels. The forfeiting of interrupts should
not be a major issue as SPH do not directly manage devices.
However, SPH still need to communicate internally using IPIs.
Direct interrupt injection implementations address this issue
by leveraging standard software-delegated exception interface
(SDEI) [16] events instead of directly using IPIs. SDEI is
implemented by firmware, allowing the hypervisor to register
an event during initialization. The hypervisor can then trigger
the event by issuing a system call to firmware (via a secure
monitor call instruction, SMC), which will result in diverting
execution to a predefined hypervisor handler, similarly to Unix
signals. In reality, firmware maps these events to its own
secure reserved IPIs since, as part of TrustZone [16], the GIC
provides further facilities to reserve interrupts to EL3.

C. Static Partitioning Hypervisors (SPH)

Jailhouse Hypervisor. Jailhouse [7], [17] is an open-source
hypervisor developed by Siemens. Unlike traditional baremetal
hypervisors, Jailhouse leverages the Linux kernel to boot and
initialize the system and uses a kernel module to install the
hypervisor. Once Jailhouse is activated, it runs as a baremetal
component, taking full control over the hardware. Jailhouse
has no scheduler and only leverages the ISA virtualization
primitives to partition hardware resources across multiple
isolated domains, a.k.a. “cells”. Guest OSes or baremetal
applications running inside cells are called “inmates”. The
mainline includes support for x86 and Armv7/8-A, and a work-
in-progress RISC-V port [18]. The research community has
been actively contributing with mechanisms to enhance pre-
dictability, namely: cache coloring, DRAM bank partitioning
[19], memory throttling, and device quality of service (QoS)
regulation [20]. An unofficial fork including these features is
available [21]. Direct injection [22] was also implemented.
Xen (Dom0-less) Hypervisor. Xen [5] is an open-source hy-
pervisor widely used in a broad range of application domains.
A key distinct feature of Xen is its dependency on a privi-
leged VM (Dom0) that typically runs Linux, to manage non-
privileged VMs (DomUs) and interface with peripherals. Xen

was initially designed for servers and desktops, but has found
also adoption on embedded applications. For embedded and
automotive applications, Xilinx has led the implementation
of Xen Dom0-less. With this novel approach, it is possible
to have a Xen deployment without any Dom0, booting all
guests directly from the hypervisor and statically partitioning
the system. A patch for guest and hypervisor cache coloring
support [23] is available. There is also a SIG working to-
wards facilitating downstream FuSa certifications by fostering
multiple initiatives within the community including MISRA
refactoring, or providing the option of running Zephyr [24] as
Dom0. Besides Armv8-A, Xen also supports x86, and Armv8-
R and RISC-V ports are underway.

Bao Hypervisor. Bao [8] is an open-source static partitioning
hypervisor that was made publicly available in 2020. It imple-
ments the pure static partitioning architecture, i.e., a minimal,
thin-layer of privileged software which leverages the existing
ISA virtualization primitives to partition the hardware. Bao
has no scheduler and does not rely on any external libraries
or privileged VM (e.g., Linux), consisting on a standalone
component which depends only on standard firmware to
initialize the system and perform platform-specific tasks such
as power management. Bao originally targeted Armv8-A [8].
The mainline now includes support for RISC-V [25], Armv7-
A, and Armv8-R ports are in the making. Bao was specifically
designed to provide strong real-time and safety guarantees.
It implements hardware partitioning mechanisms to guarantee
true freedom from interference, i.e., cache coloring (VM and
hypervisor), and direct interrupt injection. There are ongoing
efforts to implement memory throttling.

seL4 CAmkES VMM. seL4 is a formally verified microkernel
[26]. Its design model revolves around the use of capabilities.
When used as a hypervisor, seL4 executes in hypervisor mode
(e.g, EL2) and exposes extra capabilities and APIs to manage
virtualization functionality [27]. A user-level VMM uses its
resource capabilities to create VMs. As of this writing, only
the seL4 CAmkES VMM [28], [29] code is open-source.
Each CAmkES VMM manages a single VM. One current
issue of the CAmkES VMM is that, although it supports
multicore VMs, each VMM runs as a single thread pinned to a
single CPU. seL4 supports x86, Armv7/8-A and RISC-V, but
the latter is not supported by CAmkES VMM. In CAmkES,
resources are statically allocated to each component using
capabilities. Originally, seL4 provided only a priority-based
preemptive scheduler. The newest MCS kernel extends it with
scheduling context capabilities, allowing time management
policies to be defined in user space [30]. Cache coloring has
also been implemented in seL4 [31], not only at the user/VM
level, but also for the kernel, but it was not publicly available at
the time of writing. seL4 has formal proofs for its specification,
implementation from C to binary, and security properties [32],
[33]. There are also ongoing efforts to extend the formal
verification to prove the absence of covert timing channels
[34]. Finally, CAmkES is being deprecated in the near future
in favor of the seL4 Core Platform (seL4CP) [35]. seL4CP



Xen (Dom0-less) HypervisorHyp

Sup

User

Bao Hypervisor

VM3VM2VM1

HW Platform

Rich OS RTOS

Rich Apps RT Apps

BM App

Jailhouse Hypervisor

Cell 2Cell 1Privileged

Root Cell

HW Platform

Linux
Inmate

Rich OS

Rich Apps RT Apps

Inmate

RTOS

DomU 2DomU 1Privileged Dom0

(optional in Dom0-less)

HW Platform

Dom0 

Kernel
Rich OS

Rich Apps RT Apps

RTOS

System 

Services

Native Drivers

seL4 microkernel

VM 1

HW Platform

Rich 

OS

Rich 

Apps

VMM 1 VM 2

RTOS

RT Apps

VMM 2

Fig. 1: Architectural overview of the assessed hypervisors: Jailhouse, Xen (Dom0-less), Bao and seL4 CAmkES VMM

will also provide support for per-VM user-mode VMMs1 while
promising to alleviate the performance overhead of CAmkES.

III. METHODOLOGY AND EXPERIMENTAL SETUP

A. Methodology
Selected Hypervisors. We have selected four open-source
SPH (Fig.1). Jailhouse and Bao were designed for the static
partitioning use case; both are open-source and target Arm
platforms. Xen Dom0-less is a novel deployment that al-
lows directly booting multiple VMs (bypassing Dom0) and
passthrough of peripherals to VMs. Finally, seL4 is a well-
established open-source microkernel, which can be used as a
hypervisor in combination with a user-level VMM. The seL4
CAmkES VMM is an open-source reference VMM implemen-
tation with static allocation of resources. These systems are
actively maintained, adopted for commercial purposes, and
there is a fair amount of information about them. We have
excluded other open-source SPH that do not support Armv8-
A (e.g., Quest-V, ACRN), and other popular open-source
hypervisors that don’t explicitly target static partitioning (e.g.,
KVM, Xvisor). We have excluded microkernels such as NOVA
[36] due to the lack of availability of an open-source refer-
ence user-space VMM, and because we believe seL4 serves
as a faithful representative of the microkernel architecture.
TrustZone-assisted hypervisors [37]–[39] were left out due to
multicore scalability issues and lack of active maintenance.
Finally, we have excluded commercial products (e.g., PikeOS,
LynxSecure) as these often require licenses the authors did not
have access to (hindering the sharing of artifacts, which we
believe is crucial for the viability of this study).
Empirical Evaluation. The evaluation focuses on perfor-
mance, interrupt latency, inter-VM communication latency and
bandwidth, boot time, and code size. We also assess the effect
of interference and of the available mitigation mechanism
(i.e., cache coloring). Although we consider virtual device
performance, IO interference, and applied security techniques
such as stack canaries or guards, data execution prevention or
control-flow integrity very relevant, these are out of scope of
this work. We advocate for a follow up study as future work.

B. Experimental setup
Hardware Platform. Experiments were carried out on a Xil-
inx ZCU104, featuring a Zynq Ultrascale+ SoC. It includes

1Only after the bulk of this work was carried out, virtualization support in
seL4CP was made openly available. At the time of writing, it still appears to
be in a beta stage and not as mature as CAmkES.

a quad-core Cortex-A53 running at 1.2 GHz, a GIC-400
(GICv2) featuring 4 list registers, and an MMU-500 (SM-
MUv2). Cores have private 32KiB separate L1 instruction
and data caches, and share a L2 1MiB unified cache. It also
includes a programmable logic (PL) component (i.e., FPGA).

Hypervisors configuration. We made an effort to use the latest
versions of each SPH. Still, we applied a few patches to
Jailhouse, Xen, and Bao to include features such as coloring
or direct injection, which are not yet fully merged. Further,
we had to make small adjustments to all SPH to enable
homogeneous configurations (e.g., uniforming VM memory
map), allow direct guest access to PMUs, or instrumenting
hypervisors for specific experiments. For each SPH, we lever-
aged the default configuration for the target SoC, with some
tweaked options such as disabling debug and logging features.
There were, however, specific adjustments that were made on a
per-hypervisor basis. For example, to remove or minimize the
invocation of a scheduler in Xen, we used the null scheduler
and disabled trapping of wait-for-interrupt (WFI) instructions;
in seL4, since it was not possible to disable the timer tick,
we configured the tick with a period of about 5 seconds.
We compiled all hypervisors with GCC 11.2, with the default
optimization level defined by each hypervisor’s build system.
All these SPH configurations and modifications are available
and clearly discernible in the provided artifact [12].

VM configuration. VM configurations are as similar as
possible, mainly w.r.t. number of vCPUs and memory. For
Jailhouse and seL4-VMM, where memory must be manually
allocated, we set memory regions aligned to 2 MiB. The
only device assigned to each VM is a UART. We evaluated
two different classes of VMs: (i) large VMs running Linux
(v5.14), as representative of rich, Unix-like OSs; and (ii) small
VMs running baremetal applications or FreeRTOS (v10.4), as
representative of critical workloads. When cache coloring is
enabled, we assign half of the colors (four out of eight2) to the
VM executing the benchmark, three colors to the interference
application, and one color to the hypervisor (just supported in
Bao and Xen). Note that color assignment configuration can
significantly impact the final measurements for all metrics. In
real deployments, the color assignment should be carefully
defined based on the profile of the final system.

2We consider only eight cache colors while, in truth, the target platform
allows for 16. We do this to avoid color assignment configurations that would
partition the L1 cache.



Interference Workload. When evaluating memory hierarchy
interference, we use a custom baremetal guest which continu-
ously writes a buffer with the size of the LLC (1MiB). Unless
noted otherwise, this interference guest runs on a VM with
two vCPUs. We stress that although parameterized to cause a
significant level of interference, the observed effects cause by
the interference workload do not necessarily reflect the worst
case that could be achieved if further fine-tuned.
Measurement tools. We use the Arm PMU to collect microar-
chitectural events on benchmark execution. The selected events
include instruction count, TLB accesses and refills, cache
access and refills, number of exceptions taken, and number of
interrupts triggered; we register the exception level on which
these events occur. For the Linux VMs, we use the perf tool
[40] to measure the time and to collect microarchitectural
events. For baremetal or RTOS VMs, we use the Arm Generic
Timer, with a resolution of 10 ns, and a custom PMU driver.

C. Threats to validity

Experiments were independently conducted by two re-
searchers. Each used a different ZCU104 platform and pre-
agreed VM configurations (cross-checked). We have contacted
key individuals and/or maintainers as representatives of each
SPH community. We have received replies from all of them,
which led to a few iterations and repetition of some exper-
iments. Overall, the comments and issues raised by these
individuals are reflected in the presented ideas and results.
Despite all efforts, these experiments may still be subject to
latent inaccuracies. We will open source all artifacts to enable
independent validation of the results. This study may also
include limitations on the generalization to other platforms.
For the hardware platform, we argue both the SoC (Zynq
Ultrascale+) and the Cortex-A53 are representative of others
used in automotive and industrial settings (e.g., NXP i.MX8 or
Renesas R-Car M3). To corroborate this, we have also carried
out the performance and interrupt latency experiments for the
Bao hypervisor in an NXP i.MX8QM, which features the GIC-
500 (GICv3). The obtained results are fully consistent with
those presented in Sections IV and V. Furthermore, we argue
next generation platforms, such as i.MX9 featuring Cortex-
A55 CPUs, implement very similar microarchitectures.

IV. SPH: PERFORMANCE

We start by assessing the performance degradation3 of a
single-core Linux VM atop each SPH. The main results are
depicted in Figures 2, 3, and 4. We then evaluate the system
under interference to understand the effectiveness of microar-
chitectural isolation mechanisms available in each SPH.
Selected Benchmark. We use the MiBench Embedded Bench-
marks’ Automotive and Industrial Control Suite (AICS) [41].
These benchmarks are intended to emulate the environment of
embedded applications such as airbag controllers and sensor
systems. Each test has two variants: small operates in a
reduced input data set representing a lightweight use of the

3Performance degradation is the ratio between the total execution time of
the benchmark running atop the hypervisors and native execution.

benchmark, while large operates over a considerable input data
set, emulating a real-world application scenario.

Base Performance Overhead. Fig. 2 presents the relative per-
formance degradation for the MiBench AICS. For each bench-
mark, below the plotted bars, we present the average absolute
execution time for the native execution. The first observation
is that, independently of the hypervisor, different benchmarks
are affected to different degrees. Secondly, Jailhouse, Xen, and
Bao incur a negligible performance penalty, i.e., less than 1%
across all benchmarks. Although seL4 CAmkES-VMM also
presents a small overhead for most benchmarks, the overhead
can reach up to 7%.

For a virtualized system configured with a single guest
VM, there are two main possible sources of overhead. The
first source is the increase in TLB miss penalty due to
the second stage of translation, since it can, in the worst
case, increase the number of memory accesses in a page-
walk by a factor of four. Second, the overhead of trapping
to the hypervisor and performing interrupt injection, e.g.,
timer tick interrupt. Additionally, the pollution of caches and
TLBs by the hypervisor might also affect guest performance.
To further understand the behavior of the benchmarks, in
particular the larger overhead of the CAmkES-VMM, we have
collected a number of microarchitectural events. Fig. 3 shows
them normalized to the number of executed instructions. We
highlight two events whose increase is highly correlated with
the degradation observed: hypervisor L2 cache refills (Fig.
3a) and guest TLB misses (Fig. 3b), with Pearson correlation
coefficients of up to 0.94 and 0.96, respectively.

An important hypervisor feature to minimize the impact of
two-stage translation is to leverage superpages. By inspecting
hypervisor code, we concluded that only CAmkES-VMM does
not have support for 2MiB superpages. This justifies the higher
number of TLB misses. Notwithstanding, to corroborate this
argument, we have configured the other SPH to preclude the
use of superpages. As expected, we observed an increase
in the performance degradation (and TLB misses) similar to
CAmkES-VMM (Fig. 4). We still observed a gap of up to 2%
between CAmkES-VMM and the other SPH; this is related to
the aforementioned interrupt handling and injection overheads,
i.e., a consequence of the microkernel design: more costly
switches between VM and VMM and a high number of VMM
to microkernel calls for managing and inject the interrupts.
This is confirmed by Figures 3c and 3d, which show the
hypervisor-to-guest executed instruction ratio and the number
of exceptions taken by the hypervisor, respectively. For these
events, seL4 has a higher ratio when compared to the other
SPH. We further investigate interrupt injection in Section V.

Takeaway 1. SPH do not incur in meaningful performance
impacts due to: (i) modern hardware virtualization support;
(ii) 1-to-1 mapping between virtual and physical CPUs; and
(iii) minimal traps. However, one key aspect is that SPH must
have support for / make use of superpages to minimize TLB
misses and page-table walk overheads.



qsort
small

qsort
large

susanc
small

susanc
large

susane
small

susane
large

susans
small

susans
large

bitcount
small

bitcount
large

basicmath
small

basicmath
large

0
1
2
3
4
5
6
7

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

22.24 ms 219.46 ms 4.74 ms 18.40 ms 5.14 ms 33.46 ms 23.45 ms 297.08 ms 20.72 ms 252.75 ms 100.47 ms 1496.70 ms

jailhouse
xen
bao
sel4/camkes-vmm

Fig. 2: Relative performance degradation for the MiBench Automotive and Industrial Control Suite.

0.00000

0.00005

0.00010

0.00015

(a) Hyp. L2 cache miss per instr.
0.0000

0.0002

0.0004

0.0006

(b) Guest iTLB miss per instr.

0.000

0.001

0.002

0.003

0.004

0.005

(c) Hyp./Guest instr. ratio
0

1

2

3

4
1e 6

(d) Hyp. exceptions per instr.

Fig. 3: MiBench AICS microarchitectural events.

0
1
2
3
4
5
6
7

(a) % Performance Degradation
0.0000

0.0002

0.0004

0.0006

(b) Guest iTLB miss per instr.

Fig. 4: MiBench AICS without the use of superpages on
second-stage translation.

Performance under interference. We also evaluate inter-
VM interference and the effectiveness of cache coloring at
both guest and hypervisor levels. Fig. 5 plots the results
under interference (+interf ), with coloring enabled (+col),
and with interference and coloring enabled (+interf+col). seL4
CAmkES VMM shows no results for coloring enabled as this
feature is not openly available yet.

There are four conclusions to be drawn. Firstly, interference
significantly affects the benchmark execution over all hyper-
visors. As expected, this is explained by a significant increase
in L2 cache misses. On Jailhouse, Xen, and Bao performance
is degraded by a similar factor, i.e., to a maximum of about
105%; seL4-VMM is more susceptible to interference, reach-
ing up to 125% in the worst case. This pertains to the fact
that, given that seL4-VMM executes a much higher number
of instructions, the interference also impacts the execution
of the hypervisor. Secondly, coloring, per se, significantly
impacts performance (up to about 20%). This seems logical
given that coloring (i) forces the hypervisor to use 4KiB
pages, reducing TLB reach, and (ii) reduces the available
cache space, which for working sets larger than LLC increases
memory system pressure (i.e., L2 cache misses). Thirdly,

coloring can only reduce interference but not completely
mitigate it. In these experiments, the interference workload
runs continuously. However, in a more realistic scenario,
it might be intermittent. The improvement in predictability
achieved by coloring is reflected in the difference between
the base experiment results (bars in Fig. 2 and +interf in
Fig. 5) and respective variants with coloring enabled (+col in
Fig. 5). The lower the difference, the higher the predictability.
For example, in the case of susanc-small, we observed that
without coloring, the variation can go up to 105 percentage
points (pp), while when coloring is enabled, the observed
overhead is around 58%, which corresponds to a variation
of 38 pp compared to the configuration with coloring enabled
but without interference. Nevertheless, we observed that cache
misses are essentially reduced to the same level as when
coloring is enabled but without interference. Clearly, the
observed interference is not only due to cache-line contention.
There are points of contention at deeper levels of the memory
hierarchy, e.g., buses and memory controller [42] or even in
internal LLC structures [43]. Finally, results on Xen and Bao
demonstrate that hypervisor coloring has no substantial benefit
as it only reduces performance degradation due to interference
by at most 1% (omitted due to lack of space).

Takeaway 2. Multicore memory hierarchy interference sig-
nificantly affects guests’ performance. Cache partitioning via
page coloring is not a silver bullet as despite fully elimi-
nating inter-core conflict misses, it does not fully mitigate
interference (up to 38 pp increase in relative overhead).

V. SPH: INTERRUPT LATENCY

As discussed in Section II-A, the existing GIC virtualization
support is not ideal for MCS: hypervisors have to handle and
inject all interrupts and must actively manage list registers
when the number of pending interrupts is larger than the phys-
ical list registers. This is of particular importance to guarantee
the correct interrupt priority order which might be critical for
an RTOS [44]. In this section, we investigate the overhead
of each SPH in the interrupt latency, their susceptibility to
interference, and the effectiveness of cache coloring. Then, we
evaluate the direct injection technique and analyze interrupt
priority support as well as virtual IPI latencies.
Methodology. To measure interrupt latency, we used a custom
lightweight baremetal benchmark, which measures the latency
of a periodic interrupt triggered by the Arm Generic Timer.
The timer is programmed in auto-reload mode, to continuously



0
20
40
60
80

100
120

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

jailhouse+interf
jailhouse+col
jailhouse+interf+col
xen+interf
xen+col

xen+interf+col
bao+interf
bao+col
bao+interf+col
sel4/camkes-vmm+interf

qsort
small

qsort
large

susanc
small

susanc
large

susane
small

susane
large

susans
small

susans
large

bitcount
small

bitcount
large

basicmath
small

basicmath
large

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

Gu
es

t L
2 

Ca
ch

e 
M

iss
es

pe
r I

ns
tru

ct
io

n

Fig. 5: Performance degradation and L2 cache misses per instruction for the Mibench AICS under interference and coloring.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

In
te

rru
pt

 L
at

en
cy

 (n
s)

baremetal
jailhouse
xen
bao
sel4/camkes-vmm

Fig. 6: Base interrupt latency.

trigger an interrupt at each 10 ms. The interrupt handler reads
the value of the timer, i.e., it measures the time elapsed since
the interrupt was triggered. Each measurement is carried out
with cold L1 caches. To achieve this, after each measurement,
we flush the instruction cache. During the 10 ms, we also
prime the L1 data cache with useless data.
Base Latency. Fig. 6 depicts the violin plots for the custom
benchmark running atop each SPH. From the baseline of about
200 ns, Bao and Jailhouse incur the smallest increase, albeit
significant, to an interrupt latency of about 4x (840 ns) and 5x
(1090ns), respectively. Xen shows an increase of about 14x
(2800 ns). The variance observed in these three systems is
negligible. The difference observed between Jailhouse/Bao and
Xen is justified by the interrupt injection path being highly
optimized in the former, while more generic in Xen. We
confirmed this by studying the source code and assessing the
number of instructions executed by each hypervisor on the
interrupt handling and injection path: while Jailhouse and Bao
execute around 200 instructions, Xen executes about 1050.

seL4-VMM presents the largest interrupt latency (47x, 9400
ns), an order of magnitude higher than Jailhouse and Bao.
The variance of the latency is also affected. This can be
explained by the interrupt handling and injection mechanism
of a microkernel architecture. In the other SPH, each interrupt
results in a single exception taken at EL2, where the interrupt
is handled and injected in the VM; virtualization support is
leveraged such that no further traps occur. In CAmkES VMM
it results in four traps to the microkernel: (i) the first due to
the interrupt that results in forwarding it as a message to the

VMM; (ii) a system call from the VMM to inject the interrupt
in the VM (i.e., write the list register); (iii) another to “reply”
to the exception, resuming the VM; and (iv) a final one where
the VMM waits for a message signaling a new VM event or
interrupt, resulting in a final context-switch back to the VM.
We have also concluded that seL4 does not use a GIC feature
that would allow guests to directly deactivate4 the physical
interrupt, resulting in an extra trap.

Takeaway 3. Due to the lack of efficient hardware support
for directly delivering interrupts to guests in Arm platforms,
all SPH increase the interrupt latency by at least one order of
magnitude. However, by-design, SPH such as Jailhouse and
Bao are able to achieve the lowest latencies as they provide
an optimized path for hardware interrupt injection.

Latency Under Interference. Fig. 7 shows the results for
interrupt latency under interference, including the baseline
results of Fig. 6 for relative comparison as solo. Analyzing
the effects of VM interference on interrupt latency (interf ),
we observed that Bao latency increases to an average of
7260 ns, Jailhouse to 7730 ns, Xen to 23000 ns, and seL4-
VMM to 85940 ns. It corresponds to an increase of 36x, 38x,
115x, and 430x, respectively, compared to the base latency.
It is also worth noting that the variance also increases. When
enabling coloring (col), we measured no significant difference
in interrupt latency compared to the base case. However,
when enabling cache coloring in the presence of inter-VM
interference (interf+col), there is a visible improvement in
average latency and variance. However, note that the observed
variance does not constitute a measure of predictability. As
explained in Section IV, predictability is reflected in the differ-
ence between the interf and interf+col results and respective
baselines, i.e., solo and col. Finally, by applying coloring also
to the hypervisor (interf+col+hypcol), Bao latency is reduced
to almost no-interference levels with negligible variance. Xen
latency also drops considerably to an average of 6300 ns.

The observed interrupt latency under interference can be
4Deactivating an interrupt in the GIC means marking it as handled, enabling

the distributor to forward it to the CPU when it occurs again.



solo col interf interf+col interf+col
+hypcol

test

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
In

te
rru

pt
 L

at
en

cy
 (n

s)
jailhouse
xen
bao
sel4/camkes-vmm

Fig. 7: Interrupt latency under interference and cache coloring.

solo interf interf+col interf+col
+hypcol

0

50

100

150

200

(a) Guest L2 cache misses.

solo interf interf+col interf+col
+hypcol

0

50

100

150

200

250

300

350

(b) Hypervisor L2 cache misses.

Fig. 8: L2 cache misses for the interrupt latency benchmark.

mostly explained by L2 cache misses. Fig. 8 shows the L2
cache misses for both guest and hypervisor during interrupt
latency measurement. We can see that interference increases
guest L2 cache misses, but that cache coloring can lower them
back to the base case values. However, this is not the case
for hypervisor L2 cache misses. For the base case, there are
no cache misses for the hypervisor, which increases substan-
tially under interference. Despite VM coloring contributing
to reduce hypervisor L2 cache misses, only by coloring the
hypervisor level, it is possible to minimize L2 cache misses for
the hypervisor. On Bao, L2 cache misses are fully eliminated,
but not on Xen5, which might explain why latency does not
reduce to non-interference levels.

Takeaway 4. Interrupt latency increases tenfold under the
interference workload. Applying cache coloring to VMs
proves very beneficial, but for it to be fully effective, it is
imperative to reserve a color for the hypervisor itself.

Direct Injection. We evaluate the effectiveness of the direct
injection technique, implemented only in Jailhouse and Bao.
Fig. 9 depicts the results. The first conclusion is that for the
base case, i.e., no interference, the interrupt latency is near
to native (about 210 ns). Indeed, we have confirmed that
during the execution of the benchmark, there are no traps to
the hypervisor. Next, we observed that interference somewhat
increases latency and its variance, but much less than in the
previous experiments. Finally, we concluded that by enabling
coloring, it is possible to lower the average latency to near
native (243 and 232 ns for Bao and Jailhouse, respectively),
however, there is still some variance due to the interference.

5At the time of writing, Xen’s coloring patch was still under review. Thus,
the assessed implementation may contain some imprecisions that are likely
to be fixed by the time the patch is merged.

solo interf interf+col
0

500

1000

1500

2000

2500

3000

In
te

rru
pt

 L
at

en
cy

 (n
s)

jailhouse
bao

Fig. 9: Interrupt latency with direct injection enabled.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5000

10000

15000

20000

25000

30000

35000

In
te

rru
pt

 A
rri

va
l I

nt
er

va
l (

ns
)

baremetal
jailhouse
xen
bao
sel4/camkes-vmm

Fig. 10: Time between the handling of different priority
interrupts triggered simultaneously, i.e., for interrupt N in the
X-axis, the time between the arrival of interrupts N-1 and N.

Takeaway 5. The direct injection technique is effective in
addressing the shortcomings of GIC interrupt virtualization,
as results clearly demonstrated interrupt latency overhead is
reduced to near native latencies.

Priority Handling. For studying the support of SPH delivering
interrupts in the correct priority order, we have implemented
a PL device which can be used to trigger up to 16 simulta-
neous interrupts, and a custom benchmark that assigns each
a different priority. It starts by triggering the eight lowest
priority interrupts. When handling the first, it triggers the eight
highest priority interrupts. This would force the hypervisor
to refill the four available LRs with the new higher priority
interrupts, and refill them in priority order as LRs become
available. The benchmark verifies if the priority order was
kept and measures the arrival interval between each interrupt.
We verified that only Xen and Bao guarantee the delivery of
interrupts in the correct priority order. By inspecting the code,
we have confirmed that both seL4-VMM and Jailhouse fill
the GIC LRs following a FIFO policy. Furthermore, the seL4-
VMM does not even commit the interrupt priorities configured
in the virtual GIC distributor to hardware, precluding the
arrival of physical interrupts in the correct priority order. Fig.
10 shows that across all hypervisors if multiple interrupts
are delivered simultaneously, there is an increase by several
orders of magnitude in the arrival time of the first and second
interrupts, which is less than 700 ns for the baremetal case.
This larger increase is justified by the fact that the hypervisors
must handle all interrupts before the guest starts handling the
first interrupt. Another observation is that there is a periodic
increase in the interval of arrival. We have concluded this is
the point at which there are no pending interrupts left in the
LRs, which triggers the hypervisor to refill these registers with
previously spilled pending interrupts.



Trap Emulation IPI
0

2500

5000

7500

10000

12500

15000

17500
Ti

m
e 

(n
s)

baremetal
jailhouse
xen
bao
sel4/camkes-vmm

Fig. 11: Average cost for each send IPI operation component.

Takeaway 6. Only Xen and Bao respect interrupt priority
order. Additionally, we observe that for all SPH, if multiple
interrupts are triggered simultaneously, there is a partial
priority inversion as lower priority interrupts take precedence
due to the need for the hypervisor to handle and inject them.

Inter-Processor Interrupts. IPIs (SGIs) are critical for multi-
core VM performance. For a vCPU to send an SGI, the guest
must write a virtual GIC distributor register. This will trap
to the hypervisor that must emulate the access and forward
the event to the target core, where the SGI is injected via list
registers. We use a custom baremetal benchmark to measure
IPI latency. It works by measuring the time between when the
source vCPU writes the distributor register and when the final
IPI handler starts executing. It also measures the overhead of
the trap. We instrument the SPH to sample the time the IPI is
forwarded internally; this signals the end of the emulation and
translates the overhead of injecting the interrupt in the target.

Figure 11 shows that IPI latency increases significantly for
all SPH. While the baremetal IPI latency is around 260 ns,
it reaches 2258 ns for Jailhouse, 4157 ns for Xen, 2711 ns
for Bao, and 10868 ns for the CAmkES VMM. However, the
costs of the register access emulation and interrupt injection
are not proportional across all SPH. For example, Bao has the
lowest emulation and event forwarding times, but the overall
IPI latency is higher than Jailhouse’s. This means that the
interrupt injection path on Bao is slower than on Jailhouse. By
inspecting the source of both hypervisors, we have observed
that Bao immediately forwards the SGI event to the target core,
performing all interrupt injection operations in the target core.
Jailhouse, in turn, manages the interrupt injection structures
at the source core and only then signals the target vCPU by
writing the list register. Xen follows the same approach as
Jailhouse, but presents higher overhead. The CAmkES VMM
has the highest overhead due to the large number of system
calls the VMM issues to the microkernel (in total, 7). Four are
issued before the event forwarding, and the rest only after the
SGI is forward to the target core. All in all, the access to the
virtual distributor is more expensive than the IPI itself.

Takeaway 7. IPI latency reflects the same overheads of
external interrupts. Future Arm platforms might reduce them
with GICv4.1 [45]. In the short term, direct injection might
alleviate this issue. However, both approaches fall short
of achieving native latency as they still pay the price of
emulating the write to the “IPI send” register.

base interf interf+col interf+col+hypcol
0

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000

No
tif

ica
tio

n 
La

te
nc

y 
(n

s)

jailhouse
xen
bao
sel4/camkes-vmm

Fig. 12: Inter-VM notification latencies.

VI. SPH: INTER-VM COMMUNICATION

For inter-VM communication, SPH typically only provide
statically allocated shared memory. This is usually coupled
with an asynchronous notification mechanism signaled as an
interrupt. All four SPH provide such mechanisms. Next, we
analyze inter-VM notification latency and transfer throughput.
Inter-VM latency. Fig. 12 shows the inter-VM notification
latency, reflecting the time since the notification is issued until
the execution of the handler in the destination VM. The relative
differences between the latencies for each SPH are similar to
those observed for passthrough interrupts and IPIs. Jailhouse
achieves the lower latency (1500 ns), followed by Bao (1900
ns). Xen shows an intermediate value of 4600 ns, while seL4
CAmkES VMM is significantly larger than others (average
18000 ns). Studying the internals of the implementations,
we note that while most hypervisors synthesize and inject
the virtual interrupts, Jailhouse uses non-allocated physical
interrupts for these notifications. Thus, to send one, Jailhouse
only sets the interrupt pending in the GIC distributor. This is
significantly advantageous when combined with direct injec-
tion. Note that enabling direct injection in Bao would preclude
the use of this mechanism. For seL4, we highlight the impact
of the microkernel architecture since atop VM/VMM context
switches, we observe additional overheads due to inter-VMM
communication. Lastly, we see that interference increases all
latencies accordingly and that coloring can mitigate it.
Inter-VM throughput. In Fig. 13, we evaluate the throughput
of bulk data transfers via a shared memory buffer. The bench-
mark transmits 16 MiB of random data through a shared buffer
with varying sizes. When the source VM finishes writing
the buffer, it either signals the destination VM via a shared
memory flag or via an asynchronous notification, and waits for
a signal back to start writing the next chunk. For the polling
scenario, the obtained throughput is very similar across all
hypervisors; this confirms that are no significant differences
in how they allocate and map memory or configure memory
attributes. Throughput is stable (1500 MiB/s) until the buffer
size surpasses the LLC size (1 MiB), dropping to about
1300 MiB/s. For the asynchronous scenario, throughput is
significantly impacted when using smaller buffer sizes, given
the high number of synchronization points that reflects the
observed interrupt overheads. Finally, we note that interference
has no significant effect as long as the buffer size is kept



0

250

500

750

1000

1250

1500
Th

ro
ug

hp
ut

 (M
iB

/s
)

jailhouse
xen
bao
sel4/camkes-vmm

No Interference

Po
llin

g

Interference

104 105 106 107

Buffer Size (KiB)

0

250

500

750

1000

1250

1500

Th
ro

ug
hp

ut
 (M

iB
/s

)

104 105 106 107

Buffer Size (KiB)

In
te

rru
pt

Fig. 13: Inter-VM communication throughput.

below about half the size of LLC. Beyond that, throughput is
reduced from 1300 to 850 MiB/s. Although not shown due to
lack of space, using coloring does not prove beneficial, as the
throughput illustrated in Fig. 13 remains virtually unchanged.

Takeaway 8. Inter-VM notification latencies are significant
and, as is the case for hardware interrupts, very susceptible to
the effects of interference. However, for bulk data transfers it
does not seem to significantly affect throughput if the shared
buffer size is chosen on a range of about one-fourth to half
the LLC size (i.e., 256 KiB to 512 KiB).

VII. SPH: BOOT TIME

System boot time is a crucial metric in industries such as
automotive [46], [47] as critical components have strict timing
requirements for becoming fully operational.
Platform’s Boot Flow. The platform’s boot flow [48] starts by
executing ROM code which loads the first-stage bootloader
(FSBL) and enables the main cores. These initial boot stages
setup the platform basic infrastructure (e.g., clocks, DRAM)
and load the TF-A and U-boot. U-boot will load the hypervisor
and, except for Jailhouse, the guest images. Bao and Xen
directly boot guests after initialization. Jailhouse starts with the
boot of the Linux root cell, that installs the hypervisor which
then loads the guests. seL4’s execution starts with an ELF
loader which loads the all images, initializes secondary cores,
and sets up an initial set of page tables for the microkernel.
The microkernel initializes and hands control to user space.
Total VM Boot Time. The hypervisor boot time is heavily
dependent on the VM and how it is configured. We observed
that the VM image size is one of the parameters that has the
higher impact in the hypervisor boot time. We measure boot
time as a function of VM image size. Thus, to understand
the overhead of the hypervisor in the context of the complete
boot flow, in Fig. 14, we plot the cumulative time for each
boot stage. Here, we can confirm that in all hypervisors but
Jailhouse, the bulk of boot time is spent by U-boot. For
Jailhouse, U-boot run time is constant, albeit large, as it
always only loads the root cell’s image. Jailhouse execution
time increases steeply while loading the VM image. From

0

2000

4000

6000

8000

10000

12000

Ti
m

e 
(m

s)

fsbl
atf
uboot

root-cell
jailhouse

fsbl
atf

uboot
xen

0 10 20 30 40 50 60
VM Image Size (MiB)

0

2000

4000

6000

8000

10000

12000

Ti
m

e 
(m

s)

fsbl
atf

uboot
bao

0 10 20 30 40 50 60
VM Image Size (MiB)

fsbl
atf
uboot

elf-loader
sel4
camkes-vmm

Fig. 14: Boot time for each stage by VM image region size.

this macro perspective, the other hypervisors add an almost
constant offset to U-boot’s boot time, the largest being seL4-
VMM’s. We observe this overhead is not on the microkernel,
but at user level, which nevertheless heavily interacts with the
microkernel to setup capabilities and kernel objects. We can
conclude that VM boot time has its bottleneck by the loading
of guest images to memory, not the hypervisor logic.
FreeRTOS and Linux Boot Times. We also measure the boot
time of (i) a small VM running FreeRTOS with a 90 KiB
image and (ii) a large VM with a Linux guest (built-in ramfs)
totaling 59 MiB of image size. For Jailhouse, the Linux VM
is a non-root cell. In Table I, we present results for a single-
guest and a dual-guest system. For the latter, both VMs boot
simultaneously; thus, we did not run experiments for dual-
guest with Jailhouse, because it launches VMs sequentially.
Table I presents the absolute boot time for the guest’s native
and virtualized execution, highlighting the relative percentage
increase compared to native execution. For the single-guest
FreeRTOS VM, all hypervisors but Bao cause a non-negligible
increase in boot time. The same happens with the single-guest
Linux VM. For the dual-guest configuration, we concluded
that the small VM is heavily affected for all hypervisors.
Surprisingly, we observe that although the cost of booting
a single FreeRTOS in Bao is negligible, this is not true
for a dual-guest configuration. Booting it alongside a Linux
VM significantly increases its boot time, reaching similar
overheads to those observed in Jailhouse’s sequential boot.

Takeaway 9. The major bottleneck for the VM boot time is
caused by the bootloader, not the hypervisors. Notwithstand-
ing, the hypervisor can significantly increase the boot time
of a critical VM (small RTOS) when booting it alongside a
larger VM (e.g., in dual-OS Linux+RTOS configuration).

VIII. SPH: CODE SIZE AND TCB

In MCS, the size of the hypervisor code, measured in source
lines of code (SLoC), is critical. It should be minimal as
it is part of the trusted computing base (TCB) of all VMs.
In this paper, we consider that a VM TCB encompasses any
component with sufficient privileges that if it is compromised
or malfunctions, might be able to affect the safety and/or



Baremetal Jailhouse Xen Bao seL4-VMM

FreeRTOS Single 1670.89 6242.18 / 173.58% 2338.24 / 39.94% 1716.23 / 2.71 % 3496.19 / 109.24%

Dual N/A 6887.88 / 312.23% 5734.04 / 143.17% 9291.02 / 456.05%

Linux Single 7665.14 12284.92 / 60.27% 8533.88 / 11.33% 7805.54 / 1.83 % 12629.79 / 64.77%

Dual N/A 8707.15 / 13.59% 7895.95 / 3.01 % 13086.86 / 70.73%

TABLE I: Total boot time (ms) and relative increase compared
to the baremetal case, for FreeRTOS and Linux VMs.

C Asm Total
(SLoC)

.text
(KiB)

.c .h

jailhouse hypervisor 7308 2279 342 9929 79.3

driver 2041 139 N/A 2180 20.1

xen 57360 8127 1765 67342 451.5

bao 5046 2840 537 8423 57.9

seL4
CAmkES VMM

microkernel 14569 N/A 189 14758 224.7

VMM 20932 19291 N/A 40223 724.3

TABLE II: Hypervisor SLoC count and binary code size.

security properties of the VM. As well understood in the
literature, a larger TCB typically has a higher number of bugs
and wider attack surface [49], resulting in a higher probability
of vulnerabilities. It is important to understand that each VM
has its own TCB. Thus, CAmkES VMM is only considered
for the managed VM’s TCB, not the others. Further, large code
bases are impractical for certification, both from a technical
and economic perspective. To qualify a component assigned
a safety integrity level (SIL), all components on which it
depends must also be qualified to the same or higher SIL [4].

Methodology. We measured SLoC for the target configurations
using cloc [50]. Xen build system offers a make target to assess
the SLoC for a specific configuration. However, it does not
count header files, which we believe must be accounted for
since they provide function-like macros and inline functions.
We have modified the Xen makefile to measure headers. We
have also extended Jailhouse and Bao build systems with the
same functionality. For seL4, we used the fully unified and
pre-processed kernel source file to assess the microkernel code
base. For the CAmkES VMM, given that its source code is
scattered throughout multiple seL4 project libraries, we were
not able to list its source code files from the build system.
Instead, we used debug information from the final executable
and inspected each source to assess the included header files.

Code Size. Looking at Table II we see Bao and Jailhouse
have the smallest code base of about 8400 and 9900 SLoC,
respectively. Bao is implemented as a standalone component
with no external dependencies. However, since part of Jail-
house functionality is implemented as a Linux kernel module,
we also account that for the code base. It adds about 2180
SLoC, bringing Jailhouse total code base to 12 KSLoC. For
Xen we use a custom config with almost all features disabled,
except a few ones such as coloring and static shared memory. It
features the largest code base with around 67 KSLoC. Finally,
seL4 microkernel has 14.5 KSLoC, while the CAmkES VMM
can go up to 40K, i.e., almost 55 KSLoC in total. The visible
difference between Bao and Jailhouse, and seL4 microkernel
and, especially, Xen, lies in the fact that the former were
designed specifically for the static partitioning use case, while
the latter aim at being more generic and adaptable. These

differences are reflected in the binary size of each hypervisor.
TCB. The hypervisor SLoC does not directly reflect the VM
TCB. Although by design SPH such as Bao has a smaller
SLoC count, the seL4-VMM is vastly superior from a security
perspective: shared TCB is limited only to the formally verified
microkernel, because each VM is managed by a fully isolated
VMM. From a FuSa certification standpoint, however, the
VMM would still need to be considered. Moreover, seL4
formal proofs are limited to a set of kernel configurations,
currently not including multicore. Regarding Jailhouse, despite
its small size, the root cell is a privileged component of the
system. It executes part of all VM management logic, being in
the critical path for booting all other VMs. It is arguably part
of all VM’s TCB, increasing it significantly [49]. Analogously,
Xen must depart from true Dom0-less to leverage richer
features (e.g., PV drivers, dynamic VM creation). Recently,
the Xen community has ignited efforts to use a smaller OS,
such as Zephyr [24], as Dom0, refactor Xen to MISRA C, and
provide extensive requirements and test documentation [51].

Takeaway 10. Hypervisors specifically targeting static par-
titioning have the smallest code bases. Despite facilitating
certification, none of the evaluated SPH provide other arti-
facts (e.g., requirements specification, coding standards). Xen
is the first to take steps in this direction; nevertheless, seL4’s
formal proofs provide the most comprehensive guarantees.

IX. DISCUSSION AND FUTURE DIRECTIONS

In this section, we discuss some of the open issues and
potential research directions to improve the guarantees of SPH.
Interference Mitigation Techniques. Cache coloring does not
fully mitigate the effects of inter-core interference. Further-
more, coloring has inherent inefficiencies such as (i) pre-
cluding the use of superpages and (ii) increasing memory
pressure which affects performance and predictability, as well
as (iii) internal fragmentation (exclusively assigning 1 out of
N colors, implicitly allocates 1/Nth of physical memory, a
portion of which may remain unused for small RTOSs or
the SPH). While the latter could be solved by employing
cache bleaching [52] in heterogeneous platforms, to further
minimize coloring bottlenecks, we advocate for SPH to adopt
other proven, widely applicable contention mitigation mech-
anisms, e.g., bandwidth regulation mechanisms implemented
via PMU-based CPU throttling [53], [54]. We also stress the
importance of including support for hardware extensions such
as Arm’s Memory Partitioning and Monitoring (MPAM) [11],
[55], which provide flexible hardware means for partitioning
cache space and memory bandwidth and call for platform
designers to include such facilities in their upcoming designs
targeting MCS. Finally, we stress the need for instrumentation,
analysis, and profiling tools [20], [56] that integrate with these
hypervisors to help system designers understand the trade-offs
and fine-tune these mechanisms (e.g., through automation).
Platform-Level Contention and Mitigation. None of the stud-
ied SPH manages traffic from peripheral DMAs. We advocate
that SPH must provide contention mitigation mechanisms at



the platform level, e.g., (i) leveraging QoS hardware [20],
[57] available on the bus and (ii) controlling interference
from DMA-capable devices or accelerators. Furthermore, since
DMA masters still share SMMU structures (e.g., TLBs [58]),
we hypothesize that bandwidth regulation techniques may fall
short of efficiently mitigating interference at this level.
Interrupt Injection Optimization. Arm-based SPH’s interrupt
latency is mainly due to inadequate support in GICv2/3. GICv4
will provide direct interrupt injection support, but only for IPIs
and MSIs. We want to raise awareness of Arm silicon makers
and designers of the need for additional hardware support at
the GIC level for direct injection of wired interrupts. The
same holds for RISC-V [25]. Besides hardware support, we
observed that simple SPH provide optimized interrupt injection
paths. It is also possible to optimize this path in larger SPH
(e.g., Xen) and in microkernels (e.g., moving injection logic
to the microkernel). Finally, Bao and Jailhouse implement
direct interrupt injection; however, we must stress that using
this technique severely hinders the ability of the SPH to
manage devices or implement any functionality dependent on
interrupts. A plausible research direction would be a hybrid
approach, i.e., selectively enabling direct injection only in
specific cores for critical guests while providing the more
complex functionality in cores running non-critical guests.
Interrupt Priority Inversion Fix. As discussed in Section V,
the studied SPH suffer from partial interrupt priority inversion
because all currently pending interrupts are handled by the
hypervisor and injected in the guest before it can service
the highest-priority one. We advocate for implementing a
lightweight solution by dynamically setting the interrupt pri-
ority mask based on the priority of the last injected interrupt.
This approach ensures the hypervisor only receives the next
interrupt once the guest has handled the highest priority one.
Critical VM Boot Priority. Section VII highlights the issue
of critical VM boot time overhead when booted under a dual-
OS configuration. We advocate for the development of boot
mechanisms that prioritize the boot of small critical VMs.
However, as noted in Jumpstart [47], it must encompass the
full boot flow and be optimized across stages and components
since the bottleneck of the boot time is in the image loading
process performed by the bootloader, not the hypervisor.
Per-Partition Hypervisor Replica. Memory contention highly
affects interrupt latency but can be minimized by assigning
different colors for VMs and the hypervisor. Notwithstanding,
coloring the hypervisor may prove wasteful and insufficient to
address other interference channels internal to the hypervisor.
We advocate for à la multikernel [59] implementations such
as the one implemented in seL4, where the hypervisor image
is replicated per cache partition [31], fully closing internal
channels. For SPH with a small enough footprint, memory
consumption or boot time costs should not be prohibitive.
Architecture Flexibility. Purely monolithic SPH (e.g., Jail-
house or Bao) have smaller code bases at the cost of feature
richness and flexibility. The same holds for Xen, i.e., many
widely-used rich features are absent when configured as an

SPH (to minimize code size). On the other hand, the seL4
microkernel architecture is much more flexible as it allows
for an isolated user space VMM per guest, providing more
robust isolation and customization; however, it comes at the
cost of non-negligible latencies. We advocate for novel archi-
tectures that combine microkernels’ flexibility and strong fault
encapsulation with SPH’s simplicity and minimalist latencies
by hosting per-partition VMMs directly at the hypervisor
privilege level. Such a design could arguably be achieved
by combining multikernel-like architectures [59] and per-core
memory protection mechanisms (e.g., Armv9 RME’s GPT
[60], or RISC-V PMP [61]) statically configured by firmware.
Full IO Passthrough. Pure static partitioning supports only
passthrough IO. However, as highlighted by [7], there is a crit-
ical problem in providing full IO passthrough when controls
over IO resources such as clock, reset, power, or pin-muxes
cannot be securely partitioned or shared, e.g., if their MMIO
registers reside on the same frame or they are configured via
platform management co-processors oblivious of SPH’s VMs.
Thus, SPH should provide controlled guest access to these
resources by emulation or through standard interfaces such as
SCMI [62]. Nevertheless, this would require including drivers
in the hypervisor, increasing its code base. Again, we urge
hardware designers to provide hardware primitives that enable
SPH to pass through IO resource controls.

X. RELATED WORK

There are several hypervisor analyses in the context of
embedded and MCSs, but none provide a cross-section anal-
ysis and comparison on SPH. Some works focus on a single
hypervisor while others evaluate a single metric or feature.
In [63], authors compare the performance of Xvisor with
Xen and KVM. Others have evaluated the effectiveness of
cache coloring and bandwidth reservations in Xvisor [54].
Similarly, in [19], authors evaluate cache and DRAM bank
coloring in Jailhouse. Other works have evaluated Jailhouse
interrupt latency [64] or VM interference [65]. There are
also studies about the feasibility of using Xen and KVM
as real-time hypervisors [66], but mainly for x86. Little
has been published regarding the new Xen Dom0-less and
cache coloring features, but results can be found in [67].
Evaluation of the seL4 CAmkES VMM has also been done
for performance and interrupt latency [29]. There have been
works providing a qualitative analysis for MCS hypervisors,
contrasting architectural approaches and highlighting future
trends [68] while others layout guidelines on how to choose
such a hypervisor in industrial settings [46].

XI. CONCLUSION

We have conducted the most comprehensive empirical eval-
uation of open-source SPH to date, focusing on key metrics
for MCS. With that, we drew a set of observations that
(i) will help industrial practitioners understand the trade-offs
of SPH and (ii) raise awareness of the research and open-
source communities to the still open problems in SPH. We
are opening all artifacts to enable independent validation of
results and encourage further exploration on SPH.



XII. ACKNOWLEDGMENTS

We would like to express our gratitude to the reviewers
for their valuable feedback and suggestions, as well as to
our friendly shepherd for guiding us in making final im-
provements. Additionally, we appreciate the time and thought-
ful input from all the representatives of SPH, namely Ralf
Ramsauer (Jailhouse), Stefano Stabellini (Xen), and Gernot
Heiser (seL4/CAmkES-VMM). José Martins was supported
by FCT grant SFRH/BD/138660/2018. This work is supported
by FCT – Fundação para a Ciência e Tecnologia within the
RD Units Project Scope UIDB/00319/2020, and European
Union’s Horizon Europe research and innovation program
under grant agreement No 101070537, project CROSSCON
(Cross-platform Open Security Stack for Connected Devices).

REFERENCES

[1] J. Cerrolaza et al., “Multi-Core Devices for Safety-Critical Systems: A
Survey,” ACM Computing Surveys, 2020.

[2] M. Staron, Contemporary Software Architectures: Federated and Cen-
tralized. Springer International Publishing, 2021.

[3] A. Burns and R. Davis, “A Survey of Research into Mixed Criticality
Systems,” ACM Computing Surveys, 2017.

[4] A. Esper et al., “An industrial view on the common academic under-
standing of mixed-criticality systems,” Real-Time Systems, 2018.

[5] J. Hwang et al., “Xen on ARM: System Virtualization Using Xen Hy-
pervisor for ARM-Based Secure Mobile Phones,” in Proc. of Consumer
Communications and Networking Conference, 2008.

[6] C. Dall and J. Nieh, “KVM/ARM: The Design and Implementation of
the Linux ARM Hypervisor,” ACM SIGARCH Computer Architecture
News, 2014.

[7] R. Ramsauer et al., “A Novel Software Architecture for Mixed Criticality
Systems,” in Digital Transformation in Semiconductor Manufacturing,
2020.

[8] J. Martins et al., “Bao: A Lightweight Static Partitioning Hypervisor for
Modern Multi-Core Embedded Systems,” in Proc. of Workshop on Next
Generation Real-Time Embedded Systems (NG-RES), 2020.

[9] S. VanderLeest and D. White, “MPSoC hypervisor: The safe & secure
future of avionics,” in Proc. of Digital Avionics Systems Conference
(DASC), 2015.

[10] P. Burgio et al., “A software stack for next-generation automotive
systems on many-core heterogeneous platforms,” Microprocessors and
Microsystems, 2017.

[11] F. Rehm et al, “The Road towards Predictable Automotive High -
Performance Platforms,” in Proc. of Design, Automation and Test in
Europe Conference (DATE), 2021.

[12] J. Martins, “ESRGv3/shedding-light-static-partitioning-
hypervisors: v0.1.0,” 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.7696937

[13] Arm, “Learn the architecture: AArch64 Virtualization,”
https://developer.arm.com/documentation/den0125/latest, 2022.

[14] A. Gordon et al., “ELI: Bare-Metal Performance for I/O Virtualization,”
SIGPLAN Notices, 2012.

[15] G. Gracioli et al., “A Survey on Cache Management Mechanisms for
Real-Time Embedded Systems,” ACM Computing Surveys, 2015.

[16] Arm, “Software Delegated Exception Interface (SDEI),”
https://developer.arm.com/documentation/den0054/latest, 2021.

[17] R. Ramsauer et al., “Look Mum, no VM Exits!(Almost),” in Proc. of
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), 2017.

[18] ——, “Static Hardware Partitioning on RISC-V – Shortcomings, Lim-
itations, and Prospects,” in Proc. of IEEE World Forum on Internet of
Things, 2022.

[19] T. Kloda et al., “Deterministic Memory Hierarchy and Virtualization
for Modern Multi-Core Embedded Systems,” in Proc. of Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2019.

[20] P. Sohal et al., “E-WarP: A System-wide Framework for Memory
Bandwidth Profiling and Management,” in Proc. of Real-Time Systems
Symposium (RTSS), 2020.

[21] “jailhouse-rt: Bu-maintained version of the jailhouse partition-
ing hypervisor with real-time features.” [Online]. Available:
https://github.com/rntmancuso/jailhouse-rt

[22] A. Biondi et al., “SPHERE: A Multi-SoC Architecture for Next-
Generation Cyber-Physical Systems Based on Heterogeneous Plat-
forms,” IEEE Access, 2021.

[23] G. Corradi, “Xen on Arm: Real-Time Virtualization with Cache Color-
ing,” in Proc. of Embedded World Conference, 2020.

[24] “Zephyr project,” Feb 2023. [Online]. Available:
https://www.zephyrproject.org/

[25] B. Sa et al., “A First Look at RISC-V Virtualization from an Embedded
Systems Perspective,” IEEE Transactions on Computers, 2021.

[26] G. Klein et al., “SeL4: Formal Verification of an OS Kernel,” in Proc.
of ACM Symposium on Operating Systems Principles (SOSP), 2009.

[27] G. Heiser, “The seL4 Microkernel: An Introduction,” The seL4 Foun-
dation, 2020.

[28] G. Klein et al., “Formally Verified Software in the Real World,”
Communications of the ACM, 2018.

[29] J. Millwood et al., “Performance Impacts from the seL4 Hypervisor,”
in Proc. of the Ground Vehicle Systems Engineering and Technology
Symposium, 2020.

[30] A. Lyons et al., “Scheduling-Context Capabilities: A Principled, Light-
Weight Operating-System Mechanism for Managing Time,” in Proc. of
European Conference on Computer Systems (EuroSys), 2018.

[31] Q. Ge et al., “Time Protection: The Missing OS Abstraction,” in Proc.
of European Conference on Computer Systems (EuroSys), 2019.

[32] T. Murray et al., “seL4: From General Purpose to a Proof of Information
Flow Enforcement,” in Proc. of IEEE Symposium on Security and
Privacy (S&P), 2013.

[33] G. Klein et al., “Comprehensive Formal Verification of an OS Micro-
kernel,” ACM Transactions on Computer Systems, 2014.

[34] G. Heiser et al., “Towards Provable Timing-Channel Prevention,” ACM
SIGOPS Operating Systems Review, 2020.

[35] ——, “Can We Put the ”S” Into IoT?” in Proc. of IEEE World Forum
on Internet of Things, 2022.

[36] U. Steinberg and B. Kauer, “NOVA: A Microhypervisor-Based Secure
Virtualization Architecture,” in Proc. of European Conference on Com-
puter Systems, 2010.

[37] S. Pinto et al., “LTZVisor: TrustZone is the Key,” in Proc. of Euromicro
Conference on Real-Time Systems (ECRTS), 2017.

[38] J. Martins et al., “µRTZVisor: A Secure and Safe Real-Time Hypervi-
sor,” Electronics, 2017.

[39] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehen-
sive Survey,” ACM Computing Surveys, 2019.

[40] “perf: Linux profiling with performance counters.” [Online]. Available:
https://perf.wiki.kernel.org/index.php/Main Page

[41] M. Guthaus et al., “MiBench: A free, commercially representative
embedded benchmark suite,” in Proc. of International Workshop on
Workload Characterization (WWC), 2001.

[42] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of
Memory Service in Multi-Core Systems,” in Proc. of USENIX Security
Symposium, 2007.

[43] P. Valsan et al., “Taming Non-Blocking Caches to Improve Isolation in
Multicore Real-Time Systems,” in Proc. of Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2016.

[44] W. Hofer et al., “Sloth: Threads as Interrupts,” in Proc. of Real-Time
Systems Symposium (RTSS), 2009.

[45] Arm Ltd., “Arm Generic Interrupt Controller v3 and v4 - Virtualization,”
2022.

[46] E. Hamelin et al., “Selection and evaluation of an embedded hypervisor:
Application to an automotive platform,” in Proc. of European Congress
of Embedded Real Time Software and Systems, 2020.

[47] A. Golchin and R. West, “Jumpstart: Fast Critical Service Resumption
for a Partitioning Hypervisor in Embedded Systems,” in Proc. of Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2022.

[48] Xilinx, “Zynq UltraScale+ Device: Technical Reference Manual,”
https://docs.xilinx.com/v/u/en-US/ug1085-zynq-ultrascale-trm, 2020.

[49] S. Biggs et al., “The Jury Is In: Monolithic OS Design Is Flawed:
Microkernel-Based Designs Improve Security,” in Proc. of Asia-Pacific
Workshop on Systems, 2018.

[50] Al Danial, “cloc - count lines of code,” https://github.com/AlDanial/cloc.



[51] A. Mygaiev and S. Stabellini, “Xen FuSa SIG update,” in Xen
Project Developer and Design Summit, 2021. [Online]. Available:
https://www.youtube.com/watch?v=XMNaIWZ-2sU

[52] S. Roozkhosh and R. Mancuso, “The potential of programmable logic in
the middle: Cache bleaching,” in Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2020.

[53] H. Yun et al., “MemGuard: Memory bandwidth reservation system for
efficient performance isolation in multi-core platforms,” in Proc. of Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2013.

[54] P. Modica at al., “Supporting temporal and spatial isolation in a
hypervisor for ARM multicore platforms,” in Proc. of International
Conference on Industrial Technology (ICIT), 2018.

[55] Arm Ltd., “Arm Architecture Reference Manual Supplement - Memory
System Resource Partitioning and Monitoring (MPAM), for A-profile
architecture,” 2022.

[56] G. Ghaemi et al., “Governing with Insights: Towards Profile-Driven
Cache Management of Black-Box Applications,” in Proc. of Euromicro
Conference on Real-Time Systems (ECRTS), 2021.

[57] M. Zini et al., “Profiling and controlling I/O-related memory contention
in COTS heterogeneous platforms,” Software: Practice and Experience,
2022.

[58] A. Panchamukhi and F. Mueller, “Providing task isolation via tlb
coloring,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2015.

[59] A. Baumann et al., “The multikernel: A new os architecture for scalable
multicore systems,” in Proc. of ACM Symposium on Operating Systems
Principles (SOSP), 2009.

[60] X. Li et al., “Design and verification of the arm confidential compute
architecture,” in USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2022.

[61] D. Lee et al., “Keystone: An open framework for architecting trusted
execution environments,” in Proc. of European Conference on Computer
Systems (EuroSys), 2020.

[62] Arm Ltd., “Arm System Control and Management Interface - Platform
Design Document, Version 3.1,” 2022.

[63] A. Patel et al., “Embedded Hypervisor Xvisor: A Comparative Analysis,”
in Proc. of Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, 2015.

[64] I. Pavic and H. Dzapo, “Virtualization in multicore real-time embedded
systems for improvement of interrupt latency,” in Proc. of International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), 2018.

[65] J. Danielsson et al., “Testing Performance-Isolation in Multi-core Sys-
tems,” in Proc. of Annual Computer Software and Applications Confer-
ence (COMPSAC), 2019.

[66] L. Abeni and D. Faggioli, “Using Xen and KVM as real-time hypervi-
sors,” Journal of Systems Architecture, 2020.

[67] S. Stabellini, “Xen Cache-Coloring: Interference Free Real-Time
Systems,” in Open Source Summit (Noth America), 2020. [Online].
Available: https://www.youtube.com/watch?v=9cA0QK2CdwQ

[68] M. Cinque et al., “Virtualizing mixed-criticality systems: A survey on
industrial trends and issues,” Future Generation Computer Systems,
2022.


